小升初经典数学行程问题及解析

合集下载

六年级小升初数学行程问题

六年级小升初数学行程问题

六年级(小升初)总复习行程问题 行程问题常用的解题方法有⑴公式法 S=V*T ⑵图示法⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法 ⑸方程法模块一、时间相同速度比等于路程比【例 1】 甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 【例 2】 B 地在A ,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用多少时间。

【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:因为丙的速度是甲、乙的3倍,分步讨论如下:(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B 地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B 地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2) 同理先追及甲需要时间为120分钟【例 3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A 、B 两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C 处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D 处相遇,且中点距C 、D 距离相等,问A 、B 两点相距多少米?【分析】 甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A 、B 两点的距离为1607=16804⨯÷(米). 【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?【解析】 两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045÷= (千米). 【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45= + 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。

六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。

今天,咱们就来好好探讨一下这类问题。

行程问题主要涉及速度、时间和路程这三个量之间的关系。

基本的公式就是:路程=速度×时间。

而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。

咱们先来说说相遇问题。

比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。

A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。

解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。

然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。

再来看一个稍微复杂点的相遇问题。

甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。

A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。

然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。

接下来是追及问题。

比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。

因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。

而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。

再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。

甲每小时走 2 千米,乙每小时走 5 千米。

出发 4 小时后,乙追上甲。

一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。

因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。

小升初数学专项题行程问题

小升初数学专项题行程问题

小升初数学专项题行程问题- 行程问题是小学数学中的一个经典题型,也是中学数学中的常见题型。

它常常涉及到时间、速度、距离等概念,考察学生对这些概念的理解和运用能力。

下面是一个关于行程问题的例子:例题:小明骑自行车从A地到B地,全程120公里。

第一天他骑了3小时,剩余距离的3/4。

第二天他骑了4小时,剩余距离的1/3。

问小明第一天的平均速度和第二天的平均速度分别是多少?解析:首先,我们需要确定小明第一天和第二天所剩余的距离分别是多少。

设小明第一天所剩余的距离为x,那么根据题意,我们可以得到以下等式:3/4 * 120 = x解得 x = 90同理,设小明第二天所剩余的距离为y,那么根据题意,我们可以得到以下等式:1/3 * 120 = y解得 y = 40然后,我们可以利用速度=距离/时间的公式来计算小明第一天和第二天的平均速度。

第一天的平均速度 = 90 / 3 = 30公里/小时第二天的平均速度 = 40 / 4 = 10公里/小时所以,小明第一天的平均速度是30公里/小时,第二天的平均速度是10公里/小时。

通过这个例题,我们可以看到解决行程问题的关键在于确定所剩余的距离,并利用速度=距离/时间的公式来计算平均速度。

除了这个例题,行程问题还有很多其他的变形。

例如,给定两个地点之间的距离和速度,求到达目的地所需的时间;或者给定两个地点之间的距离和时间,求平均速度等等。

这些问题都要求学生能够熟练地应用相关的公式和概念来解决。

行程问题不仅在小学数学中经常出现,而且在高中数学和大学数学中也有所涉及。

因此,通过解决这类问题,可以帮助学生建立起对时间、速度、距离等概念的深入理解,为以后更复杂的数学问题打下坚实的基础。

小升初数学冲刺-----行程问题(含答案)

小升初数学冲刺-----行程问题(含答案)

小升初数学冲刺-----行程问题1、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?解析:①4小时后相差多少千米:1604)300340(=⨯-(千米).②甲机提高速度后每小时飞行多少千米:4203402160=+÷(千米).2、两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时乙到达目标时所用时间:9100900=÷(分钟),甲9分钟走的路程:720980=⨯(米),甲距目标还有:180720900=-(米),相遇时间:1)80100(180=+÷(分钟),共用时间:1019=+(分钟).3、甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?解析:根据2小时后相距54千米,5小时后相距27千米,可以求出甲、乙二人3小时行的路程和为)2754(-千米,即可求出两人的速度和:9)25()2754(=-÷-(千米),根据相遇问题的解题规律;相隔距离÷速度和=相遇时间,可以求出行27千米需要:89275=÷+(小时).4、甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?解析:因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.解:相遇时间:4)7050()50530(=+÷-(小时)相遇时客车行驶的路程:280470=⨯(千米)相遇时货车行驶的路程:250)14(50=+⨯(千米).5、两车同时从甲乙两地相对开出,甲车每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少公里?解:甲乙两车的速度比=48:54=8:9那么相遇时甲车行了全程的8/17所以甲乙距离=36/(1/2-8/17)=36/(1/34)=1224千米6、客货两车从甲地到乙地客车出发,30分钟后货车才出发,结果货车比客车早到1小时,如果甲乙两地相距360km,客车速度是货车的3/4.货车和客车行驶的速度分别是多少?解:若同时出发客车比货车晚到1小时30分=1.5小时客车和货车的速度比=3:4时间比=4:3所以客车行驶全程的时间=1.5/(1-3/4)=6小时所以客车速度=360/6=60千米/小时货车速度=60/(3/4)=80千米/小时7、甲乙两车同时从A、B两地相对开出,4小时后相遇,相遇后甲车在开3小时到达B地。

小升初数学行程问题必考题型

小升初数学行程问题必考题型

小升初数学行程问题必考题型01甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是3 米每秒。

一只狗从 A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。

问在此过程中狗一共跑了多少米?02某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。

不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。

第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。

试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。

03甲从A 地前往 B 地,乙从 B 地前往 A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。

两人首次在距离 A 地700 米处相遇,后来又在距离B 地400 米处相遇。

求 A 、B 两地间的距离。

04甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。

则甲胜丙多少米?05哥哥弟弟百米赛跑,哥哥赢了弟弟1 米。

第二次,哥哥在起跑线处退后1 米与弟弟比赛,那么谁会获胜?06如果你上山的速度是2 米每秒,下山的速度是6 米每秒(假设上山和下山走的是同一条山路)。

那么,你全程的平均速度是多少?07船在静水中往返A 、 B 两地和在流水中往返 A 、B 两地相比,哪种情况下更快?这是一个经典问题了。

08船在流水中逆水前进,途中一个救生圈不小心掉入水中,一小时后船员才发现并调头追赶。

则追上救生圈所需的时间会大于一个小时,还是小于一个小时,还是等于一个小时?这也是一个经典问题了。

中学物理竞赛中曾出现过此题,《编程之美》上也有一个完全相同的问题。

09你需要从机场的一号航站楼走到二号航站楼。

路途分为两段,一段是平地,一段是自动传送带。

假设你的步行速度是一定的,因而在传送带上步行的实际速度就是你在平地上的速度加上传送带的速度。

小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)

小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)
3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经 过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。慢车每小 时行多少千米?
行程问题基础篇
【例题2】 甲、乙、丙三人步行的速度分别是每分钟30米、 40米、50米,甲、乙在A地,而丙在B地同时出发相向而行, 丙遇乙后10分钟和甲相遇。A、B两地间的路长多少米?
行程问题基础篇
【练习5】 1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而 上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速 度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流 而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的 速度是多少?
例题3如图,两辆电动小汽车在周长为360米的圆形道上不断行
驶,甲车每秒行驶4米.甲、乙两车同时从相距90米的A、B两地
背向而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达 B地,甲车过B地后恰好又回到A地.此时甲车立即返回(乙车过 B地继续行驶),再过几分钟与乙车相遇?
乙 B

A
详解
小升初数学
【思路导航】 先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水 速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小 时”,所以,上海港与武汉港相距15×75=1125千米。
行程问题基础篇
【练习4】 1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而 上用了60小时。已知这段航道的水流是每小时4千米,求A港到B港相距多 少千米?
详解
小升初数学
典型例题
例题2 A、B两地相距100千米,A在上游,水流速度为5千米/

小升初复习行程问题练习(含答案)

小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。

同时出发、同时停止就是相遇时间。

④环形相遇:背向行驶,相遇几次就共走了几个全长。

三、解题思路①画行程图理解题意。

②分析题型。

③套用公式。

例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。

红红家的小狗也跟来了,而且跑在了红红的前面。

当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。

这只小狗一共跑了__________米。

(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。

3 小时后两车在离 A 地 180 千米的 C 地相遇。

相遇后两车继续向前行驶,2 小时后,客车到达 B 地。

此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。

她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。

如图象表示两人行走的时间和路程。

①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。

例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。

甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。

乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。

小学数学小升初行程问题总结及答案详解

小学数学小升初行程问题总结及答案详解

行程问题经典题型1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?2、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地的距离是多少千米?3、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到.0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1。

5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:骑车人每小时行驶多少千米?4 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?5 小张从家到公园,原打算每分种走50米。

为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?6、上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他。

然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?“相遇问题”,常常要考虑两人的速度和.7、小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟。

他们同时出发,几分钟后两人相遇?8、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米。

两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.9、一列长100米的火车过一座桥,火车的速度是25米/秒,它过桥一共用了10秒,那么桥的长度是多少?10、甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

求甲、乙二人的速度各是多少?11、客轮行了全程的3\7时,货轮行全程的多少? 3/7×7/10=3/10 2.甲乙两码头相距多少千米?12、A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?13、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?14、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?15、骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?16、一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行 40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?17、一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度.18、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初经典数学行程问题及解析
小升初数学考试是最重要也是最复杂的考试之一,其中涉及到诸多科学知识,而行程问题又是其中一项重要的学科考试内容。

行程问题的研究一直备受学术界的关注,许多学者都对其进行了研究,探讨了决策、规划、管理等方面的诸多学术问题。

行程问题定义如下:某一地点有若干位客人,每位客人有不同的目的地,某位司机需要安排一个最优行程,让所有客人到达目的地,同时使得司机总花费最少。

这个问题首先出现在20世纪40年代,当时科学家们正在研究地理路线规划及工程中行程问题的最优解,从那时起,行程问题也被广泛应用到商业和政府部门,在物流运输、货物分拣、空间竞争等领域中起到重要作用。

在小升初数学考试中,行程问题也有许多经典考题,它使学生们的综合素质得以提升,也更好的练习思维能力,以下就是一些小升初经典数学行程问题及其解析:
1、西藏司机有8位客人,分别需要去上海、北京、西安、广州、重庆、深圳、南京、杭州,请问有什么最佳行程方案?
答案:首先,从西藏出发,去上海,再去北京、重庆和西安,然后绕道西宁、兰州、青岛,去南京、杭州、广州,最后到深圳。

2、某一位司机要把七位客人从北京分别送到天津、济南、南昌、南京、上海、深圳、淄博,请问最佳行程方案?
答案:首先从北京出发,去天津,然后再绕道济南、淄博,去南
昌,最后去南京、上海、深圳。

3、某司机要把9位客人,分别从苏州送到新疆、广州、深圳、
乌鲁木齐、重庆、成都、西安、沈阳、昆明,请问最佳行程方案?
答案:首先,从苏州出发,先到乌鲁木齐,然后绕道重庆、成都、西安、沈阳,再去昆明,最后到新疆、广州、深圳。

通过上述三个问题,学生可以熟悉行程问题的解题思路,发现最短路径,得到最优行程方案,从而加深理解,学以致用。

行程问题是一个非常复杂的领域,除了上面的三个经典行程问题,还有许多更加复杂的考题,例如求解行程可行性、行程最优解等等。

对于这些复杂的问题,许多学者都利用数学模型和算法来尝试解答,例如模拟退火算法、遗传算法、贪婪算法等,由此可以发现,行程问题的研究范围十分的广泛。

最后,小升初的行程问题是一个可以提升学生综合素质的有趣考题,希望能让考生有所收获,发掘行程问题背后的科学思想,并且思路更加清晰,解答问题更有效率。

相关文档
最新文档