概率计算练习题
概率计算练习题随机变量的分布函数与概率密度函数

概率计算练习题随机变量的分布函数与概率密度函数随机变量是概率论中的重要概念,它是一种随机现象的数值表示。
概率计算是概率论的核心内容之一,通过计算随机变量的分布函数和概率密度函数,我们可以更好地理解和分析随机事件的发生概率。
本文将通过一系列练习题来帮助读者巩固对随机变量的分布函数和概率密度函数的理解。
练习题一:离散型随机变量设随机变量X的分布列为:X | 0 | 1 | 2 | 3 | 4----------------------------------P(X=x) | 0.2 | 0.3 | 0.1 | 0.2 | 0.21. 求随机变量X的分布函数F(x)。
解析:分布函数F(x)定义为P(X≤x),根据分布列可以求得如下分布函数:F(0) = P(X≤0) = 0.2F(1) = P(X≤1) = 0.2 + 0.3 = 0.5F(2) = P(X≤2) = 0.2 + 0.3 + 0.1 = 0.6F(3) = P(X≤3) = 0.2 + 0.3 + 0.1 + 0.2 = 0.8F(4) = P(X≤4) = 0.2 + 0.3 + 0.1 + 0.2 + 0.2 = 12. 求随机变量X的概率密度函数f(x)。
解析:概率密度函数f(x)只对连续型随机变量有意义,对于离散型随机变量,f(x)恒为0。
因此,对于该题中给定的随机变量X,概率密度函数f(x)不存在。
练习题二:连续型随机变量设随机变量Y的密度函数f(y)如下:f(y) = 0.5,0≤y≤2f(y) = 0,其他1. 求随机变量Y的分布函数F(y)。
解析:分布函数F(y)定义为P(Y≤y),根据密度函数可以求得如下分布函数:F(y) = ∫[0, y] f(t)dt根据密度函数的定义域可知,在区间[0, y]上f(t)=0.5,因此:F(y) = ∫[0, y] 0.5dt = 0.5y,0≤y≤2F(y) = ∫[0, y] 0dt = 0,其他2. 求随机变量Y在区间[1, 2]上的概率P(1 ≤ Y ≤ 2)。
小学数学概率练习题

小学数学概率练习题题目一:概率基础1. 掷一个骰子,问出现偶数的概率是多少?2. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,问取出红球的概率是多少?3. 一张扑克牌从52张牌中随机抽取一张,问抽到一张黑桃的概率是多少?题目二:事件概率计算1. 班级有30个男生和20个女生,从中随机抽取一名学生,问抽到女生的概率是多少?2. 有三个红色球和两个蓝色球,从中任意取出两个球,问取出两个红色球的概率是多少?3. 一副扑克牌中去掉所有的黑桃,剩下的牌共有39张,从中抽取一张牌,问抽到一张红桃的概率是多少?题目三:条件概率1. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,已知取出的球是红球,问这个球原本是黄球的概率是多少?2. 一盒中有10个苹果,其中3个是有虫子的,从中任意取出一个苹果,已知取出的苹果有虫子,问这个苹果原本是好的概率是多少?3. 有两个袋子,一个袋子中有3个红球和2个蓝球,另一个袋子中有4个红球和1个蓝球,先随机选择一个袋子,再从袋子中随机取出一个球,已知取出的球是红球,问这个球来自第一个袋子的概率是多少?题目四:互斥事件概率1. 掷两个骰子,问至少一个骰子出现1点的概率是多少?2. 有一副扑克牌,从中抽取一张牌,问抽到红桃或红心的概率是多少?3. 某班级有20名男生和30名女生,从班级中随机选择一名学生,问选择到男生或高年级学生的概率是多少?题目五:独立事件概率1. 一副扑克牌中任选两张牌,问两张牌都是红色的概率是多少?2. 一袋中有4个红球和5个蓝球,从中随机取出一个球,不放回,再从中取出一个球,问两次取出的球都是红球的概率是多少?3. 有两个盒子,一个盒子中有4个红球和2个蓝球,另一个盒子中有3个红球和3个蓝球,分别从两个盒子中随机取出一个球,问两次取出的球颜色相同的概率是多少?这些题目涵盖了概率基础知识、事件概率计算、条件概率、互斥事件概率和独立事件概率等内容。
概率练习题【范本模板】

概率练习题一、选择题1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演 出专场的主持人,则选出的恰为一男一女的概率是…………【 】 A .45 B .35 C .25 D .152.下列说法中,正确的是( )A .“明天降雨的概率是80%"表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D .在同一年出生的367名学生中,至少有两人的生日是同一天 3.下列事件中,必然事件是A .掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B .掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C .抛掷一枚普通的硬币,掷得的结果不是正面就是反面D .从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球4.一个不透明的布袋装有4个只有颜色不同的球,其中2个红球,1个白球,1个黑球,搅匀后从布袋里摸出1个球,摸到红球的概率是( ) A .12B .13C .14D .165.下列事件是必然事件的是 ( )A .抛掷一次硬币,正面朝上B .任意购买一张电影票,座位号恰好是“7排8号”C .某射击运动员射击一次,命中靶心D .13名同学中,至少有两名同学出生的月份相同 6。
从红桃A 、黑桃A 、梅花A 、方块A 四张牌中,随机抽取一张,则抽到方块A 的概率为A .14 B .13C .12D .16.下列说法错误的是 A .必然事件发生的概率为1 B .不确定事件发生的概率为0。
5C .不可能事件发生的概率为0D .随机事件发生的概率介于0和1之间 7。
在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为A.161 B 。
41 C 。
16π D 。
4π8.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球, 两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球,一个是黑球的概率是( )(第6题)第一次第二次红红 黄 黑黄红黄黄 黑 红黄A .19B.29C.13D.499.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是()A.35B.310C.425D.92510、经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A、B、C、D、11.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是错误!.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是错误!,则原来盒中有白色棋子A.8颗B.6颗C.4颗D.2颗c12.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为A.12B.13C.23D.14b13 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A。
高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。
答案:首先计算总球数为8个,红球数为5个。
根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。
2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。
答案:首先列出所有可能的结果:正正、正反、反正、反反。
其中正正和正反、反正是至少出现一次正面的情况。
根据概率公式,P(至少一次正面) = 3/4。
3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。
答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。
然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。
根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。
二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。
今天工厂生产了200个零件,求至少有10个次品的概率。
答案:首先确定次品数为10、11、...、20。
使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。
计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。
2. 题目:一个盒子里有10个球,编号为1到10。
随机抽取3个球,求抽取的球的编号之和大于15的概率。
答案:列出所有可能的抽取组合,计算和大于15的组合数。
然后根据概率公式计算概率。
3. 题目:一个班级有50名学生,其中男生30名,女生20名。
随机选取5名学生,求选取的学生中恰好有3名男生的概率。
答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。
三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。
中职数学概率统计练习题

中职数学概率统计练习题
练一:概率计算
1. 某班级有50名学生,其中30人擅长篮球,20人擅长足球,10人既擅长篮球又擅长足球。
从该班级中随机选一个学生,请计算该学生擅长篮球或足球的概率。
练二:条件概率
2. 一家电子产品公司生产电视机和电冰箱两种产品。
该公司的统计数据显示,电视机的次品率是5%,而电冰箱的次品率是3%。
另外,该公司生产的电视机和电冰箱的比例为3:2。
从该公司中随机选一个产品,请计算该产品是电视机的概率,且是次品的条件概率。
练三:二项分布
3. 一枚硬币正面向上的概率是0.6。
现在进行5次抛硬币的实验,请计算恰好有3次正面朝上的概率。
练四:正态分布
4. 某市一所高中的学生成绩服从正态分布,其平均分为80分,标准差为10分。
请计算学生中成绩大于90分的比例。
练五:抽样与估计
5. 某公司的员工数量为1000人。
为了对该公司员工的平均年
龄进行估计,从中随机抽取了100人并统计了他们的年龄。
请计算
在95%的置信水平下,对于该公司员工平均年龄的置信区间。
练六:相关与回归
6. 一个研究人员想要了解身高和体重之间的关系。
他在200名
成年男性中测量了他们的身高(单位:厘米)和体重(单位:千克)。
请计算身高和体重之间的相关系数,并解释其意义。
人教版七年级数学下《概率练习》习题

人教版七年级数学下《概率练习》习题
1. 骰子的概率问题
- 问题:如果我们掷一颗六面的普通骰子,那么掷到数字4的
概率是多少?
- 解答:普通骰子有六个面,每个面上的数字分别是1、2、3、4、5、6。
因此,掷到数字4的概率是1/6。
2. 抽取彩球的概率问题
- 问题:一个箱子里有10个彩球,其中3个红色,4个蓝色,3个绿色。
如果我们从箱子中随机抽取一个球,那么抽到红色球的概
率是多少?
- 解答:总共有10个球,其中3个是红色的。
因此,抽到红色
球的概率是3/10。
3. 一个魔术师的把戏
- 问题:一个魔术师手中有10张牌,其中4张是红色的,6张
是蓝色的。
他让观众从中选一张牌,然后重新洗牌,最后再由观众
自己将选中的牌找出来。
在观众重新洗牌之前,魔术师有没有可能
知道观众选中的牌是哪一张?
- 解答:魔术师手中有10张牌,观众只选中其中一张。
因此,
魔术师在观众重新洗牌之前不可能知道观众选中的是哪张牌。
4. 抽奖的概率问题
- 问题:在一个抽奖活动中,一个人购买了5张彩票,总共有100张彩票参与抽奖。
那么这个人中奖的概率是多少?
- 解答:这个人购买了5张彩票,总共有100张彩票参与抽奖。
因此,这个人中奖的概率是5/100,或者可以简化为1/20。
以上是《概率练习》中的一些习题及其解答。
希望对你的学习
有所帮助!。
概率计算练习题

概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。
现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。
2. 有一批产品,其中20%是次品。
从中随机抽取3个产品,求恰好有一个是次品的概率。
3. 一批产品中有30%的次品。
从中随机抽取5个产品,求至少有一个是次品的概率。
4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。
甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。
现从该批产品中随机选择一件,求其出现故障的概率。
5. 一批产品中有20%的次品。
从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。
二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。
已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。
现从该班级中随机选择一名学生,求该学生学习吉他的概率。
2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。
从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。
3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。
已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。
现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。
4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。
从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。
5. 某城市每天发生车辆事故的概率为0.03。
概率经典练习题精心整理

概率经典练习题精心整理1. 事件概率的计算- 问题:有一个装有6个红球和4个蓝球的盒子,从盒子中随机抽取一个球,求抽出的球是红色的概率。
- 解答:红球的个数为6,总球数为10,所以红色概率为6/10,即3/5。
2. 条件概率的计算- 问题:某地的天气预报表明,如果今天是晴天,明天下雨的概率为0.2;如果今天是雨天,明天下雨的概率为0.6。
已知今天是晴天的情况下,明天下雨的概率是多少?- 解答:根据条件概率公式P(A|B) = P(A∩B) / P(B),今天是晴天(A),明天下雨(B),则 P(下雨|晴天) = P(下雨∩晴天) / P(晴天)。
已知 P(下雨∩晴天) = P(晴天) * P(下雨|晴天) = (1/2) * 0.2 =1/10,P(晴天) = 1/2,所以 P(下雨|晴天) = (1/10) / (1/2) = 1/5。
3. 互斥事件的概率计算- 问题:某班级有50个学生,其中30个喜欢音乐,20个喜欢运动,有10个既喜欢音乐又喜欢运动。
随机选取一个学生,求该学生既不喜欢音乐也不喜欢运动的概率。
- 解答:根据互斥事件的概率计算公式P(A∪B) = P(A) + P(B),既不喜欢音乐也不喜欢运动的事件为学生总数减去喜欢音乐和喜欢运动的学生数,即 50 - 30 - 20 + 10 = 10。
所以该学生既不喜欢音乐也不喜欢运动的概率为 10/50 = 1/5。
4. 独立事件的概率计算- 问题:一副扑克牌中,从中抽取2张牌,求第一张是红心的概率并放回,然后再抽取1张牌,求第三张是红心的概率。
- 解答:第一张是红心的概率为 26/52 = 1/2,因为放回了,所以每次抽取红心的概率都是 26/52 = 1/2。
第三张也是红心的概率为26/52 = 1/2,因为前后两次抽取是独立事件。
以上是我为您整理的一些概率经典练习题,希望对您有帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例18 设随机变量X~N(μ,σ2),则 P(|X-μ|<3σ)=99.7% , P(|X-μ|<2σ)=95.4%, P(|X-μ|<σ)=68.3%, “3σ”原则:把[μ- 3σ ,μ +3σ]看成X实际可能取值范围.
例19 由历史记录,某地区年总降雨量X~N(600,1502), (单位:mm).求: (1)明年年降雨量在400mm~700mm之间的概率为多 少? (2)明年年降雨量至少为300mm的概率为多少?
x
( t )2 2 2
e
dt , x
特别地,当μ=0,σ=1时,称随机变量X服从标 准正态分布,记作X~N(0,1). x2 1 2 1 x t2 ( x) e , x ( x) e dt, x 2 2
求:(1)P(X≤1.5);(2)P(0.7<X≤2.6);(3)P(X>2.8);(4)X的 分布律.
例8 一射手对某一目标进行射击,一次命中的概率 为0.9. (1)求一次射击的分布律; (2)求击中目标为止所需射击次数的分布律. 例9 在一大批次品率为4%的产品中任取200件检查, 求其中至少有2件次品的概率. 分析:由于这批产品的件数很多,取走若干件可以 认为并不影响留下部分的次品率,所以认为抽样 是有放回的. 例10 电话交换台每分钟接到的呼唤次数X~P(3),求在 一分钟内呼唤次数不超过1的概率.
例6 设随机变量X的分布律为 P(X=k)=c(2/3)k,k=1,2,3 求:(1)c,(2)P(0≤X≤1),P(0.5<X<3),P(X<3),(3)X的分 布函数.
例7 设随机变量X的分布函数为
0, x 1 1 ,1 x 2 3 F ( x) 1 ,2 x 3 2 1, x 3
(3)正态分布 定义10 若连续型随机变量X的密度函数为 ( x )2 1 2 2 f ( x) e , x 2 其中μ,σ(σ>0)都是常数,则称X服从参数为μ,σ的正 态分布或高斯分布,记作X~N(μ,σ2).
正态分布的随机变量X的分布函数
1 F ( x) 2
例1 袋中装有6个球,其中3个红球、2个黑球、1个 白球.从袋中任取一球,设事件:A={取出红球}, B={取出黑球},C={取出白球}.根据古典概型可知
1 1 1 P( A) , P( B) , P(C ) , 2 3 6 为了便于讨论,把事件加以数量化,人为规定: X=1表示事件A发生,即P(X=1)=1/2; X=2表示事件B发生,即P(X=2)=1/3; X=3表示事件C发生,即P(X=3)=1/6. 注:X的取值是人为规定的,取法不唯一.
f ( x) x 0, 其他
例2 掷一颗均匀的骰子,可能出现的点数记作N, 则N=1,2,3,,5,6. N=1表示“出现的点数为1”; N=2表示“出现的点数为2”; …… N=6表示“出现的点数为6”. 例3 某电话总机在一天内接到呼叫次数用ξ表示,则 ξ的可能值为0,1,2,…… 例4 习题5-3 P1331. 例5 100件相同的产品中,有4件次品,96件正品 . (1)现从中任取一件,求取到的正品数X的分布律. (2)现从中任取五件,求取到的正品数X的分布律.
例11 已知某一类种子发芽的概率为0.96,现播种100 粒,求不发芽的种子数不少于4粒的概率.
例12 设连续型随机变量X的概率密度为
kx 2 , 0 x 2 f ( x) 0, 其它
求:(1)常数k;(2) P(1 X 1), P( X 3), P( X 0.5); (3)分布函数. 例13 设连续型随机变量X的分布函数为 F(x)=a+barctanx,-∞<x<+∞ 求:(1)常数a,b的值;(2) X的密度函数;(3) P(-1≤X≤1), P(X2>1).
例14 设某条公交线路每隔5分钟发一班车,某人来 到起点站之前并不知道发车的时刻表.求他等待时 间不超过2分钟的概率. 例15 设某电子元件使用寿命X(单位:h)服从参数 λ=1/1000的指数分布.求: (1)该电子元件使用1000h而不坏的概率; (2)在使用500h没坏的条件下,再使用1000h而不坏 的概率. 例16 设X~N(0,1),求下列各值: (1)P(X≤ 1);(2)P(X≤-1);(3)P(|X|≤1);(4)P(X<3.9) 例17 设X~N(1,4),求下列各值: (1)P(X<5.3);(2)P(0≤X<1.6);(3)P(X>1);(4)P(|X+1|≤2)
2
习题5-3 1. 下列函数是否是某个随机变量的分布函数? 0, x 2 1 1 (1) F ( x) , 2 x 0 (2) F ( x) , x 2 1 x 2 1, x 0
15. 设某河每年的最高洪水水位X(单位:m)具有概率 2 密度 3 , x 1 计划修建的河堤要能防御百年一遇的洪水(即遇到 洪水而被破堤的概率不大于0.01).试问河堤需要修 多高?