《三角形》全章复习与巩固基础

合集下载

《全等三角形》全章复习与巩固(提高)巩固练习

《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A =∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B 正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=1BE=1.27. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O为角平分线的交点,∠AOC=180°-12(∠BAC+∠BCA)=135°.14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF=x,EF=y,则有x+1+3=x+y+2=3+3+2=8所以x=4,y=2,六边形ABCDEF的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4). 三.解答题 17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ). ∴ ∠EOA =∠FOA . ∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°)=120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ). ∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】 解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°, ∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°. ∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC . ∴AD 平分∠BAC . ∴∠2=21∠BAC = 3021 =15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点, ∴BN =NE ,且AN ⊥BE . ∴DN =NM .∴BN -DN =NE -NM , 即 BD =ME . ∵DB =DC , ∴ME =DC . 19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′; 则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ; 第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G , 过点F 作DH⊥DE 交DE 的延长线于点H , ∵∠B=∠E,∴180°﹣∠B=180°﹣∠E, 即∠CBG=∠FEH, 在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ), ∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).20.【解析】证明:问题1:21,2 ;问题2:(1)在AB上截取AG,使AG=AC,连接GD.(如图)∵AD平分∠BAC,∴∠1=∠2.在△AGD和△ACD中,AG AC12A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD≌△ACD.∴DG=DC.∵△BGD中,BD-DG<BG,∴BD-DC<BG.∵BG= AB-AG= AB-AC,∴BD-DC<AB-AC.(2)∵由(1)知△AGD≌△ACD,∴GD=CD,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°.∴∠5 =∠3.在△BGD和△ECD中,53DB DEDG DC=⎧⎪∠∠⎨⎪=⎩=,∴△BGD≌△ECD.∴∠B =∠6.∵△BFC中,∠BFC=180°-∠B-∠7 =180°-∠6-∠7 =∠3,∴∠BFC=60°.。

人教版初中数学八年级上册第12章全等三角形单元复习与巩固教案

人教版初中数学八年级上册第12章全等三角形单元复习与巩固教案

全等三角形单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;●探索三角形全等的条件,能利用三角形全等进行证明,掌握综合法证明的格式;●掌握尺规作图作角平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质和判定,并会利用角的平分线的性质和判定进行证明;●能用三角形的全等和角平分线性质解决实际问题。

重点难点:●重点:理解证明的基本过程,掌握用综合法证明的格式;三角形全等的性质和条件以及角平分线的性质。

●难点:掌握用综合法证明的格式;选用合适的条件证明两个三角形全等。

学习策略:●通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

在三角形全等知识的基础上,探究理解角平分线的性质和判定,并通过练习加深本章知识的理解及灵活运用。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对知识网络知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

请在虚线部分填写预习内容,在实线部分填写课堂学习内容。

课堂笔记或者其它补充填在右栏。

知识点一:全等形能够完全的两个图形叫做全等形.知识点二:全等三角形能够完全的两个三角形叫做全等三角形.要点诠释:(1)互相重合的顶点叫做,互相重合的边叫做,互相重合的角叫做.(2)在写两个三角形全等时,通常把的字母写在对应位置上,这样容易写出对应边、对应角.例如,△ABC与△DFE全等,点A与点,点B与点,点C与点是对应顶点,记作△ABC≌△DFE,而不写作△ABC≌△EFD等其他形式.知识点三:全等三角形的性质全等三角形的对应边、对应角.知识点四:两个三角形全等的条件(一)边角边:有和它们的对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).注:运用边角边公理判定两个三角形全等时要抓住角是两边的夹角,边是夹这个角的两边,不要错误认为:两个三角形只要有两条边和一个角对应相等,这两个三角形就一定全等.(二)角边角:有和它们的对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(三)边边边:对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).以简写成“角角边”或“AAS”)(五)斜边、直角边(HL):在两个直角三角形中,和一条对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。

《三角形的证明》全章复习与巩固--知识讲解(基础)

《三角形的证明》全章复习与巩固--知识讲解(基础)

《三角形的证明》全章复习与巩固(基础)知识梳理【要点】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、三角形的证明1. 已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D 是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BD CD=⎧⎨=⎩ ∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋•江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C 的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B ,∠C 的平分线相交于点O ,∴∠MBO=∠OBC ,∠NCO=∠OCB ,∴∠MBO=∠BOM ,∠NCO=∠CON ,∴BM=OM ,CN=ON ,∵△AMN 的周长为18,∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【变式2】如图,在△ABC 中,AB=AC ,D 、E 在BC 上,且AD=AE ,求证:BD=CE .【答案】证明:∵AB=AC ,AD=AE ,∴∠B=∠C ,∠ADE=∠AED ,∵∠ADE=∠B+∠BAD ,∠AED=∠C+∠EAC ,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴ BD=CE .类型二、直角三角形2. 如图,已知,在Rt △ABC 中,∠C=90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合.(1)当∠A 满足什么条件时,点D 恰为AB 的中点写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;(2)在(1)的条件下,若DE=1,求△ABC 的面积.【思路点拨】(1)根据折叠的性质:△BCE ≌△BDE ,BC=BD ,当点D 恰为AB 的重点时,AB=2BD=2BC ,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED ⊥AB ,可证D 为AB 的中点;(2)在Rt △ADE 中,根据∠A 及ED 的值,可将AE 、AD 的值求出,又D 为AB 的中点,可得AB 的长度,在Rt △ABC 中,根据AB 、∠A 的值,可将AC 和BC 的值求出,代入S △ABC =AC ×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C 点折叠后与AB 边上的一点D 重合,∴BE 平分∠CBD ,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB ,所以EB=EA ;∵ED 为△EAB 的高线,所以ED 也是等腰△EBA 的中线,∴D 为AB 中点.(2)∵DE=1,ED ⊥AB ,∠A=30°,∴AE=2.在Rt △ADE 中,根据勾股定理,得22213-=∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3. 在Rt △ABC 中,AC=22AB BC -=3,∴S △ABC =12×AC ×BC=332. 【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB 的两边上分别取点M ,N ,使OM=ON ,再过点M 作OB 的垂线,过点N 作OA 的垂线,垂足分别为C 、D ,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP 就是∠AOB 的平分线吗?②请你只用三角板设法作出图∠AOB 的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt △OCM 与Rt △ODN 中,依据ASA 得出OC=OD;在Rt △OCP 与Rt △ODP 中,因为OP=OP ,OC=OD 得出Rt △OCP ≌Rt △ODP (HL ),所以∠COP=∠DOP ,即OP 平分∠AOB . ②可作出两个直角三角形,利用HL 定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt △OCM 和Rt △ODN 中,COM DON OCM ODN OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OCM ≌△ODN (AAS ),∴OC=OD ,在△OCP 与△ODP 中,∵,OC OD OP OP=⎧⎨=⎩∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt△OCE与Rt△ODE中,∵OC OD OE OE=⎧⎨=⎩,∴Rt△OCE≌Rt△ODE(HL),∴∠EOC=∠EOD,∴OE为∠AOB的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD是解题关键.类型三、线段垂直平分线4.(2015秋•麻城市校级期中)如图所示:在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为41cm,边长为15cm,△BCE的周长.【思路点拨】(1)由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE=BE,继而求得∠A的度数,又由AB=AC,即可求得∠ABC的度数,则可求得答案;(2)由△BCE的周长=AC+BC,然后分别从腰等于15cm与底边等于15cm去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC;∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5. 如图,在△ABC中,∠BAC=80°,延长BC到D,使AC=CD,且∠ADB=20°,DE平分∠ADB交AC于F,交AB于E,连接CE,求∠CED的度数.【思路点拨】作EG⊥DA,EH⊥BD,EP⊥AC,根据角平分线的性质得到EG=EH,根据△EGA≌△EPA,得出∠ECB,就可以得到∠CED的度数.【答案与解析】证明:作EG⊥DA交DA的延长线于G,再作EH⊥BD,EP⊥AC,垂足分别为H,P,则EG=EH ∵∠ADC=20°,AC=CD,∴∠CAD=20°,而∠BAC=80°,∴∠GAE=180°﹣20°﹣80°=80°,∴Rt△EGA≌Rt△EPA,∴EG=EP∴EP=EH,∴∠ECB=∠ECA=12∠BCA=12×40°=20°∴∠CED=∠BCE﹣∠BDE=20°﹣10°=10°【总结升华】主要考查了角平分线的性质定理及逆定理、三角形全等的性质和判定;做题中两次用到角平分线的知识是正确解答本题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

《三角形》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.下列正多边形能够进行镶嵌的是()A.正三角形与正五边形 B.正方形与正六边形C.正方形与正八边形 D.正六边形与正八边形3.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为 ( )A.2个 B.4个 C.6个 D.8个4.如图,如果把△ABC沿AD折叠,使点C落在边AB上的点E处,那么折痕(线段AD)是△ABC 的( )A.中线 B.角平分线 C.高 D.既是中线,又是角平分线5.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是 ( )A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高6.每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,则这个多边形的边数( )A.19 B.20 C.21 D.227.给出下列图形:其中具有稳定性的是( )A.① B.③ C.②③ D.②③④8.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是()A.120°,35°,25° B.110°,45°,25°C.100°,55°,25° D.120°,40°,20°二、填空题10.若a、b、c表示△ABC的三边长,则|a-b-c|+|b-c-a|+|c-a-b|=________.11.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.12.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.13.如图,在△ABC中,D是BC边上的任意一点,AH⊥BC于H,图中以AH为高的三角形的个数为______个.14. 用正三角形和正方形镶嵌平面,每一个顶点处有个正三角形和个正方形.15.请你观察上图的变化过程,说明四条边形的四条边一定时,其面积________确定.(填“能”或“不能”)16.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题17.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.18.一个多边形截去一个角后,形成新多边形的内角和为2520°,求原多边形边数.19.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.20.如图,一个四边形木框,四边长分别为AB=8cm,BC=6cm,CD=4cm.AD=5cm,它的形状是不稳定的,求AC和BD的取值范围.【答案与解析】一、选择题1. 【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.2. 【答案】C;【解析】解:A、正三角形的每个内角是60°,正五边形每个内角是180°﹣360°÷5=108°,60m+108n=360°,m=6﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;B、正方形的每个内角是90°,正六边形的每个内角是120°,90m+120n=360°,m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;C、正方形的每个内角是90°,正八边形的每个内角为:180°﹣360°÷8=135°,∵90°+2×135°=360°,∴能够组成镶嵌,符合题意;D、正八边形的每个内角为:180°﹣360°÷8=135°,正六边形的每个内角是120°,135m+120n=360°,n=3﹣m,显然m取任何正整数时,n不能得正整数,故不能够进行镶嵌,不符合题意.3. 【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以4. 【答案】B;【解析】折叠前后的图形完全相同.5. 【答案】C;【解析】三角形高的定义.6. 【答案】B;【解析】设外角为x则内角为9x,因为每一个内角与它的外角互为邻补角∴x+ 9x=180°;x=18°∵多边形的外角和为360°∴360°÷18°=20∴ 此多边形为20边形7. 【答案】C;【解析】均是由三角形构成的图形,具有稳定性.8. 【答案】AB;【解析】设三角形中与这个外角不相邻的两个内角中较小的为x,则另一个为x+10.x+x+10=60°,解得x=25°.所以三个内角分别是:120°,35°,25°.二、填空题++;10. 【答案】a b c【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简.11.【答案】29cm;12.【答案】7;13.【答案】6;14.【答案】3;2;【解析】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.15.【答案】不能;【解析】因为四边形的高不能确定.16.【答案】90°, 48 cm2;三、解答题17.【解析】解:维修站应建在四边形两对角线AC、BD的交点H处,理由如下:取不同于H的F点,根据三角形两边之和大于第三边可得;FD+FB>HD+HB,FC+FA>HC+HA.所以:FD+FB+FC+FA>HD+HB+HC+HA,即HD+HB+HC+HA为最小.18.【解析】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,所以多边形的边数可以为15,16或17.故答案为:15,16或17.19.【解析】解:(1)当高AD在△ABC的内部时(如图(1)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.当高AD在△ABC的外部时(如图(2)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.20.【解析】解:2cm<AC<9cm 3cm<BD<10cm。

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)-八年级数学上册基础知识专项讲练(人教版)

专题11.16 《三角形》全章复习与巩固(专项练习)一、单选题知识点一、三角形的三边关系1.现有两根木棒,它们的长分别是30cm和70cm,若要钉成一个三角形木架,则应选取的第三根木棒长可以为()A.40cm B.70cm C.100cm D.130cm2.下列长度的三条线段,不能组成三角形的是()A.3,7,5B.4,8,5C.5,12,7D.7,13,83.如图,∠ABC=90°,BD∠AC,下列关系式中不一定成立的是()A.AB>AD B.AC>BC C.BD+CD>BC D.CD>BD知识点二、三角形中重要线段4.下列尺规作图,能判断AD是ABC的BC边上的高是()A.B.C.D.5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则∠ABC的重心是().A .点DB .点EC .点FD .点G6.下列说法正确的个数有( )∠三角形的高、中线、角平分线都是线段;∠三角形的三条角平分线都在三角形内部,且交于同一点;∠三角形的三条高都在三角形内部;∠三角形的一条中线把该三角形分成面积相等的两部分.A .1个B .2个C .3个D .4个知识点三、与三角形有关的角7.将一副三角板按如图所示的位置摆放,90C EDF ∠=∠=︒ ,45E ∠=︒, 60B ∠=︒ ,点D 在边BC 上,边DE ,AB 交于点G .若 //EF AB ,则CDE ∠的度数为( )A .105︒B .100︒C .95︒D .75C ︒8.一副直角三角板如图摆放,点F 在CB 的延长线上,∠C =∠DFE =90°,若DE ∠CF ,则∠BEF 的度数为( )A .10°B .15°C .20°D .25°∠的度数是()9.将一副直角三角板按如图所示的方式叠放在一起,则图中αA.15°B.30°C.65°D.75°知识点四、三角形的稳定性10.如图所示,具有稳定性的有()A.只有(1),(2)B.只有(3),(4)C.只有(2),(3)D.(1),(2),(3)11.如图,木工师傅做窗框时,常常像图中那样钉上两条斜拉的木条起到稳固作用,这样做的数学原理是()A.三角形的稳定性B.两点之间线段最短C.长方形的轴对称性D.两直线平行,同位角相等12.要使如图所示的五边形木架不变形,至少要再钉上几根木条()A.1根B.2根C.3根D.4根知识点五、多边形内角和及外角和公式13.若一个多边形的内角和与外角和之差是720︒,则此多边形是()边形.A.6B.7C.8D.914.如果一个正多边形的内角和等于1080°,那么该正多边形的一个外角等于()A.30°B.45°C.60°D.72°15.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形知识点六、多边形对角线公式的运用16.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条17.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30B.45C.105D.21018.八边形从一个顶点引出的对角线的条数为()A.4条B.5条C.6条D.7条知识点七、镶嵌问题19.下列四组多边形∠正三角形与正方形∠正三角形与正十二边形∠正方形与正六边形∠正八边形与正方形,其中能铺满地面的是()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠20.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.21.下列正多边形不能实施平面镶嵌的是().A.正方形B.正五边形C.正六边形D.等边三角形二、填空题知识点一、三角形的三边关系22.已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是________.23.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_____,_____,_____(单位:cm ).24.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______. 知识点二、三角形中重要线段25.在直角三角形ABC 中,90ACB ∠=︒,3cm AC =,4cm BC =,CD 是AB 边的中线,则AC 边上的高为__cm ,BCD ∆的面积=__2cm .26.(1)线段AD 是ABC ∆的角平分线,那么BAD ∠=∠__12=∠__. (2)线段AE 是ABC ∆的中线,那么BE =__=__BC .27.如图,在∠ABC 中,点D ,点E 分别是BC ,AB 的中点,若∠AED 的面积为1,则∠ABC 的面积为_____.知识点三、与三角形有关的角28.如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF //BC 时,∠EGB 的度数是___.29.如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=68°,则∠1=_____°.30.如图,将纸片ABC 沿DE 折叠,使点A 落在BE 边上的点A '处,若18A ∠=︒,则1∠=__________.知识点四、三角形的稳定性31.下图是跪姿射击的情形.我们可以看到,跪姿射击的动作构成了三个三角形∠一是由右脚尖、右膝、左脚构成的三角形支撑面;二是由左手、左肘、左肩构成的托枪三角形;三是由左手、左肩、右肩所构成的近乎水平的三角形.这三个三角形可以使射击者在射击过程中保持稳定.其中,蕴含的数学道理是___.32.如图,在四边形木架上再钉一根木条,将它的一对不相邻的顶点连接起来,这时木架的形状不会改变,这是因为三角形具有____.33.要使五边形木架(用5根木条钉成)不变形,至少要再钉_____根木条.知识点五、多边形内角和及外角和公式34.若一个多边形的内角和是其外角的和1.5倍,则这个多边形的边数是________. 35.五边形的内角和是_______度,外角和是________度.36.如图所示,在五边形ABCDE中,∠A=∠C=80°,∠B=140°,∠DEF为五边形ABCDE 的一个外角,且∠DEF=60°,则∠D=_____.知识点六、多边形对角线公式的运用37.一个n边形共有n条对角线,将这个n边形截去一个角后它的边数为__.38.八边形中过其中一个顶点有__条对角线.39.若一个多边形的内角和为900︒,则从该多边形一个顶点出发引的对角线条数是______.知识点七、镶嵌问题40.用边长相等的三角形、四边形、五边形、六边形、七边形中的一种;能进行平面镶嵌的几何图形有_________种.41.使用下列同一种正多边形不能铺满地面的是________(填序号)∠正三角形;∠正方形;∠正六边形;∠正八边形42.下列正多边形中能单独镶嵌平面的是________.(填写序号)∠正三角形;∠正方形;∠正五边形;∠正六边形.三、解答题知识点一、三角形的三边关系43.如图所示,(1)图中有几个三角形?∆的边和角.(2)说出CDE∠是哪些三角形的角?(3)AD是哪些三角形的边?C知识点二、三角形中重要线段44.已知a b c ,,满足()2240a c -+-=.(1)求a b c ,,的值.(2)以a b c ,,为边能否构成三角形,如果能,求出三角形的周长;如果不能,请说明理由.知识点三、与三角形有关的角45.如图,已知BD //AC ,CE //BA ,且D 、A 、E 在同一条直线上,设∠BAC =x ,∠D +∠E =y .(1)试用x 的一次式表示y ;(2)当x =90°,且∠D =2∠E 时,DB 与EC 具有怎样的位置关系?知识点四、三角形的稳定性46.凸六边形钢架ABCDEF 由6条钢管连接而成,为使这一钢架稳固,试用三条钢管连接,使之不能活动,方法很多,请列举三个.知识点五、多边形内角和及外角和公式47.(1)一个多边形的内角和比它的外角和多720︒,求该多边形的边数;(2)如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,AD 与CE 相交于点F ,30CAD ∠=︒,50B ∠=︒,求ADC ∠和AFC ∠的度数.知识点六、多边形对角线公式的运用48.观察下面图形,并回答问题.()1四边形有条对角线;五边形有条对角线;六边形有条对角线.()2根据()1中得到的规律,试猜测十边形的对角线条数.参考答案1.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形三边关系,∠三角形的第三边x 满足:70303070x -<<+,即40100x <<,故选:B .【点睛】本题考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.2.C【分析】根据两边之和等于第三边的原则去判断即可【详解】∠3+5>7,∠能构成三角形,不符合题意;∠4+5>8,∠能构成三角形,不符合题意;∠7+5=12,∠不能构成三角形,符合题意;∠8+7>13,∠能构成三角形,不符合题意;故选C .【点睛】本题考查了三角形的存在性,熟练掌握两边之和大于第三边是判断的根本标准. 3.D【分析】根据直角三角形斜边大于直角边判断A 、B 、D 选项,根据三角形的三边关系判断C 选项.【详解】解:∠BD ∠AC ,∠∠ADB=90°,∠AB>AD,∠∠ABC=90°,∠AC>BC,∠BD+CD>BC,∠选项A,B,C正确;∠∠BDC=90°,∠CD不一定大于BD,∠选项D不一定成立,故选:D.【点睛】此题考查直角三角形斜边大于直角边的性质,三角形的两边和大于第三边的性质,熟记性质并熟练运用是解题的关键.4.B【分析】过点A作BC的垂线,垂足为D,能满足此条件的AD即为所求,依次判断即可.【详解】解:A. 所作图BC的垂线未过点A,故此项错误;B.所作图过点A作BC的垂线,垂足为D,故此项正确;C.所作过点A作的线AD不垂直BC,故此项错误;D.所作图仅为过点A的AB边上的垂线,不符合题意,故此项错误;故选:B.【点睛】本题主要考查了三角形的高的作法,解题的关键是掌握几何图形的性质和基本作图方法.5.A【分析】结合题意,根据三角形重心的定义分析,即可得到答案.【详解】根据题意可知,直线CD经过∠ABC的AB边上的中线,直线AD经过∠ABC的BC边上的中线∠点D是∠ABC重心.故选:A .【点睛】本题考查了三角形的知识;解题的关键是熟练掌握三角形重心、中线的性质,从而完成求解.6.C【分析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上即可作答.【详解】解:∠三角形的中线、角平分线、高都是线段,故正确;∠三角形的三条角平分线都在三角形内部,且交于同一点,故正确;∠钝角三角形的高有两条在三角形外部,故错误;∠三角形的一条中线把该三角形分成面积相等的两部分,故正确.所以正确的有3个.故选:C .【点睛】本题考查对三角形的中线、角平分线、高的正确理解,熟练掌握三角形的中线、角平分线、高的概念是解决本题的关键.7.A【分析】根据EF AB ∥,可得45BGD E ,再根据外角的性质,利用 CDE B BGD 可求得结果.【详解】解:EF AB ∥,45BGD E ∠=∠=︒.又CDE ∠是BDG ∆的外角,60B ∠=︒=6045105CDE B BGD ,故选:A .【点睛】本题考查了平行线的性质,外角的性质,熟悉相关性质是解题的关键. 8.B【分析】根据一副直角三角锐角大小一定,根据平行线的性质内错角相等,可得∠DEF = ∠EFB = 45°,再由三角形外角的性质,即可求出∠BEF = ∠ABC - ∠EFB = 15°.【详解】解:∠DE ∠CF ,∠DEF = 45°,∠∠DEF = ∠EFB = 45°,∠∠ABC = 60°,∠∠BEF = ∠ABC - ∠EFB = 60°-45°= 15°故选B .【点睛】本题主要考查了平行线的性质以及三角形一个外角与其不相邻两个内角的性质. 9.D【分析】根据三角形内角和定理求出即可.【详解】解:如图,∠ABC ∆和DEF ∆都是直角三角形,且30,45B E ∠=︒∠=︒∠45,60EFD ACB ∠=︒∠=︒∠++180EFD ACB FAC ∠∠∠=︒∠180456075FAC ∠=︒-︒-︒=︒,即75α=︒故选:D .【点睛】此题主要考查了三角形的内角和,熟练掌握三角形内角和定理是解答此题的关键.10.C【分析】根据三角形具有稳定性而四边形不具有稳定性判断即可.由于四边形不具有稳定性,故(1)不具有稳定性;根据三角形的稳定性,图中具有稳定性的有(2),(3),而(4)虽然含有三角形,但右侧的四边形不具稳定性,所以整体也就不具稳定性.故选:C.【点睛】本题考查了三角形的稳定性性质,四边形的不稳定性,无论是三角形的稳定性还是四边形的不稳定性,它们在生产生活中都有着广泛的应用.11.A【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:这样做的数学原理是三角形的稳定性.故选:A.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.B【分析】三角形具有稳定性,钉上木条后,使五边形变为三角形的组合即可解题.【详解】AC CE,使五边形变为三个三角形,解:如图,钉上木条,根据三角形具有稳定性,可知这样的五边形不变形,故选:B.【点睛】本题考查三角形的稳定性,是基础考点,难度较易,掌握相关知识是解题关键.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【详解】解:∠一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∠这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故选:C.【点睛】本题考查了多边形的内角和外角,能列出关于n的方程是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.14.B【分析】首先设此多边形为n边形,根据题意得:(n-2)•180°=1080°,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180°×(n-2)=1080°,解得:n=8,∠这个正多边形的每一个外角等于:360°÷8=45°.故选:B.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.15.D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.16.D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.17.C【分析】根据多边形对角线的计算方式可得出,m支球队举行比赛,若每个球队与其他队比赛(m-1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛12m(m-1).【详解】解:15支球队举行单循环比赛,比赛的总场数为:12×15×(15-1)=105.故选:C.【点睛】本题考查多边形的对角线的知识,解题的关键是读懂题意,明确单循环赛制的含义,利用多边形的对角线条数的知识进行解答.18.B【分析】由八边形八个顶点即可知从一个定点能引出的对角线条数.∠八边形八个顶点,每个顶点除了本身和相邻点不能作对角线,∠可引出8-3=5条对角线,故选:B.【点睛】此题考查多边形的对角线,可由对角线定义:由某一顶点向其他顶点引出的线段,得出结论.19.B【分析】根据围绕一点的各个角的和为360°进行一一判断即可.【详解】解:∠正三角形与正方形,正三角形每个内角60°,正方形每个内角90°,3×60°+2×90°=360°, 能铺满地面;∠正三角形与正十二边形, 正三角形每个内角60°,正十二边形每个内角150°,1×60°+2×150°=360°, 能铺满地面;∠正方形与正六边形, 正方形每个内角90°,正六边形每个内角120°,k×90°+n×120°=360°,k,n不是整数,不能铺满地面;∠正八边形与正方形,正八边角形每个内角135°,正方形每个内角90°,2×135°+1×90°=360°, 能铺满地面,其中能铺满地面的是∠∠∠.故选择:B.【点睛】本题考查能铺满地面的图形组合,掌握正多边形的内角和公式,会求正多边形的每个内角,抓住围绕一点的各个角的和为360°是解题关键.20.B【分析】正八边形的一个内角为135°,从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】正八边形的每个内角为()821808-⨯︒=135°,A、正八边形、正三角形内角分别为135°、60°,显然不能构成360°的周角,故不能铺满;B、正方形、八边形内角分别为90°、135°,由于135×2+90=360,故能铺满;C、正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;D、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.故选:B.【点睛】本题主要考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.21.B【分析】先求出各个正多边形每个内角的度数,再结合平面图形镶嵌的条件即可得.【详解】A、正方形的每个内角的度数为90︒,且490360⨯︒=︒,∴正方形能实施平面镶嵌,则此项不符题意;B、正五边形的每个内角的度数为()180521085︒⨯-=︒,且360101083︒=︒不是整数,∴正五边形不能实施平面镶嵌,则此项符合题意;C、正六边形的每个内角的度数为()180621206︒⨯-=︒,且3120360⨯︒=︒,∴正六边形能实施平面镶嵌,则此项不符题意;D、等边三角形的每个内角的度数为60︒,且660360⨯︒=︒,∴等边三角形能实施平面镶嵌,则此项不符题意;故选:B.【点睛】本题考查了平面镶嵌、正多边形的内角和,熟练掌握平面镶嵌的条件是解题关键.22.1<x<5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∠AB=3,BC=2∠1<x<5,故答案为:1<x <5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.23.6 11 6【分析】先分析出共有四种情况,再根据三角形三边关系即可求解【详解】解:每三根组合,有5cm ,6cm ,11cm ;5cm ,6cm ,16cm ;11cm ,16cm ,5cm ;11cm ,6cm ,16cm 四种情况.根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,得其中只有11,6,16能组成三角形.故答案为:6,11,6【点睛】本题考查了三角形的三边关系,熟练掌握三角形三边关系并根据题意分出四种情况是解题关键.24.3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∠∠ABC 的三边长分别是a 、b 、c ,∠必须满足两边之和大于第三边,两边的差小于第三边,∠0,0,0a b c b c a c a b --<--<-+>, ∠a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.25.4 3【分析】根据三角形的高线的定义知BC 是边AC 上的高线.由三角形中线的定义知AD =BD ,则∠ACD 与∠BCD 的等底同高的两个三角形,它们的面积相等.【详解】如图,90ACB ∠=︒,4BC cm =,BC ∴是AC 边上的高,即AC 边上的高为4cm ,又CD 是AB 边的中线,BD AD ∴=,21111343()2224BCD ABC S S AC BC cm ∆∆∴==⨯⨯=⨯⨯=. 故答案是:4;3.【点睛】本题考查了三角形的面积,三角形的角平分线、中线和高.此题利用了“等底同高”的两个三角形的面积相等来求∠BCD 的面积的.26.CAD BAC CE12 【分析】(1)根据角平分线定义即可求解;(2)根据中点定义即可求解.【详解】解:(1)线段AD 是ABC ∆的角平分线,那么12BAD CAD BAC ∠=∠=∠. 故答案为:CAD ,BAC ;(2)线段AE 是ABC ∆的中线,那么12BE CE BC ==. 故答案为:CE ,12. 【点睛】本题考查角平分线定义与中线定义,掌握角平分线定义与中线定义是解题关键. 27.4【分析】根据线段中点的概念、三角形的面积公式计算,得到答案.【详解】解:∠点E 是AB 的中点,∠AED 的面积为1,∠∠ABD 的面积=∠AED 的面积×2=2,∠点D是BC的中点,∠∠ABC的面积=∠ABD的面积×2=4,故答案为:4.【点睛】本题考查了三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.28.105°【分析】过点G作HG∠BC,则有∠HGB=∠B,∠HGE=∠E,又因为∠DEF和∠ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【详解】解:过点G作HG∠BC,∠EF∠BC,∠GH∠BC∠EF,∠∠HGB=∠B,∠HGE=∠E,在Rt∠DEF和Rt∠ABC中,∠F=30°,∠C=45°,∠∠E=60°,∠B=45°,∠∠HGB=∠B=45°,∠HGE=∠E=60°,∠∠EGB=∠HGE+∠HGB=60°+45°=105°,故∠EGB的度数是105°,故答案为:105°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,其中正确作出辅助线是解本题的关键.29.22【分析】如图,延长HE,交BC于点G,求出∠2=∠HGF=68°,根据直角三角形两锐角互余即可求解.解:如图,延长HE ,交BC 于点G ,∠AD ∠BC ,∠∠2=∠HGF =68°,由题意得∠FEH =∠FEG =90°,∠∠1=90°-∠EGF =90°-68°=22°.故答案为:22【点睛】本题考查了平行线的性质与直角三角形的两锐角互余,根据题意添加辅助线是解题关键.30.36︒【分析】利用折叠性质得到18DA A A ∠'=∠=︒,然后根据三角形外角性质求解.【详解】 解:纸片ABC ∆沿DE 折叠,使点A 落在BE 边上的点A '处,18DA A A ∴∠'=∠=︒,136DA A A ∴∠=∠'+∠=︒.故答案为36︒.【点睛】本题考查了三角形内角和定理:三角形内角和是180︒.也考查了折叠的性质. 31.三角形的稳定性【分析】直接根据题意进行解答即可.【详解】解:由题意得这三个三角形可以使射击者在射击过程中保持稳定,其中,蕴含的数学道理是三角形的稳定性;故答案为三角形的稳定性.【点睛】本题主要考查三角形稳定性,熟练掌握三角形的稳定性是解题的关键.【分析】根据三角形的性质进行解答即可.【详解】解:斜钉一根木条的四边形木架的形状不会改变,能解释这一实际应用的数学知识是三角形具有稳定性,故答案为:稳定性.【点睛】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.33.2.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】如图,再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条,故答案为:2.【点睛】本题考查了三角形的稳定性,解题的关键是熟知要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形.34.5【分析】根据多边形的内角和与外角和即可求出答案.【详解】解:设该多边形的边数为n,由题意可知:(n-2)•180°=1.5×360°,解得:n=5,故答案为:5.【点睛】本题考查多边形的内角和与外角和,解题的关键是熟练运用多边形的性质,本题属于基础题型.35.540 360【分析】根据多边形的内角和公式(n-2)•180°和多边形的外角和定理进行解答.【详解】解:(5-2)•180°=540°,所以五边形的内角和为540度,外角和为360度.故答案为:540,360.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.36.120°【分析】利用内角与外角的关系可得∠AED=120°,然后再利用多边形内角和定理进行计算即可.【详解】解:∠∠DEF=60°,∠∠AED=120°,∠∠A=∠C=80°,∠B=140°,∠∠D=180°×(5﹣2)﹣80°﹣80°﹣140°﹣120°=120°,故答案为:120°.【点睛】此题主要考查了多边形内角与外角,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n为整数).37.6、5、4【分析】根据一个n边形对角线条数公式()32n n-共有n条对角线,列等式,求出边数,再利用分类将五边形截去一个角的情形求解即可.【详解】解:由这个n边形共有n条对角线,可得()32n nn-=,解得n=5或0(不合题意,舍去),所以这个多边形是五边形,将一个五边形截去一个角,根据截法不同可以有三种情况如图,其结果分别是6、5、4条边,故答案为:6、5、4.【点睛】本题考查由对角线条数与边关,分类思想,数形结合思想截取一个角实质看边是否减少是解题关键.38.5【分析】根据对角线的意义求解.【详解】解:根据对角线的意义可知:一个八边形过一个顶点有8-2-1=5条对角线,故答案为:5.【点睛】本题考查多边形的对角线,熟练掌握多边形对角线的意义是解题关键.39.4【分析】根据题意和多边形内角和公式求出多边形的边数,根据多边形的对角线的条数的计算公式计算即可.【详解】设这个多边形的边数为n,则(n-2)×180°=900°,解得,n=7,从七边形的其中一个顶点出发引的对角线的条数:7-3=4,故答案为:4.【点睛】本题考查的是多边形的内角和外角、多边形的对角线,掌握n边形的内角和等于(n-2)×180°、从n边形的其中一个顶点出发引的对角线的条数是n-3是解题的关键.40.2【解析】试题分析:一个多边形能不能进行平面镶嵌,关键看同一个顶点处无缝且能组成一个周角,因为任意三角形的内角和是180°,所以放在同一顶点处6个即可;因为任意四边形的内角和是360°,所以放在同一顶点处4个即可;因为任意五边形的内角和是540°,不能整除360°,所以不能密铺;因为边长相等的六边形的内角和是720°,虽然能整除360°,但不一定能密铺;因为任意七边形的内角和是900°,不能整除360°,所以不能密铺.因此能进行平面镶嵌的几何图形有三角形和四边形2种.考点:平面镶嵌.41.∠【分析】分别求出正三角形,各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】解:∠正三角形的每个内角是60°,放在同一顶点处6个即能密铺;∠正方形的每个内角是90°,4个能密铺;∠正六边形每个内角是120°,能整除360°,故能密铺;∠正八边形每个内角是135°,不能整除360°,不能密铺.故答案为:∠【点睛】本题考查一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.镶嵌定义是解答此题的重要依据.42.∠∠∠【分析】根据正多边形的内角特点即可依次判断.【详解】解:∠正三角形的每个内角是60,能整除360,能镶嵌平面;∠正方形的每个内角是90,4个能镶嵌平面;-÷=,不能整除360,不能镶嵌平面;∠正五边形每个内角是:1803605108。

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)知识讲解【学习目标】(1)了解比例的基本性质,了解线段的比、成比例线段的概念;(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,周长的比等于对应边的比,面积的比等于对应边比的平方;(3)了解两个三角形相似的概念,探索两个三角形相似的条件;(4)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题( 如利用相似测量旗杆的高度);(5)理解实数与向量相乘的定义及向量数乘的运算律。

【知识网络】【要点梳理】要点一、比例线段及比例的性质1。

比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一2。

比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3。

平行线分线段成比例定理(1)三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

《三角形》全章复习与巩固(培优篇)(含答案)

《三角形》全章复习与巩固(培优篇)(含答案)

《三角形》全章复习与巩固(培优篇)(含答案)一、单选题1.如图,ZkABC的面积为3()C∏Λ AE=ED, BD=2DC,则图中四边形EDCF的面积等于()A. 8.5B. 8C. 9.5D. 92.如图,41/,。

“平分/^位>和/88,若/8 = 34。

,/0 = 42。

,则NΛ∕=()A. 34oB. 38oC. 40oD. 42°3.已知MBC中,CD是A8边上的高,C£平分ZAC8.若NA =机。

,ZB = ∕ιo, m≠n,则NQCE的度数等于()A. -m oB. -n oC. ,(〃?。

一〃。

)D. -∖m o-n o2 2 2v f2l4.如图,AD∕∕BC,N力=NA8C,点E是边力。

上一点,连接4E交5C的延长线于点儿点尸是边A8上一点,使得NFBE= ∕FEB,作NFE"的角平分线EG交5〃于点G.若N8EG=40。

,则NOE”的度数为()A. 50oB. 75oC. 100oD. 125°5.如图,在第1个4A∕3C中,ZB=3()o, A1B=CB,在边A/3上任取一点力,延长C4/到使A∕A2=A∕O,得到第2个△ A lΛ2D i在边4。

上任取一点E,延长4/2到4,使A2A3=A2E,得到第3个AA2λ3E,…按此做法继续下去,则第2021个三角形中以A2O2O为顶点的底角度数是()7 .如图,在四边形A5CO 中,AD//BC,若ND45的角平分线A£交。

于E,连接8E,且8E 边平分NABC,得到如下结 论:(l)ZAEB=90o ;(2)I3C+AD=AB ;③BE=^CD ; ®BC=CE-⑤若 A8=x,则 BE 的取值范围为 0<3EVx,那么以 8 .如图,已知AB = AC,点。

、E 分别在AC 、A8上且ΛE = AD,连接EC, BD, EC 交BD 于点、M,连接AM,过点A 分别 作AE_LC£AG_L8O,垂足分别为F 、G,卜.列结论:①.EBM 咨&DCM ;②NEMB = NFAG ;③M4平分NEMD ;④如果 S.BEM =S,ADM ,则E 是的中点;其中正确结论的个数为( )9 .“经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:A. (!) 2020∙75oB.弓)2020∙65oC. (;) 2021 ∙75D. (!) 2021 ∙6506.如图所示,锐角^ABC 中,D, E 分别是AB, AC 边上的点,2∖ADC/ z √iOC, ∆AEB^ ^AEB ,, 且C'D∕∕EB f "BC, BE 、CD 交于点F,若NBAO40。

《三角形的证明》全章复习与巩固--知识讲解(提高)

《三角形的证明》全章复习与巩固--知识讲解(提高)

《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础. 要点二、直角三角形 1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL ) 要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线. 要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围; ②利用线段的垂直平分线定理可解决两条线段的和距离最短问题. 要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. 3.如何用尺规作图法作出角平分线 要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD . 【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE , 即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形, ∴AC=CD ,CE=CB , ∵在△ACE 与△DCB 中, ,AC DCACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ), ∴AE=BD , ∠CAE=∠CDB ; ∵∠AFC=∠DFH ,∠FAC+∠AFC=90°, ∴∠DHF=∠ACD=90°, ∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点. 举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . (1)求证:AF+EF=DE ;(2)若将图1中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图1中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BEBF BF=⎧⎨=⎩ ∴△BCF ≌△BEF , ∴CF=EF ; ∵△ABC ≌△DBE , ∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( ) ①两个锐角对应相等的两个直角三角形全等, ②斜边及一锐角对应相等的两个直角三角形全等, ③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. A.1 B.2 C.3 D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可; 【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确; 所以,正确的说法个数是3个. 故选C .【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景: 在△ABC 中,AB 、BC 、AC 三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形》全章复习与巩固(基础)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.●理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.●能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.●通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.●了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.学习策略:●学会推导多边形的内角和公式,对角线公式,从特殊推广到一般.●从实际观察中体验三角形的稳定性与四边形的不稳定性.二、学习与应用“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记.知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?1. 三角形两边之和第三边.三角形两边之差第三边.2. 用一条长为18cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,那么各边长为___________________.3. 直角三角形的两个锐角 .4. 一个多边形的各内角都等于120°,它是____边形.5. 一个多边形的内角和等于1260°,它是_____边形.要点梳理——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID:#92322#428293要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于;三角形任意两边的之差小于.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形___;直角三角形交点在________;钝角三角形交点在三角形___.(2)三角形的中线在三角形中,连接一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积_______的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为.推论:1.直角三角形的两个锐角2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角与它不相邻的两个内角的和.(2)三角形的一个外角任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于 .要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引______条对角线,将多边形分成_______个三角形;(2)n边形共有_____________ 条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为 (n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于_______;相邻的多边形有________.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、_____________的地砖可以用.典型例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID:#92336#428293类型一、三角形的三边关系例1、若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【总结升华】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.例2.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【总结升华】举一反三【变式】已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)类型二、三角形中重要线段例3.小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【总结升华】举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.例4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比△ACD 的周长大3.【总结升华】举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.类型三、与三角形有关的角例5.已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°,(1)求∠BAE 的度数;(2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数.【总结升华】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.类型四、三角形的稳定性例6.如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【总结升华】类型五、多边形内角和及外角和公式例7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【总结升华】举一反三:【变式】若正多边形的一个内角等于140°,则这个正多边形的边数是.类型六、多边形对角线公式的运用例8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【总结升华】举一反三:【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9类型七、镶嵌问题例9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【总结升华】三、测评与总结要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.成果测评现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的测试.知识点:《三角形》全章复习与巩固(基础)测评系统分数:模拟考试系统分数:如果你的分数在85分以下,请进入网校资源ID:#92377#428293 进行巩固练习,如果你的分数在85分以上,请进入网校资源ID: #92438#428310 进行能力提升.自我反馈学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.我的收获习题整理注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.○网○校○重○要○资○源知识导学:《三角形》全章复习与巩固(基础)(#428293)对本知识的学案导学的使用率:□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上)□ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)□ 弱(仅作一般参考,使用率在50%以下)学生:_______________ 家长:______________ 指导教师:_________________请联系北京四中网校当地分校以获得更多知识点学案导学.。

相关文档
最新文档