概率题目及答案

合集下载

概率试题及答案初三

概率试题及答案初三

概率试题及答案初三【试题一】题目:在一个口袋中,有3个红球和2个蓝球。

如果随机抽取2个球,求抽到至少1个红球的概率。

【答案】解:设抽到至少1个红球为事件A。

首先计算抽到2个蓝球的概率,即事件A的对立事件(没有抽到红球)的概率。

抽到第一个蓝球的概率为2/5,抽到第二个蓝球的概率为1/4(因为已经抽走一个球,剩下4个球)。

所以,抽到2个蓝球的概率为:(2/5) * (1/4) = 1/10。

由于事件A和其对立事件是互斥的,所以抽到至少1个红球的概率为:P(A) = 1 - P(A的对立事件) = 1 - 1/10 = 9/10。

【试题二】题目:掷一枚均匀的硬币两次,求出现至少一次正面的概率。

【答案】解:设掷出正面为事件B。

掷硬币两次,可能出现的结果是:正正、正反、反正、反反。

事件B的对立事件是两次都掷出反面。

掷出两次反面的概率为:(1/2) * (1/2) = 1/4。

由于事件B和其对立事件是互斥的,所以至少出现一次正面的概率为:P(B) = 1 - P(B的对立事件) = 1 - 1/4 = 3/4。

【试题三】题目:在一个班级中有30名学生,其中10名男生和20名女生。

随机选取3名学生,求至少有1名男生的概率。

【答案】解:设至少有1名男生为事件C。

首先计算没有男生,即3名学生都是女生的概率。

选取3名女生的概率为:(20/30) * (19/29) * (18/28)。

所以,没有男生的概率为:(20/30) * (19/29) * (18/28) = 36/145。

由于事件C和其对立事件是互斥的,所以至少有1名男生的概率为:P(C) = 1 - P(C的对立事件) = 1 - 36/145 = 109/145。

【结束语】通过以上三道试题,我们可以看到概率的计算通常涉及到互斥事件和对立事件的概念。

在实际问题中,我们经常需要通过计算对立事件的概率来间接求解事件本身的概率。

希望这些试题能够帮助同学们更好地理解和掌握概率的基本概念和计算方法。

概率全集汇编含答案解析

概率全集汇编含答案解析

概率全集汇编含答案解析一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.3.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.4.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.5.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.6.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.7.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

概率题目及答案

概率题目及答案

一、概率公式的题目1、已知()()()0.3,0.4,0.5,P A P B P AB === 求().P B A B ⋃解:()()()()()()()()0.70.510.70.60.54P A P AB P AB P B A B P A B P A P B P AB --⋃====+-⋃+-2、已知()()()0.7,0.4,0.2,P A P B P AB === 求().P A A B ⋃解:()()()()()()()0.220.70.29P A A B P AB P A A B P A B P A P B P AB ⎡⎤⋃⎣⎦⋃====+⋃+-。

3、已知随机变量(1)XP ,即X 有概率分布律{}1(0,1,2)!e P X k k k -===,并记事件{}{}2,1A X B X =≥=<。

求:(1)()P A B ⋃; (2) ()P A B -; (3) ()P B A 。

解:(1)()(){}{}111()12,1111P A B P A B P AB P X X P X e -⋃=-⋃=-=-<≥=-==-;(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-(3)()()(){}{}{}{}{}111,201.20122P BA P X X P X e P B A P X P X P X e P A --<<======<=+=4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解: 设A=“甲射击一次命中目标”,B=“乙射击一次命中目标”, (())()()()()()()P A A B P A P A A B P A B P A P B P AB 侨==+-=0.660.750.60.50.60.58==+-5、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。

高考真题数学概率题及答案

高考真题数学概率题及答案

高考真题数学概率题及答案高考真题中的数学概率题常常是考生们的心头之患,因为涉及到概率的计算和推断,考生们往往感到头疼。

在这里,我为大家整理了一些高考真题中常见的数学概率题及答案,希望能帮助大家更好地应对考试。

题目一:某班有30名学生,其中10名喜欢篮球,8名喜欢足球,6名喜欢羽毛球,3名以上三项兼喜的学生只有两名,问至少有多少名学生喜欢至少一项球类运动?
解答:设喜欢至少一项球类运动的学生有x名,根据题意可列出方程:10+8+6-x=30-2,解得x=22,因此至少有22名学生喜欢至少一项球类运动。

题目二:甲、乙、丙三人开车到达目的地的概率分别是0.6、0.7和0.8,求至少有一个人到达目的地的概率。

解答:根据概率的互补性,至少有一个人到达目的地的概率为1-三人都没有到达的概率,即1-(1-0.6)(1-0.7)(1-0.8)=1-0.4*0.3*0.2=0.976,所以至少有一个人到达目的地的概率是0.976。

题目三:已知随机事件A的概率为0.4,事件B的概率为0.3,且事件A与事件B相互独立,求事件A与事件B至少有一个发生的概率。

解答:由事件A与事件B相互独立可知,事件A与事件B至少有一个发生的概率为1-(1-0.4)(1-0.3)=1-0.6*0.7=0.58,所以事件A与事件B至少有一个发生的概率为0.58。

通过以上题目的解答,我们可以看到,数学概率题并不是难到无法解决的问题,只要掌握了基本的概率知识和解题技巧,就能在考试中得心应手。

希望以上内容能对大家有所帮助,祝愿大家在高考中取得优异的成绩。

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。

答案:首先计算总球数为8个,红球数为5个。

根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。

2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。

答案:首先列出所有可能的结果:正正、正反、反正、反反。

其中正正和正反、反正是至少出现一次正面的情况。

根据概率公式,P(至少一次正面) = 3/4。

3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。

答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。

然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。

根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。

二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。

今天工厂生产了200个零件,求至少有10个次品的概率。

答案:首先确定次品数为10、11、...、20。

使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。

计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。

2. 题目:一个盒子里有10个球,编号为1到10。

随机抽取3个球,求抽取的球的编号之和大于15的概率。

答案:列出所有可能的抽取组合,计算和大于15的组合数。

然后根据概率公式计算概率。

3. 题目:一个班级有50名学生,其中男生30名,女生20名。

随机选取5名学生,求选取的学生中恰好有3名男生的概率。

答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。

三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。

所以,答案为0.6。

2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。

已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。

所以,答案为0.62。

3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。

所以,答案为0.4。

4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。

已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

概率计算机考试题目及答案

概率计算机考试题目及答案

概率计算机考试题目及答案一、单选题1. 关于概率的定义,以下哪个选项是正确的?A. 概率是表示一个事件发生可能性大小的数值。

B. 概率是表示一个事件发生次数的频率。

C. 概率是表示一个事件发生的时间点。

D. 概率是表示一个事件发生的原因。

答案:A2. 在一个标准的扑克牌中,红心的总数是:A. 12B. 13C. 14D. 15答案:B3. 掷一个骰子,出现偶数的概率是:A. 1/3B. 1/4C. 1/6D. 1/2答案:D4. 在一个罐子里有10个红球和20个绿球,随机取出一个球,红球的概率是:A. 1/3B. 1/2C. 2/3D. 1/4答案:C5. 在一个餐厅,某项特定菜品的顾客满意度调查结果显示,满意度为70%。

若随机选择3个顾客,并且他们的满意度是独立的,那么恰好有2个顾客满意的概率是:A. 0.063B. 0.189C. 0.324D. 0.567答案:B二、填空题1. 一个标准扑克牌中,概率抽到黑桃的牌是______。

答案:1/42. 甲、乙两个人分别从10支不同颜色的球中随机选取一支,用概率表示乙先选中红球的概率是______。

答案:1/103. 用4枚硬币抛掷,恰好出现2枚正面和2枚反面的概率是______。

答案:3/84. 从1至20共20个数字中,随机选择一个数字,概率选到奇数是______。

答案:1/2三、计算题1. 从1至10共10个数字中,随机选择3个数字,计算恰好选到3个奇数的概率。

解答:首先,计算总的可能选择数,即C(10, 3) = 120。

然后,计算选到3个奇数的选择数,即C(5, 3) = 10。

所以,恰好选到3个奇数的概率为10/120 = 1/12。

2. 有4个红球和3个蓝球,从中随机抽取3个球,计算至少抽到1个红球的概率。

解答:首先,计算总的可能选择数,即C(7, 3) = 35。

然后,计算一个红球也不抽到的选择数,即C(3, 3) = 1。

所以,至少抽到1个红球的概率为1 - 1/35 = 34/35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概率公式的题目1、已知()()()0.3,0.4,0.5,P A P B P AB === 求().P B A B ⋃解:()()()()()()()()0.70.510.70.60.54P A P AB P AB P B A B P A B P A P B P AB --⋃====+-⋃+-2、已知()()()0.7,0.4,0.2,P A P B P AB === 求().P A A B ⋃解:()()()()()()()0.220.70.29P A A B P AB P A A B P A B P A P B P AB ⎡⎤⋃⎣⎦⋃====+⋃+-。

3、已知随机变量(1)XP ,即X 有概率分布律{}1(0,1,2)!e P X k k k -===,并记事件{}{}2,1A X B X =≥=<。

求:(1)()P A B ⋃; (2) ()P A B -; (3) ()P B A 。

解:(1)()(){}{}111()12,1111P A B P A B P AB P X X P X e -⋃=-⋃=-=-<≥=-==-;(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-(3)()()(){}{}{}{}{}111,201.20122P BA P X X P X e P B A P X P X P X e P A --<<======<=+=4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解: 设A=“甲射击一次命中目标”,B=“乙射击一次命中目标”, (())()()()()()()P A A B P A P A A B P A B P A P B P AB 侨==+-=0.660.750.60.50.60.58==+-5、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。

解:设=A “系统A 有效”,=B “系统B 有效”,()()()0.92,0.93,0.85P A P B P B A ===,()()()()()()()()()()1.0.988P A B P A P B P AB P A P AB P A P A P B A ⋃=+-=+=+=()()()()()()()()()()()0.070.080.152.0.8290.07P ABP B P A P B A P B P AB P A B P B P B P B ---⨯=====6、由长期统计资料得知,某一地区在4月份下雨(记作事件A )的概率为415,刮风(记作事件B )的概率为715,既刮风又下雨的概率为110,求()()()(1);(2);(3)P A B P B A P A B ⋃。

解:()()()1310(1)71415P AB P A B P B ===; ()()()1310(2)4815P AB P B A P A ===()()()()47119(3)15151030P A B P A P B P AB ⋃=+-=+-=。

二、已知密度(函数)求概率的题目1、某批晶体管的使用寿命X(小时)的密度函数 ⎪⎪⎩⎪⎪⎨⎧<≥=1000100100)(2x x x x f , , ,任取其中3只,求使用最初150小时内,无一晶体管损坏的概率。

解:任一晶体管使用寿命超过150小时的概率为设Y 为任取的5只晶体管中使用寿命超过150小时的晶体管数,则)32,3(~B Y .故有2、某城市每天耗电量不超过一百万千瓦小时,该城市每天耗电率(即每天耗电量/百万瓦小时)是一个随机变量X ,它的分布密度为()()⎪⎩⎪⎨⎧<<-=其他0101122x x x x f ,若每天供电量为80万千瓦小时,求任一天供电量不够需要的概率?解:每天供电量80万千瓦小时,所以供给耗电率为:80万千瓦小时/百分千瓦小时=0.8,供电量不够需要即实际耗电率大于供给耗电率。

所以{}()()1120.80.80.81210.0272P X f x dx x x dx >==-=⎰⎰。

3、某种型号的电子管的寿命X (以小时计)具有以下的概率密度⎪⎩⎪⎨⎧>=其它010001000)(2x x x f ,现有一大批此种管子(设各电子管损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少?解:一个电子管寿命大于1500小时的概率为32100100)()150(1501502150=-===>=∞+∞+∞+⎰⎰ x dx x dx x f X P p 278)31()32()3(0333=⋅==C Y P32)321(1)1(1000110001)1500(1)1500(15001000150010002=--=⎭⎬⎫⎩⎨⎧--=-=≤-=>⎰x dx x X P X P令Y 表示“任取5只此种电子管中寿命大于1500小时的个数”。

则)32,5(~B Y ,{}24323224311132511)31()32()31(1)1()0(1)2(1)2(54155=-=⨯+-=⎭⎬⎫⎩⎨⎧⋅⋅+-==+=-=<-=≥C Y P Y P Y P Y P4、某些生化制品的有效成分如活性酶,其含量会随时间而衰减。

当有效成分的含量降至实验室要求的有效计量下,该制品便被视为失效。

制品能维持其有效剂量的时间为该制品的有效期,它显然是随机变量,记为X 。

多数情况下,可以认为X 服从指数分布。

设它的概率密度函数为:⎩⎨⎧≥<=-0,0,0)(x e x x f xλλ (x 的单位为月) (1)从一批产品中抽取样品,测得有50%的样品有效期大于34个月,求参数λ的值。

(2)若一件产品出厂12个月后还有效,再过12个月后它还有效的概率有多大?解:指数分布的分布函数为{}⎩⎨⎧<≥-=≤=-001x x e x X P x F x λ)( (1){}34ln 2341(34)0.5,0.0234P X F eλλ->=-===≈解出 (2){}{}{}787.0122412421202.01202.02402.0===>>=>>⨯-⨯-⨯-e ee X P X P X X P5、设K 在(-1,5)上服从均匀分布,求x 的方程24420x Kx K +++=有实根的概率。

解:要想x 有实根,则()224161620B AC K K ∆=-=-⨯+≥则2K 1K ≥≤-或者,又因为()~1,5K U -,所以{}122P K ≥=。

三、分布函数、密度函数的题目1、设随机变量X 的分布函数为0()arcsin1x a x F x A B a x aa x a≤-⎧⎪⎪=+-<≤⎨⎪>⎪⎩,(1) 求系数A ,B ; (2) 求22aa P X ⎧⎫-<<⎨⎬⎩⎭; (3) 求X 的分布密度。

解:(1)由F(x)在,a a -处的右连续性知⎪⎩⎪⎨⎧=+=-1202B A B A ππ 解之得⎪⎩⎪⎨⎧==π121B A (2)122223a a a a P X F F ⎧⎫⎛⎫⎛⎫-<<=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭(3)因为)()('x F x f =,则221()0x aa xf x x aπ⎧<⎪-=⎨⎪≥⎩2、设随机变量X 的分布函数为 ()0,arctan ,1,x a x F x A B a x aa x a ≤-⎧⎪⎪=+-<≤⎨⎪>⎪⎩,求:(1)常数,A B ; (2)303a P X ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; (3)X 的密度函数()f x 。

解:(1)由分布函数的右连续性知:()()()()0lim lim arctan 4arctan lim 14x a x a x a x F a F x A B A B a a F a A B A B F x a ππ+++→-→-→⎧-===+=-⎪⎪⎨⎪=+=+==⎪⎩,所以1124204A A B B A B πππ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=⎪⎪⎩⎩; (2)()33100333a a P X F F ⎧⎫⎛⎫⎪⎪<<=-= ⎪⎨⎬ ⎪⎪⎪⎩⎭⎝⎭; (3) ()()222,()0,a a x aa x f x F x π⎧-<<⎪+'==⎨⎪⎩其它。

3、设随机变量X 的分布函数为 ()20,0,011,1x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩,求:)1(常数A ; )2({}0.30.7P X <<; )3(X 的密度函数()f x 。

解:(1)由分布函数的右连续性知:()()11lim 1x F A F x +→===,所以1A =; (2){}()()0.30.70.70.30.4P X F F <<=-=; (3) ()2,01()0,x x f x F x <<⎧'==⎨⎩其它。

4、设随机变量X 的分布函数为()⎪⎩⎪⎨⎧≤>+=-000,22x x e B A x F x 求:(1)系数B A ,; (2){}9ln 4ln <<X P ; (3)X 的密度函数。

解: (1) 由于()x F 在()∞+∞-,内连续,()()00lim lim 2002==+=⎪⎪⎭⎫⎝⎛+=-→→++F B A Be A x F x x x 又 ()1lim lim 22==⎪⎪⎭⎫⎝⎛+=-+∞→+∞→A BeA x F x x x 故1-=B ()⎪⎩⎪⎨⎧≤>-=-00,122x x e x F x(2) {}9ln 4ln <<X P=()()4ln 9ln F F -=613121=-(3) X 的密度函数为 ()()⎪⎩⎪⎨⎧≤>='=-00022x x ex x F x f x ,,5、设连续性随机变量X 的分布函数为 2,0()0,0.x A Be x F x x -⎧+>=⎨≤⎩ ,求:(1)常数A ,B ; (2){11}P X -<<; (3) X 的密度函数()f x 。

相关文档
最新文档