基于适配体的核酸外切酶保护和酶循环切割扩增的多功能检测平台高灵敏性检验凝血酶

合集下载

滚环扩增(RCA)技术放大信号实现17β-雌二醇(E2)的超灵敏检测

滚环扩增(RCA)技术放大信号实现17β-雌二醇(E2)的超灵敏检测

滚环扩增(RCA)技术放大信号实现17β-雌二醇(E2)的超灵敏检测王伟亚,白家磊①,彭媛①,王玖,高志贤①*(滨州医学院公共卫生与管理学院,烟台264033) 摘要:目的为实现食品中17β-雌二醇(E2)污染物的超灵敏检测,本研究将适配体㊁分子信标和滚环扩增(RCA )技术相结合,用于E2的荧光检测㊂方法E2能解旋由适配体和cDNA 杂交生成的复合DNA ,使cDNA 游离并与环DNA 特异性结合,在Phi29酶的作用下生成长单链DNA ㊂长单链DNA 与分子信标杂交后,解旋分子信标的发夹结构,使FAM 荧光基团的荧光恢复,从而实现E2的超灵敏检测㊂结果经过条件优化,在0.001ng /mL-10ng /mL 的浓度范围内E2浓度与荧光强度呈现良好的线性关系:y =594.17LgC+3868.87(R 2=0.9758),检出限为0.19pg /mL ㊂在牛奶和自来水中,加标回收率分别为81.33%-117.42%和89.25%-107.04%,相对标准偏差是2.02%-3.13%和1.09%-2.45%㊂结论在本研究中,我们基于适配体技术和等温扩增技术提出了一种E2的超灵敏荧光检测方法㊂该方法灵敏度高㊁特异性强㊁操作简单㊁实验仪器要求低㊂该策略为E2的检测提供了一种新的方法,也为其他污染物的检测提供了新的思路㊂ 关键词: 滚环扩增(RCA ); 适配体技术; 分子信标; 荧光共振能量转移 中图分类号:TS207.5 文献标志码:A 文章编号:1001-5248(2020)12-0078-06基金项目:军事医学研究院基金(No.2019GGRC03,2019CXTD03)作者简介:王伟亚(1991-),女,硕士,执业医师㊂从事食品安全与检测技术㊂①军事科学院军事医学研究院环境医学与作业医学研究所*通信作者E-mail:gaozhx@ 环境雌激素,又被称为 内分泌干扰化合物”(en⁃docrine disrupting chemicals,EDC),广泛存在于在人类生存环境中,可对人类的生殖㊁免疫㊁神经㊁内分泌等多个系统产生危害引起一系列的生理功能的改变甚至引起癌变(乳腺癌),严重扰乱正常生理功能〔1〕㊂17β-雌二醇(E2)是诸多环境雌激素中作用最强烈的一种,仅仅是nM 级别的残留量即可对人类内分泌系统产生不良影响〔2〕㊂由于雌激素类药物的非法使用,在靠近废水处理设施的地点和全球各地的地下水中都检测到了处于污染水平的雌激素㊂水产品㊁饮用水以及牛奶和乳制品中的E2残留问题更是日益严重〔3〕㊂E2的污染问题已经成为严重的公共卫生问题㊂为了保证公共卫生健康和食品安全,对于雌激素类污染物的监管力度正在加强㊂欧盟2015年发布的观察清单,E2以极低的检测限(0.4ng /L)被纳入其中,由于现有的监测技术的限制,2018年监测结束时,8个成员国未达到E2所需的灵敏度㊂因此,E2在2018年发布的修订版观察清单中得到了保留〔4〕㊂显然挑战仍然存在,建立更敏感和更稳健的分析方法达到保证监测效能是至关重要的㊂目前E2检测有多种方法,且各有利弊,如Elisa〔5〕㊁免疫分析〔6〕等方法有良好的特异性,但检测灵敏度不够;电化学传感器〔7〕㊁液相色谱串联质谱〔8〕等灵敏度高㊁稳定性强且有较好的特异度,但样品的前处理复杂㊁实验仪器要高求㊁实验周期长;量子点〔9〕检测技术虽然操作简单,但耗费时间长,重复性差,且目前已有的方法很难达到要求的灵敏度(0.4ng /L)㊂通过放大待测目标物的信号,可以实现目标物的超灵敏检测㊂适配体技术与等温扩增技术相结合,是一种有效的检测目标物信号放大手段〔10〕㊂适配体是能够与目标物或相应的配体严格识别和高度特异性结合的寡核苷酸序列〔11〕㊂因为具有高度特异性㊁靶分子广㊁易于体外合成和修饰等优点在基础领域㊁临床诊断和治疗中得到广泛应用〔12〕㊂目前应用较广泛的等温扩增技术主要包括环介导的核酸等温库增技术(LAMP)〔13〕㊁链替代等温扩增技术(SDA)〔14〕㊁滚环扩增技术(RCA)〔15〕等㊂其中RCA 是一种简单有效的恒温酶依赖型技术㊂一个典型的RCA 反应由一个短的引物序列㊁环状DNA 模板㊁DNA 聚合酶以及dNTPs 四部分组成〔15〕㊂环DNA 和引物在DNA 聚合酶的作用下,生成具有数十到数万个与环状DNA 序列互补的串联重复长单链DNA,RCA 能从一个分子结合生长出一条长DNA 单链,从而能够在单分子水平上检测目标〔10〕㊂分子信标是一种DNA 荧光探针,两端分别修饰有荧光基团和猝灭基团〔16〕㊂自然状态下分子信标呈闭合的发夹状,荧光基团和猝灭基团互相靠近,由于荧光共振能量转移荧光基团的荧光被猝灭基团猝灭㊂当目标DNA 存在时,分子信标与其特异性杂交结合解旋发夹结构,荧光共振能量转移消失,荧光基团的荧光恢复〔17〕㊂因分子信标具有极高的特异性和灵敏度,目前已经成为基础医学和生物学的重要研究工具〔17〕㊂本研究我们将适配体㊁分子信标和RCA技术相结合建立了一种超灵敏㊁便捷的E2荧光检测技术(图1)㊂我们向微量反应管中加入数量相等的cDNA 和适配体㊂当溶液中存在E2小分子时,E2小分子优先与E2适配体结合,从而释放出cDNA,游离的cD⁃NA与环DNA特异性结合,在Phi29酶的作用下生成能解旋分子信标颈环结构的长单链DNA㊂分子信标与长单链DNA杂交结合后荧光恢复,在波长为498nm的激发光下,发出波长为525nm的荧光㊂1 材料和方法1.1 仪器和试剂DYY-15D电泳系统(北京六一生物技术有限公司),F97pro荧光分光光度计(上海棱光科技有限公司),OSE-DB-01/02金属浴(天根生物科技有限公司),生物安全柜(ESCO classⅡBiohazard Safety Cabinet)(北京六一生物技术有限公司)㊂T4DNA连接酶㊁ExonucleaseⅠ核酸外切酶(ExoⅠ)㊁ExonucleaseⅢ核酸外切酶(ExoⅢ)㊁Phi29DNA polymerase㊁脱氧核糖核酸三磷酸(dNTPs)购自新英格兰生物实验室(NEB) (北京),17β-雌二醇(E2)㊁雌三醇(E3)㊁双酚A(BPA)和己烯雌酚(DES)㊁任基酚(NP)购自Sigma Aldrich, 30%聚丙烯酰胺从上海阿拉丁生化科技有限公司购买,20bp DNA Ladder㊁6×DNA Loading buffer和5×TBE 从北京索利宝科技有限公司购买,GeneGreen10000×核酸染料来自天根生化科技(北京)有限公司㊂实物检测所用的牛奶是从天津市大型连锁超市购买的脱脂牛奶,水样为天津市自来水系统自来水㊂用于实验的DNA序列(如表1所示)均由上海生工生物技术有限公司(中国上海)合成,并经的HPLC纯化㊂除特殊说明外所用试剂均为分析纯㊂水由Milli-Q水净化系统获得的超纯水(18.2MΩcm)㊂图1 实验原理图表1 寡核苷酸序列DNA链序列(5’-3’)锁式探针5’-Phosphate-ATTGAATTACACCTCAGCCCCTACCATTATTAATAGACTG CCTCAGCCACCATCACCTTTGCTATTTAACCTCAGCGCTTCCAGCTT-3’引物探针5’-TGTAATTCAATAAGCTGGAAGC-3’E2适配体5’-GCTTCCAGCTTATTGAATTACACGCAGAGGGTAGCGGCTCTGCGCAT TCAATTGCTGCGCGCTGAAGCGCGGAAGC-Biotin-3’cDNA5’-AAAATTTAAAATGTAATTCAATAAGCTGGAAGC-3’分子信标5’-6-FAM-ATGACTACACCATCACCTTTGCTATTTAATAGTCAT-BHQ1-3’1.2 环DNA的制备 取等体积的P(10μM)和p (10μM),以及10×T4DNA连接酶buffer加入到微量反应管中,充分涡旋混匀放置于金属浴上,设置五段程序进行退火杂交㊂向微量反应管的中产物加入T4DNA连接酶(350U/uL)㊁振荡混匀离心后,在16℃条件下㊁反应2h,在65℃条件下㊁灭活酶10min㊂上一步反应结束后向微量反应管中产物中加入ExoⅠ㊁ExoⅢ㊁10×ExoⅠbuffer㊁10×ExoⅢbuffer,振荡混匀,在37℃下消解过夜,80℃,灭活酶20min㊂将合成好的环DNA-20℃储存备用㊂1.3 E2和cDNA竞争结合适配体 Apt和cDNA 按照不同浓度比例加入微量反应管,充分涡旋混匀后放置于金属浴上,设置五段程序进行退火杂交㊂再向每个反应管中加入相同浓度的E2,在37℃下垂直混悬30min㊂反应结束后用圆二色谱仪测量㊂1.4 聚丙烯酰胺凝胶电泳实验 用超纯水清洗凝胶用玻璃片,吹干后用垂直胶固定架固定㊂按凝胶配方表进行配置12%聚丙烯酰胺凝胶的配置㊂将配置好的凝胶液倒入固定好玻璃板中,插入梳子,静置40min等待凝胶㊂将制备好的凝胶固定在电泳内槽,加入1×TBE缓冲液㊂将制备好的样品与loading buffer混匀后依次加入点样口,并设置电泳仪的参数:U=100V㊁I=300mA㊁T=60min,进行电泳㊂电泳结束后剥离凝胶后放入染色箱中,用配置好的3×genegreen染料,25℃避光染色25min㊂用Amersham Imager680凝胶成像仪,UV模式下成像㊂1.5 RCA产物解旋分子信标颈环结构 取10μL circ-DNA和cDNA(1μM),充分涡旋混匀放置于金属浴上,设置程序进行退火杂交㊂再将Phi29和dNTPs加入,混匀后在16℃条件下㊁反应2h㊂最后向RCA产物中加入分子信标,退火后用荧光分光光度计测量荧光强度㊂1.6 E2检测方法 适配体和cDNA等量混合后退火后加入一系列列浓度的E2标准液,37℃垂直混悬30min㊂向第一步的反应中产物在加入环DNA (1μM)㊁Phi29酶(10U/μL)㊁10xPhi29buffer㊁dNTPs㊁分子信标㊁DEPC水,并在30℃下孵育90min, 80℃,20min灭活酶㊂反应结束后用F97pro荧光分光光度计测定荧光(狭缝宽度:10nm;PMT电压: 750V;激发:498nm;发射:520nm)㊂1.7 实际样品中E2的检测 我们进行了水和牛奶的加标回收实验㊂在真实样品中分别加入1ng/mL㊁0.1ng/mL㊁0.01ng/mL三种浓度的E2㊂对于牛奶和水的预处理,采用下面方法:将购买的牛奶或水加入具塞离心管中,加入等体积乙腈,涡旋混匀5min,4℃, 10000r/min下离心10min,上清液转入洁净离心管中,残渣用乙腈重复提取1次,合并上清液于离心管中, 4℃冰箱静止过夜,取上清过0.22μm有机滤膜㊂2 结果和讨论2.1 合成环DNA 锁式探针在引物探针和T4连接酶的作用下连接成环,经ExoⅠ和ExoⅢ的消解作用后生成环DNA,并通过凝胶电泳进行了表征如图2,1-6为6个平行组(均经过锁式探针成环以及环化后的消解反应),各组之间互为对照㊂与未成环的锁式探针相比,成环后的锁式探针形成的环状DNA结构在电泳的过程中的阻力大于单链DNA,电泳条带出现了较为靠上(后)的位置㊂此外,各泳道内均只有一个目标条带,无其他条带存在,说明环化后的锁式探针经ExoⅠ和ExoⅢ消解完全,没有未还化的单链DNA存在,生成环DNA无需进行纯化㊂图2 锁式探针合成环DNA的电泳表征2.2 E2和cDNA竞争结合适配体验证 我们也用圆二色谱表征了三者之间的亲和力,如图3所示当溶液体系中只有E2适配体和cDNA时,在260nm和300nm 处观察到了相应的二级峰,当加入目标物E2小分子后,适配体与E2结合,其二级结构发生改变,并且由于碱基堆积和螺旋结构的改变,峰值下降㊂说明E2能够解旋适配体和cDNA杂交生成的复合DNA㊂2.3 RCA产物和分子信标结合效果 如图4所示RCA产物和分子信标杂交结合前后荧光强度存在明显差异㊂说明RCA生成的长单链DNA能够与分子信标杂交结合解旋分子信标的颈环结构,恢复修饰在其5’端的FAM荧光基团的荧光㊂图3 E2、cDNA和E2适配体三者之间亲和力的圆二色谱表征图4 RCA产物和分子信标结合效果的荧光表征2.4 实验条件优化 对于对实验结果影响较大的因素如:RCA反应时间,分子信标浓度,我们进行了分步优化㊂如图5A所示,RCA过程中,在Phi29㊁dNTPs㊁和分子信标(过量)恒定的条件下,随着反应时间的增加,荧光强度先增加然后趋于稳定,考虑到实验反应的稳定性和检测时间,选定90min为最适的RCA反应时间㊂图5B显示了RCA反应完成后随着分子信标加入量的增加,荧光强度的变化过程,基于同样的原则,选择分子信标的最适添加量为50μL(1μM)㊂2.5 荧光检测 采用优化好的实验条件,进行扩增实验与荧光检测㊂如图6所示E2浓度与荧光强度在0.001ng/mL-10ng/mL的范围内表现出良好的线性关系,呈正相关㊂线性方程为y=594.17LgC+ 3868.87,R2=0.9758,检出限为0.19pg/mL㊂值得强调的是我们提出的检测策略检测限低至pg/mL,归功于以下原因:(1)首先痕量的cDNA引发了RCA反应;(2)RCA生成的长单链DNA序列能够打开分子信标的颈环结构使其荧光恢复㊂2.6 特异性实验 为了验证该策略的特异性和灵敏度,我们在相同的条件下检测了E2和其他雌激素类似物㊂E2小分子溶液浓度选1ng/mL,其他干扰物小分子浓度为100ng/mL㊂如图5C所示NP㊁BPA㊁Atrazine㊁E3和DES即使浓度远高于E2(100倍)也不能和cDNA 竞争结合适配体游离cDNA㊂更不会引发后续的扩增㊂说明该方法对E2检测具有良好的特异性和灵敏度㊂特异性源自于:(1)cDNA和环DNA的特异性识别;(2) RCA的生成得长单链DNA产物和分子信标的特异性结合打开分子信标颈环结构㊂图5 RCA反应时间的优化(A);分子信标加入量用量的优化(B);本实验方法的特异性(C)图6 RCA检测E2的校准曲线2.7 加标回收实验和方法学比较 通过样品加标回收实验来评估本研究方法测定的稳定性㊂如表2所示牛奶和水样的回收率分别为81.33%-117.42%和89.25%-107.04%,相对标准偏差是2.02%-3.13%和1.09%-2.45%㊂为了证实该方法的可靠性,我们用高效液色谱串联质谱(HPLC/MS/MS)建了E2的检测标准曲线,E2的检测限为0.4ng/mL㊂与HPLC/MS/MS相比灵敏度和操作简单是本方法的主要优点㊂表2 牛奶和水样品的加标回收率样品加标量(ng/mL)检出量荧光值检出率(%)RSD(%)牛奶10.81287597.0381.33 3.130.10.10475068.22104.73 2.020.010.01174503.76117.42 3.68水1 1.12205681.09112.20 1.090.10.09295038.1292.93 1.760.010.00824145.5181.97 2.45 3 结论 在本研究中,我们将适体技术和等温扩增技术结合建立了一种超灵敏便捷的E2荧光检测技术㊂DNA 的特异性互补配对原则保证了该方法的特异性,RCA 的高效率保证了灵敏度,并且分子信标的应用将检测信号进一步放大,使其检测限低至0.19pg/mL㊂该研究中RCA技术与适配体技术结合获得了良好的特异性和较高的灵敏度,且操作简单,检测成本低㊁实验仪器要求低㊂本策略为E2检测提供了一种新的方法,也为具有适配体的污染物的检测提供了新的思路㊂参考文献:〔1〕 GORE A C,CHAPPELL V A,FENTON S E,et al.Execu⁃tive Summary to EDC-2:The Endocrine Society's SecondScientific Statement on Endocrine-Disrupting Chemicals〔J〕.Endocr Rev,2015,36(6):593.〔2〕 WANG S,LI Y,DING M J,et al.Self-assembly molecu⁃larly imprinted polymers of17beta-estradiol on the sur⁃face of magnetic nanoparticles for selective separation anddetection of estrogenic hormones in feeds〔J〕.J Chroma⁃togr B,2011,879(25):2595.〔3〕 ADEEL M,SONG X,WANG Y,et al.Environmental im⁃pact of estrogens on human,animal and plant life:A criti⁃cal review〔J〕.Environ Int,2017,99:107.〔4〕 COMMISSION MISSION IMPLEMENTING DE⁃CISION(EU)2018/840of5June2018〔J〕.Off J EurCommunities:Inf Not,2018,141(7):9.〔5〕 SILVA C P,CARVALHO T,SCHNEIDER R J,et al.ELISA as an effective tool to determine spatial and sea⁃sonal occurrence of emerging contaminants in the aquaticenvironment〔J〕.Anal Methods,2020,12(19):2517.〔6〕 LIU X,WANG X,ZHANG J,et al.Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DT⁃BP-Protein G scaffold〔J〕.Biosens Bioelectron,2012,35(1):56.〔7〕 KIM Y S,JUNG H S,MATSUURA T,et al.Electrochemi⁃cal detection of17beta-estradiol using DNA aptamer im⁃mobilized gold electrode chip〔J〕.Biosens Bioelectron,2007,22(11):2525.〔8〕 STA ANA K M,ESPINO M P.Occurrence and distribu⁃tion of hormones and bisphenol A in Laguna Lake,Philip⁃pines〔J〕.Chemosphere,2020,256:127122.〔9〕 HUANG H,SHI S,GAO X,et al.A universal label-free fluorescent aptasensor based on Ru complex and quantumdots for adenosine,dopamine and17beta-estradiol detec⁃tion〔J〕.Biosens Bioelectron,2016,79:198.〔10〕 KONRY T,LERNER A,YARMUSH M L,et al.Target DNA detection and quantitation on a single cell with sin⁃gle base resolution〔J〕.Lat Am J Aquat Res,2013,1(1):88.〔11〕 TOMBELLI S,MINUNNI M,MASCINI M.Analytical applications of aptamers〔J〕.Biosens Bioelectron,2005,20(12):2424.〔12〕 CHO E J,LEE J W,ELLINGTON A D.Applications of aptamers as sensors〔J〕.Annu Rev Anal Chem(PaloAlto Calif),2009,2:241.〔13〕 LU R,WU X,WAN Z,et al.A Novel Reverse Transcrip⁃tion Loop-Mediated Isothermal Amplification Method forRapid Detection of SARS-CoV-2〔J〕.Int J Mol Sci,2020,21(8):2826.〔14〕 ZHANG M,WANG Y,WU P,et al.Development of a highly sensitive detection method for TTX based on amagnetic bead-aptamer competition system under triplecycle amplification〔J〕.Anal Chim Acta,2020,1119:18.〔15〕 ALI M M,LI F,ZHANG Z,et al.Rolling circle amplifi⁃cation:a versatile tool for chemical biology,materialsscience and medicine〔J〕.Chem Soc Rev,2014,43(10):3324.〔16〕 TYAGI S,KRAMER F R.Molecular beacons:probes that fluoresce upon hybridization〔J〕.Nat Biotechnol,1996,14(3):303.〔17〕 KONG G,ZHANG M,XIONG M,et al.DNA nanostruc⁃ture-based fluorescent probes for cellular sensing〔J〕.Anal Methods,2020,12(11):1415.(收稿日期:2020-10-01;修回日期:2020-11-29)。

基于微磁珠分离技术的适配体实时定量PCR检测方法

基于微磁珠分离技术的适配体实时定量PCR检测方法

( P C R ) 检测方法.通 过微磁珠 偶联的互补链与适 配体序 列之 间的碱基 配对结 合 ,有效 除去溶 液 中未 与靶分 子结合 的适配体序列 ,采用实时定量 P C R技术测定上清液 中结合态 的适配体 序列浓度 , 从 而间接实 现对靶 分子 的定量检测.分别选取代表生物大分子和有机小分 子 的凝 血酶和 A T P作为检 测对象 , 验 证了该 方法 的 普适性.研究结果表 明 , 在获取特异性适配体序列后 , 仅需简单优化其互补链 序列 ,即可对 超低含量 的凝血
E - m a i l : x i e j w @b m i . a c . c n
高 等 学 校 化 学 学 报
于在磁场作用下实现分离以及对样品的富集.近年来 , 微磁珠已被广泛地用于样品制备 、 细胞分 选、 免疫分析 、 核酸分析及生物芯片等研究领域.本文设计 了如图 1 所示 的检测方法 , 先将适配体 与靶分 子在 结合 缓 冲液 中充 分相 互作 用 以形 成 复合物 , 然 后加 入较 高浓 度 的已 固定 在 微磁 珠 上 的互补 链, 除去溶液中游离的适配体 , 通过实时定量 P C R技术测定上清液中适配体的浓度 , 从而计算 出靶分
收稿 1 3 期: 2 0 1 2 - 0 8 - 2 1 . 基金项 目: 国家 自然科学 基金 ( 批准号 : 2 1 1 7 5 1 5 2 , 8 1 0 0 1 2 6 2 , 8 1 2 0 2 2 4 8 ) 资助.
联 系人简介 : 谢剑炜 , 男, 博士 , 研究员 , 博士生导师 , 主要从事毒物药物分析 、 质谱分 析和适 配体技术方 面的研究
Vo 1 . 3 4
2 0 1 3年 5月
高 等 学 校 化 学 学 报

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌1. 引言1.1 背景介绍创伤弧菌是一种常见的致病菌,主要存在于海水和淡水中,同时也可在生鲜水产品中被检测到。

感染创伤弧菌会引起人类和动物的创伤性疾病,严重时可能导致败血症和坏死性皮肤病等严重后果。

由于其耐热性和抗生物药性强,创伤弧菌在临床和食品安全领域的监测和控制备受关注。

传统的创伤弧菌检测方法存在着操作复杂、耗时长、灵敏度低等问题,难以满足迅速准确的检测需求。

开发一种快速、灵敏、简便的检测技术对于创伤弧菌的监测具有重要意义。

1.2 研究目的本研究旨在探讨重组酶聚合酶扩增技术(RPA)在创伤弧菌检测中的应用,并分析其在该领域中的优势和局限性。

创伤弧菌是一种常见的致病菌,经常引起食物中毒和水污染等问题,对人类健康构成威胁。

通过研究RPA技术在创伤弧菌检测中的表现,我们希望能够为提高创伤弧菌的快速、准确检测水平提供科学依据。

我们还将探讨RPA技术在创伤弧菌检测中的前景,并提出未来研究方向,为该领域的发展提供参考和指导。

本研究旨在为解决创伤弧菌检测中存在的问题,保障食品安全和公共健康做出贡献。

2. 正文2.1 重组酶聚合酶扩增技术(RPA)原理重组酶聚合酶扩增技术(RPA)是一种新型的核酸扩增技术,其原理基于同源重组DNA修复机制。

该技术利用特殊的重组酶在等温条件下介导两个互补的引物与靶序列结合,形成DNA双链,然后通过DNA聚合酶的作用在靶序列上合成新的DNA链,实现核酸扩增。

RPA在温度较低(37-42摄氏度)下运行,不需要复杂的仪器和设备,使其成为一种便携式的核酸扩增技术。

RPA技术的原理是基于同源重组原理,依赖于专一性的重组酶和DNA结合蛋白,实现引物与靶序列的结合和合成新的DNA链。

这种技术可以在短时间内完成核酸扩增,且具有高敏感性和特异性,能够在复杂的样品中准确检测目标DNA。

RPA技术的原理简单而高效,为快速检测创伤弧菌提供了新的可能。

通过结合RPA技术与其他技术的优势,可以更快速、更可靠地检测创伤弧菌,为预防传染病提供有力支持。

基于核酸的高灵敏蛋白质检测方法研究进展

基于核酸的高灵敏蛋白质检测方法研究进展

基于核酸的高灵敏蛋白质检测方法研究进展李昱;代唯强;吕雪飞【摘要】生物标志物的超灵敏检测对于疾病的早期精准诊断和治疗起到了至关重要的作用,基于核酸的高灵敏度蛋白检测方法由于核酸的易合成、易修饰和可扩增的特点受到科研人员的广泛关注.本文综述了几种基于核酸的高灵敏度蛋白检测方法,诸如免疫聚合酶链式反应、免疫滚环扩增反应、邻位连接技术等,及其优缺点,并对其未来的发展方向进行了展望.【期刊名称】《生命科学仪器》【年(卷),期】2016(014)005【总页数】5页(P25-29)【关键词】核酸;高灵敏度;蛋白质检测【作者】李昱;代唯强;吕雪飞【作者单位】北京理工大学生命学院,北京100081;北京理工大学生命学院,北京100081;北京理工大学生命学院,北京100081【正文语种】中文【中图分类】O657.3生物标志物的超灵敏检测对于疾病的早期诊断、治疗起到了至关重要的作用[1],仅仅几个蛋白分子的变化就能影响细胞的生物学功能、引发病理生理学反应。

自20世纪60年代出现了免疫分析方法之后,随着方法的不断优化和技术的不断发展,一些免疫分析方法,如酶联免疫吸附分析法(Enzyme-linkedImmunosorbent Assay,ELISA)已经成了临床与科研实验中最常用的检测分析方法[2]。

在传统的免疫分析方法中,通常用小分子的酶底物作为信号检测的物质。

近年来,大分子底物,尤其是核酸分子越来越多的被应用于分析检测当中。

核酸分子具有易合成、易修饰、可扩增和操作简便的特点[3],这些特点使其在许多检测技术中大显身手。

目前涌现出的许多新型的高灵敏的检测方法均是将ELISA方法与一些核酸相关技术相结合衍生出来的,如免疫聚合酶链式反应(Immuno-polymerase chain reaction,IPCR)[4]、免疫滚环扩增反应(Immuno-rolling circle amplification,IRCA)[5]、邻位连接技术(Proximity Ligation Assay,PLA)[6]等。

氧化石墨烯荧光传感技术在分子诊断领域的应用

氧化石墨烯荧光传感技术在分子诊断领域的应用

氧化石墨烯荧光传感技术在分子诊断领域的应用郭爽;张国军;姚群峰【摘要】Graphene oxide-based fluorescent sensing technology is developing rapidly, which has been used to detect nucleic acids, proteins, and small bio-molecules. This method has many outstanding advantages such as low consumption, simple and quick. Also, it could provide accurate, real-time and multiplexed analysis results. Therefore, it shows wide application and development prospects in molecular diagnostics. In this paper, we summarized the principle of fluorescent biosensors based on graphene oxide as well as their research progress and the future perspectives in the filed of molecular diagnostics.%氧化石墨烯荧光生物传感技术发展迅速,已成功实现了对核酸、蛋白质以及其他生物小分子的检测。

该分析方法操作简单,实验成本低,可提供准确、实时及多通道的结果,在分子诊断领域显示出了广阔的发展和应用前景。

本文综述了氧化石墨烯荧光传感技术的基本检测原理以及在分子诊断领域的研究应用进展。

【期刊名称】《分子诊断与治疗杂志》【年(卷),期】2014(000)001【总页数】5页(P52-56)【关键词】氧化石墨烯;荧光;传感;分子诊断【作者】郭爽;张国军;姚群峰【作者单位】湖北中医药大学检验学院,湖北,武汉430065;湖北中医药大学检验学院,湖北,武汉430065;湖北中医药大学检验学院,湖北,武汉430065【正文语种】中文以核酸和蛋白质等生物大分子为检测对象的分子诊断技术在感染性疾病、遗传性疾病、肿瘤的诊断治疗及个体化医疗等领域正发挥越来越重要的作用。

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌重组酶聚合酶扩增技术(RPA)是一种新型的核酸检测技术,具有快速、敏感、特异性高等优点。

在生物医学领域,RPA技术已经被广泛应用于病原微生物的检测,其中包括创伤弧菌。

创伤弧菌是一种常见的水生病原体,可以引起人体和动物的创伤性感染,严重危害生命健康。

一、RPA技术原理RPA技术是一种在低温(37-42℃)下进行核酸扩增的新型技术,其原理基于酶的双链DNA聚合酶和单链DNA结合蛋白的协同作用。

RPA技术的基本原理是通过酶的作用,在低温下使得引物与靶标DNA结合形成复合体,然后通过酶的作用从复合体中释放出单链DNA融合体,最终实现DNA的扩增。

RPA技术具有高度的特异性和灵敏度,在短时间内就可以完成核酸扩增反应,适用于各种类型的核酸检测。

二、RPA技术在创伤弧菌检测中的应用创伤弧菌是一种革兰氏阴性菌,具有极高的变异性和耐受性,因此对于其快速检测要求技术具有高度的特异性和灵敏度。

RPA技术在创伤弧菌检测中具有以下优势:1. 快速性:RPA技术可以在37-42℃的低温下进行核酸扩增,不需要高温反应步骤,因此可以在较短时间内完成扩增反应。

2. 特异性:RPA技术可以通过设计特异性引物来区分目标菌的DNA序列,具有较高的特异性。

3. 灵敏度:RPA技术能够在低温下实现高效扩增,对于少量的创伤弧菌DNA也具有较高的检测灵敏度。

基于以上优势,RPA技术已经成功应用于创伤弧菌的快速检测。

研究表明,RPA技术在创伤弧菌检测中具有较高的特异性和灵敏度,可以快速准确地检测出创伤弧菌的存在,为其感染的预防和治疗提供了重要的支持。

三、RPA技术在临床诊断和疫情监测中的意义在创伤弧菌感染的防控中,RPA技术的使用可以快速准确地检测出其存在,及时采取措施进行隔离和治疗,避免疾病的扩散。

在临床病例诊断和流行病学调查中,RPA技术可以提供快速、准确的检测结果,为疾病的防治提供重要的参考。

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌

重组酶聚合酶扩增技术(RPA)检测创伤弧菌重组酶聚合酶扩增技术(RPA)是一种用于快速检测病原微生物的新型分子生物学方法。

它具有快速、高灵敏度、高特异性和简便操作的特点,因此在医学、环境监测、食品安全等领域得到了广泛的应用。

本文将重点介绍RPA技术在检测创伤弧菌中的应用。

创伤弧菌是一种常见的致病菌,它可以引起人类和动物的创伤性感染。

在海产品加工和贮藏过程中,创伤弧菌也可能引起食品安全问题。

对创伤弧菌的快速检测具有重要的意义。

传统的创伤弧菌检测方法主要包括细菌培养、PCR等,这些方法需要较长的时间和复杂的实验操作,限制了其在实际应用中的效果。

在RPA技术的检测过程中,选择合适的靶标基因至关重要。

通过文献调研和实验验证,发现创伤弧菌的16S rRNA基因是一种理想的靶标基因。

这一基因在不同菌株中具有高度的保守性,可以有效地区分创伤弧菌与其他细菌,在RPA技术中得到了广泛的应用。

在RPA技术中,关键的试剂是RPA核酸酶和RPA聚合酶。

RPA核酸酶能够在低温下识别和结合靶标DNA的特定区域,并在其3'-5'方向上具有核酸内切酶活性,用于切割DNA链。

RPA聚合酶则具有DNA合成酶的活性,能够在RPA核酸酶的辅助下完成对目标DNA的等温扩增。

这些试剂的优异性能使得RPA技术在创伤弧菌的快速检测中得到了成功的应用。

RPA技术还可以与便携式核酸检测设备结合,实现真正的快速检测。

这些设备体积小巧,操作简单,能够在不同的实验场景中实现对创伤弧菌的快速检测,尤其适合于海产品加工环节和食品安全监测等领域。

RPA技术在创伤弧菌的快速检测中具有重要的应用前景。

它能够快速、高效地实现对创伤弧菌的检测,具有较高的特异性和灵敏度。

随着RPA技术的不断发展和完善,相信它将在创伤弧菌的快速检测领域发挥出更大的作用,为食品安全和公共卫生做出更大的贡献。

【2000字】。

一种核酸适配体用于肿瘤细胞高灵敏检测的电极修饰方法[发明专利]

一种核酸适配体用于肿瘤细胞高灵敏检测的电极修饰方法[发明专利]

专利名称:一种核酸适配体用于肿瘤细胞高灵敏检测的电极修饰方法
专利类型:发明专利
发明人:彭睿,曲丽明
申请号:CN201210542239.2
申请日:20121214
公开号:CN103257167A
公开日:
20130821
专利内容由知识产权出版社提供
摘要:本发明公开了一种核酸适配体用于肿瘤细胞高灵敏检测的电极修饰方法,将肝癌细胞BNL1MEA.7R.1(MEAR)特异的核酸适配体TLS1c和TLS11a共价修饰到电极表面,利用循环伏安法、差分脉冲伏安法及交流阻抗法对MEAR细胞进行检测,在1mL1*10血细胞中,可以实现对单个MEAR 细胞的痕量检测。

采用本发明技术方案,可以显著的降低背景值和检测限,提高电化学检测肿瘤细胞的灵敏度。

申请人:苏州大学
地址:215000 江苏省苏州市工业园区仁爱路199号
国籍:CN
代理机构:南京经纬专利商标代理有限公司
代理人:曹毅
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aptamer-Based Exonuclease Protection and Enzymatic Recycling Cleavage A mplification Homogeneous Assa y for Highly sensitive Detection of thrombinQingwang Xue,‡ Lei Wang,*,†and Wei Jiang*,‡†Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University,Jinan 250012, PR Chinaffi Key Laboratory for Colloid & Interface Chemistry of Education Ministry,School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P.R . China.Corresponding author:Tel: +86 531 88363888; fax: +86 531 88564464. Email: wjiang@;Tel: +86 531 88382330. Email: wangl-sdu@ABSTRACTA critical challenge in homogeneous solution-based biomolecular detection is the separation and sensitivity compared to biomolecular detection in heterogeneous solution. In the work, a novel, separation-free and sensitive homogeneous protein detection assay based on combining aptameric exonuclease protection with nicking enzyme assisted fluorescence signal amplification(NEFSA)is developed for highly sensitive protein detection. We applied a special oligonucleotide probe containing the protein aptamer sequence at the 3’-terminus, which has the capacity to recognize protein target with high affinity and specificity. Specifically, the aptamer probe can be protected from exonuclease-catalyzed digestion upon binding to the protein target. The protected aptamer probe may hybridize with the molecular beacon (MB) probe, a reporter signal oligo-DNA. Consequently, NEFSA process is triggered in the presence of nicking enzyme, resulting in continuous enzyme cleavage of many MBs, providing a fluorescent cascadic amplification detection signal for the target. Thrombin is used as model analyte in the current proof-of-concept experiments. This method can permits detection of human thrombin specifically with a detection limit as low as 1.0 pM without using washes or separations. Our method exhibited excellent sensitivity. In addition, this new method is simple and avoids specifically conformational design of aptasensor probe for the elimination of the washing and separation steps. The mechanism, moreover, may be generalized and used for other forms of protein analysis by changing the corresponding aptamer without other conditions. So our news strategy may provide a homogeneous fluorescence detection platform for manyproteins.IntroductionAptamers are single-stranded nucleic acids isolated from random-sequence DNA or RNA libraries by an in vitro selection process termed the systematic evolution of ligands by exponential enrichment (SELEX).1, 2As nucleic acid ligands, aptamers have many advantages over antibodies as recognition elements such as simple synthesis, good stability, high-affinity, design flexibility and wide applicability, making them suitable candidates for biological application.3,4,5 In recent years, several methods using aptamers as the molecular recognition component have been developed to achieve the reliable detection of proteins by combining with electrochemistry,6 fluorescence,7colorimetry,8 surface plasmon resonance and chemiluminescent technique.9,10Among them, the homogeneous fluorescence aptasensors is one of the most attractive and interesting areas due to the stability and robustness of fluorescence and the simplicity and rapidness of homogeneous reaction as opposed to heterogeneous(the binding kinetics).11,12The disperse features of homogeneous reaction facilitate the binding kinetics. However, homogeneous assays generally need separation and being less as sensitive as their heterogeneous counterparts because of their high background. Although the sensitivity of the heterogeneous assays can be improved, all these methods need to perform the assay on the heterogeneous formats with multiplex binding and washing steps, which may decrease analytical accuracy and reproducibility. Therefore, a critical challenge in homogeneous solution-basedbiomolecular detection is the sensitivity and the separation.13Considering aptamers can be easily incorporated in oligonucleotide-based signal amplification processes, aptamer based amplification assays have been paid more and more attention for improving the sensitivity, such as the polymerase chain reaction (PCR),14rolling circle amplification(RCA),15 and nanoparticle assisted amplification.16,17 However, there are some limitations that hampers their widespread use for routine analysis such as the highly precise temperature cycling for PCR,18 the design of an effective aptamer probe that can undergo a complex conformational change to effectively initiate RCA,19the particles’ strong tendency to aggregate over time. In addition, the variability of the nanoparticles often affects the reproducibility and quant ification, especially for the real samples.20,21Recently, DNA nicking endonucleases, a special family of restriction endonucleases which cut one strand of a double stranded DNA at the specific sequence site,22 has been applied to DNA sensors and homogeneous aptasensors due to their high sensitivity.23 Xing et al developed an isothermal and sensitive fluorescence assay for protein detection using aptamer-protein-aptamer conjugates based on combining nicking enzyme amplification with magnetic separation. 24 The method achieved high sensitivity and showed good specificity. However, utilizing the magnetic beads, the assay needs separation procedures for reducing the background. In addition, the steric hindrance from magnetic beads also effect on following reactions. To address this problem, the homogeneous approaches for protein detection were developed based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescencesignal amplification.25-27These reported approaches are all based the specifically conformational designed aptamer hairpin switch. Although the specifically conformational designed hairpin switch aptamer probe eliminate the washing and separation steps, the hairpin structure probe need to be specifically conformational designed. The designed aptamer probe is difficultly guaranteed to completely form the structure of desired hairpin switch. And, the complex handling procedures of specifically conformational designed aptamer probes frequently result tedious processing. Consequently, the development of a novel, simple and signal-amplified approach for further improving sensitivity and selectivity is highly desirable.To address aforementioned these problems, in the study, we developed a novel, separation-free and sensitive homogeneous protein detection assay based on aptameric exonuclease protection and nicking enzyme assisted fluorescence signal amplification (NEFSA). In the assay, only one aptamer was applied as recognition element, overcoming the limitations of sandwich assays. And, the aptamer probe need n’t to be specifically designed for hairpin switch. What’s more, the developed approach eliminates the washing and separation steps by utilizing exonuclease I. It avoided the specifically conformational design of aptamer probe, and completes a high sensitive protein analysis in a homogeneous format by NEFSA. Moreover, the developed technique may be generalized and used for other forms of protein analysis with high sensitivity and excellent specificity by changing the corresponding aptamer without other conditions. So it was believed that this developed technique possesses great potential for the simple, easy, and convenient detection of protein.ExperimentalChemicalsHuman α-thrombin, Human immunoglobulin G (IgG), and bovine serum albumin were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). The oligonucleotides with the following sequences were obtained from Shanghai Sangon Biological Engineering Technology & Services Co., Ltd. (China): primer-aptamer (5’-GCT GCT GAG GAA GTT TT TT G GTT GGT GTG GTT GG-3’) (this sequence is consists of thrombin Apt15 sequences in green and ex-DNA signal transduction sequence in violet), molecular beacon (MB), (5’-FAM-CCAGCCAACCTT C C▽T CAGC AGCTGG-DabcyL-3’). Nicking endonuclease, Nt.BbvCΙ, and NEBuffer 4 were purchased from New England BioLabs (Ipswich, MA, USA). Other chemicals (analytical grade) were obtained from standard reagent suppliers. Water (≥18.2M) was used and sterilized throughout the experiments.ApparatusAll the fluorescence measurements were performed on a Hitachi F-4500 spectrofluorimeter (Hitachi, Japan). The excitation wavelength was 494 nm, and the spectra are recorded between 500 and 605 nm. The fluorescence emission intensity was measured at 518 nm.Protein DetectionThe model protein thrombin was dissolved by 50% glycerin and diluted by water. 10μL200 nM aptamer probe in 50 μL of 1 ×NEB4 buffer (50 mM KAc, 10 mM Mg(Ac)2, 20 mM Tris-Ac, 1 mM dithiothreitol (DTT), pH = 7.9) was firstly heated to 95 °C for 5 min, and slowly cooled to room temperature. To aforementioned composite aptamer probe was added 3 µL of different concentration thrombin, followed by incubation at 37 °C for 1 h to allow complete binding. Then, 40 units of exonuclease I in 7 µL 10 × reaction buffer ( 670 mM glycine-KOH, 67 mM MgCl2, 10 mM DTT) was added to the mixture in order to degrade the unbound probe and the resultant mixture incubated at 37 °C for 2 h, followed by a heating step at 80 °C for 15 min to inactivate the exonuclease I. After this step, 10μL 750 nM MB probes were added, and the mixture was incubated at 37 °C for 30 min. Subsequently, the aforementioned product was mixed with 4 units of Nt.BbvCI in 4 µL 10 ×NEB4 buffer (500 mM KAc, 200 mM Tris-Ac, 10 mM Mg(Ac)2, 10 mM DTT, pH = 7.9). The reaction mixture was incubated at 37 °C for 1 h. Then, the solution was moved to a fluorescence cuvette forfluorescence measurement.Results and discussionDesign of the assayThe designed assay is conceptually depicted in Scheme 1. Thrombin is used as model analyte in the current proof-of-concept experiments. In the assay, a specialoligonucleotide probe containing the thrombin aptamer sequence at the 3’ -terminus and signal transduction at the 5’-terminus was applied. The aptamer probe has the capacity to recognize protein target with high affinity and specificity. In the present of thrombin, thrombin binds the aptamer probe and thereby protects it from degradation by Exonuclease I, whereas any unbound probe is degraded by exonuclease I. Subsequently, the probes that were protected from exonuclease I by thrombin act as catalysator to trigger hybridizing with the MB probe. The MB probe is a reporter signal oligo-DNA l abeled with the fluorophore and its quencher at the 5’- and 3’-ends, respectively. And the MB probe carried the cleavage site for the nicking endonuclease Nb.BbvcI. A fluorescence signal appears only when the MB probe was hybridized with the signal transduction portion of the probe and cleaved by Nb.BbvCI. After nicking, the hybrid MB probe became less stable, and the cleaved strand dissociated from the complex, resulting in the complete disconnection of the fluorophore from the quencher. The released aptamer-target complex could then hybridize to another MB probe and initiated the second cycle of cleavage. NEFSA process is triggered, resulting in continuous enzyme cleavage of many MBs. Finally each target strand could go through many cycles, resulting in the fluorescent cascadic amplification detection signal. T he fluorescence signal s are detected, which can be used as a quantitative measure for the protein concentration. Therefore, the aptamer probes protected from exonuclease I by target reflect the identity and amount of target protein and can be quantified by NEFSA.Optimization of the aptamer oligonucleotide probe concentrationThe concentration of aptamer probe plays an important role in the sensing process. To guarantee to all protein molecules be recognized and detected, an appropriate concentration of aptamer oligonucleotide probe is expected to yield the optimization signal. The effect of the concentration of aptamer probe on the fluorescent signal was shown in Fig. 1A. It is clear that the fluorescent intensity response was very slow when the concentration of aptamer oligonucleotide probe is at the initial 50 nM, indicating a relatively low bond. The fluorescent intensity response exhibits a rapid increase with a further increase in the concentration of aptamer oligonucleotide probe after 50 nM and trends to a constant value at 200 nM, indicating the saturation of the bond between aptamer and thrombin. Thus, 200 nM was selected as the optimum concentration in the experiment due to its best signal-to-noise level.Optimization of the exonuclease IIn the assay, to realize the separation-free procedure, we introduce exonuclease I to degrade all unbound protein aptamer probes. Exonuclease I catalyzes the removal of nucleotides from single-stranded DNA in the 3’ to 5’ direction. Without a protein target, the aptamer probe would be degraded to 5’-terminal dinucleotides with the release of deoxyribonucleoside 5’-monophosphates from the 3’-terminal of the single-stranded DNA chains. In the assay described here, the oligonucleotides thatbind thrombin are protected, whereas free single-strands aptamer probes are degraded by exonuclease I. To guarantee to completely degrade all free single-strands aptamer probes, we investigate the concentration of exonuclease I. The effect of the exonuclease I on the fluorescent signal was shown in Fig. 1B. It shows that 40 units exonuclease I was selected as the optimum concentration for degrading the free protein aptamer probes.Optimization of the concentration of MBIn the assay, the MB probe is a reporter signal oligo-DNA, which carried the recognition sequences for the signal transduction portion of the aptamer probe and the cleavage site for the nicking endonuclease Nb.BbvcI, and was labeled with the fluorophore and its quencher at the 5’- and 3’- ends, respectively. To achieve desirable analytical characteristics, the effect of the concentration of MB probe was investigated. As shown in Fig. 1C, the fluorescence intensity of the aptasensor and the background increased with increasing the concentration of MB probe. The results indicated that the optimum concentration of MB probe used in this aptasensor was 750 nM due to its best signal-to-noise level (the positive signal deduct the negative signal).Effect of the Basic Components of the Amplification Method .To provide convincing proofs of the detection mechanism of Exonuclease protection and the nicking enzyme reaction, spectra and/or relative fluorescence intensities of the various phases of the MB probe were recorded, respectively. Fig. 2 shows that the fluorescence intensities of the MB probe in the absence of protected protein detection probes or hybridized to its complementary sequence in protein detection probes are rather low. In the absence of nicking enzyme and target, a 59% increase in the signal was observed. When the MB probe hybridized to the ex-DNA recognition probe sequence of protected protein detection probes and in the presence of nicking enzyme, significant fluorescence responses were achieved. As shown in Fig. S4, we observed a 314% signal increase b y introducing endonuclease amplification. The a mplification strategy based on the nicking endonuclease led to a dramatic increase in the final fluorescence intensity, assuring a higher sensitivity for detection of target. Therefore, the signal amplification of the nicking enzyme cascadic catalytic beacon is obvious.Detection of proteinIn view of the outstanding ability of the developed assay, the dynamic range of the designed assay for detection of human thrombin analyte was examined. As shown in Fig. 3, a dramatic increase in the fluorescence intensity was observed as the concentration of human thrombin from 0 pM to 100 nM. Meanwhile the fluorescence intensity was linear to the concentration of human thrombin in the range from 0 pM to1 nM. We estimate the limit of detection is 1.0 pM in a 3σ rule. The sensitivity of this method is about three orders of magnitude higher than that of traditional homogeneous aptasensors.1-3The lower detection limit represents that this nicking enzyme amplification method for protein detection is sensitive. These results clearly demonstrate that the endonuclease does indeed play an important role in the signal amplification. The method for protein detection is sensitive. The sensitivity mainly depended on the nicking enzyme reaction and the low background fluorescence. Additiona lly, the largest value of coefficients of variation for triplicate measurements was 4.6%, indicating that this proposed method exhibited excellent reproducibility.Selectivity of the bioassayT he detection specificity was basically determined by the aptame ric recognition function. The selectivity of this assay has been tested with some common proteins, BSA, human IgG and serine protease each at concentration of 10 nM. The resulting signal was negligible compared with that obtained using 10 nM thrombin, as shown in Fig. 4.High signal was obtained only when the pecific protein (thrombin) was tested. The measured data demonstrated that this aptasensor assay could be used as a sensitive and selective platform for target protein detection, which might support its potential in clinical applications.Detection of Human Thrombin in Human Blood SerumA big challenge for an excellent protein assay is its ability to be applied in complex biological matrixes. To demonstrate the feasibility of the approach in complex biological matrixes, we applied this aptasensor assay to detect the human thrombin spiked in serum. Serum is what remains from whole blood after coagulation; its chemical composition is similar to plasma but does not contain coagulation proteins such as thrombin or other factors. Standard human serum was isolated from the blood of healthly individuals, which was first diluted in 1:10 ratio with NEB buffer and then spiked with thrombin at concentration of 10 nM. As shown in Fig. 5, comparable responses were obtained for thrombin in both buffer and serum. We noted that the signal obtained in serum was slightly higher than the signal measured in buffer. Probably, this increase was due to the nonspecific binding of the aptamer to other proteins in human blood serum, which protected it from degradation by Exonuclease I and caused the binding of the MB probe and ex-DNA signal transduction sequence of the aptamer probe, and the serum contained some DNA nucleases not present in the standard solution which also caused the increase of fluorescence intensity. Overall, the current assay shows potential for application in protein detection in a biological system.ConclusionsIn conclusion, a novel, separation-free and sensitive homogeneous proteindetection assay based on aptameric exonuclease protection and nicking enzyme assisted fluorescence signal amplification (NEFSA) was proposed. It was demonstrated that the proposed strategy offers several advantages such as isothermal experimental condition, simple preparation, convenient operation, and low-cost devices. First, only one aptamer is used to trigger the NEFSA, which avoids the limitations of the sandwich assay, circumventing the requisite of two binding sites per target protein. Additionally, this assay has high sensitivity and selectivity. It permits detection of as low as 1.0 pM human thrombin. Third, the aptamer probe without any modification and specifically conformational design or label is involved, which is important for retaining the high target binding activity. Fourth, it could be expanded easily to other proteins by changing the corresponding aptamer. Moreover, this proposed assay could be applied in a complex biological system, which is important for its application in biological or clinical target detection. Thus, the proposed assay can be expected to provide a sensitive and selective platform for the detection of proteins.AcknowledgmentsThis project was supported by the National Natural Science Foundation of China (Grant No., 21175081, 21175082).References1 A. D. Ellington, J. W. Szostak, Nature, 1990, 346, 818-22.2 C. Tuerk, and L. Gold, Science, 1990, 249, 505-10.3 L. Xue, X. Zhou, D Xing, Chem. Commun.,2012. 46, 7373-5.4 T. Hermann, D. J. Patel, Science, 2000, 287, 820-5.5 Z. Zhou,, Y. Du, S Dong, Biosens. Bioelectron., 2011, 28, 33-7.6 Z. S. Wu, M. M. Guo, S. B. Zhang, C. R. Chen, J. H. Jiang, G. L. Shen, and R. Q. Yu, Anal. Chem., 2007, 79, 2933-9.7 V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner, J. Am. Chem. Soc.,126, 11768-9.8 W. Zhao, W. Chiuman, J. C. Lam, S. A. McManus, W. Chen, Y. Cui, R. Pelton, M. A. Brook, Y. Li, J. Am. Chem. Soc., 2008, 130, 3610-8.9 Li, H. J. Lee, and R. M. Corn, Nucleic Acids Res., 2006, 34, 6416-24.10 H. Huang, and J. J. Zhu, Biosens. Bioelectron., 2009, 25, 927-30.11 R. Yang, Z. Tang, J. Yan, H. Kang, Y. Kim, Z. Zhu, W. Tan, Anal. Chem.2008, ,80, 7408-13.12 C. H. Lu,, H. H. Yang,, C. L. Zhu,, X. Chen,, and G. N. Chen, Angew. Chem., Int. Ed., 2009, 48, 4785-7.13 X. L. Wang, F. Li, Y. H. Su, X. Sun, X. B. Li, H. J. Schluesener, F. Tang, and S. Q. Xu, Anal. Chem., 2004, 76, 5605-10.14 Z. S. Wu, S. Zhang, H. Zhou, G. L. Shen, and R. Yu, Anal. Chem., 2010, 82, 2221-7.15 X. Zhang, S. Li, X. Jin, S. Zhang, Chem. Commun.,2011, 47, 4929-31.16 W. Liang, W. Yi, S. Li, R. Yuan, A. Chen, S. Chen, G. Xiang, and C. Hu, Clin Biochem, 2009, 42, 1524-30.17 H. Zhang, Q. Zhao, X. F. Li, X. C. Le, Analyst, 2007, 132, 724-37.18 Q. Xue, L. Wang, W. Jiang, Chem. Commun., 2012, 48, 3930-2.19 L. S. Higgins, C. Besnier, H. Kong, Nucleic Acids Res., 2001, 29, 2492-501.20 A. R. Connolly, M. Trau, Angew. Chem., Int. Ed., 2010 49, 2720-3.21 L. Xue, X. Zhou, D. Xing, Anal. Chem., 2012, 84, 3507-13.22 A. X. Zheng, J. R. Wang, J. Li, X. R. Song, G. N. Chen, H. H. Yang, Chem. Commun., 2011, 48, 374-6.23 A. X. Zheng, J. R. Wang, J. Li, X. R. Song, G. N. Chen, H. H. Yang, Biosens.Bioelectron., 2012 36, 217-21.Scheme 1 Illustration of the proposed assay for amplification detection of protein. (1) Thrombin aptamers adequately bind thrombin in the proper buffer. (2) Exonuclease I is added to hydrolyze free aptamers. (3) The aptamer-target complex may hybridize with the molecular beacon (MB) probe. (4) After nicking, the hybrid MB probe became less stable, and the cleaved strand dissociated from the complex, resulting in the complete disconnection of the fluorophore from the quencher. The released aptamer-target complex could then hybridize to another MB probe and initiated the second cycle of cleavage.Fig. 1.Effect of the different concentrations on the fluorescent signal intensity:(A) Aptamer concentration (nM). (B) Exonuclease concentration (Units). (C) MB concentration (nM). These reactions have been carried out with 100 nM of thrombin.Fig. 2.Fluorescence emission spectra and fluorescence responses of the sensing system under different conditions: (1) Aptamer probe + exonuclease I + MB (blue line); (2) Aptamer probe + thrombin (100 nM )+ exonuclease I + MB (black line); (3) Aptamer probe + thrombin (100 nM)+ exonuclease I + MB + Nt.BbvCΙ (red line).Fig. 3. (A) Fluorescence emission spectra obtained in the developed homogeneous protein detection assay of human thrombin with varying concentrations from 0 to 100 nM. (B) The relationship between the fluorescent intensity and the concentration of thrombin (n = 3). Each data point represents an average of 3 measurements. The insetshows the linear region from 0 pM to 1.0 nM of thrombin, yielding the detection limit of 1.0 pM.Fig. 4.Fluorescence intensity responses of the assay to (1) NEB buffer, (2) 10 nM BSA in NEB buffer, (3) 10 nM human IgG in NEB buffer, (4) 10 nM serine protease in NEB buffer, (5) 10 nM thrombin in NEB bufferFig. 5.Fluorescence intensity responses of the assay to (1) NEB buffer, (2) 10% human serum, (3) 10 nM thrombin in NEB buffer, (4) 10 nM thrombin in 10% human serum. 10% human serum (human serum was diluted in 1:10 ratio with NEB buffer)。

相关文档
最新文档