锂离子电池基础科学问题_VII_正极材料
li电池正极材料

li电池正极材料锂离子电池正极材料是指锂离子电池的正极材料。
正极材料是锂离子电池的关键部分,决定了一次充电的电量,一个高能量密度的正极材料可以提供更多的能量,更长的使用寿命和更高的循环性能。
近年来,由于锂离子电池的广泛应用,大量的研究已经专注于制备高性能的正极材料。
目前常用的锂离子电池正极材料有三种:氧化物部分,金属部分和金属离子部分。
氧化物部分主要指钴酸锰、铁锰酸镍和三元材料,是最早被应用于锂电池正极材料的;其优点是循环寿命长,容量稳定,但其缺点是能量密度低,耗电量高。
金属部分一般指锰、钴等金属,是新兴的正极材料,它们以非常高的能量密度发展起来,并具有良好的循环稳定性;金属离子正极材料是指Lithium-Iron-Phosphate(LiFePO4)等离子电池材料,这种材料具有更低的比容量,但更长的循环寿命和更大的抗冲击力;此外,LiFePO4正极材料还具有不易发生析出和析氧反应以及良好的安全性,因此在锂电池方面有广泛的应用。
此外,自最近几年以来,新型的正极材料也由科学家们开发出来。
其中有一种是液态金属正极材料,它的优点是可以提供极高的能量密度,缺点是释放大量的具有毒性的热量。
另一种是超级电容器正极材料,其相比普通的正极材料有更低的比容量,但具有更快的充电速度和良好的循环稳定性。
总之,锂离子电池正极材料有氧化物部分、金属部分和金属离子部分,这些正极材料具有不同的特性,在不同的应用领域里都有各自的优势,可以满足各种不同的应用需求。
随着新型材料和新技术的开发,锂离子电池正极材料将发挥更大的作用,为各种高性能的锂离子电池应用提供更多的选择。
锂离子电池正极材料原理

锂离子电池正极材料原理锂离子电池是当今最为广泛应用的可充电电池之一,而其中的正极材料起着至关重要的作用。
正极材料的选择直接影响了电池的性能、循环寿命和安全性。
在锂离子电池中,正极材料主要由锂离子化合物构成,其内部结构和化学反应原理决定了电池的性能特点。
正极材料需要具备较高的锂离子嵌入/脱嵌能力。
这意味着正极材料能够在充放电过程中迅速吸收和释放锂离子,实现电荷的存储和释放。
通常情况下,正极材料会采用金属氧化物或磷酸盐等化合物,这些物质具有良好的离子传导性和化学稳定性,能够实现高效的嵌入/脱嵌反应。
正极材料需要具备良好的电导率。
由于电池的工作原理是通过离子在正负极之间的迁移来实现电荷的传递,因此正极材料的导电性能直接影响了电池的输出功率和充放电效率。
优秀的正极材料应具有高导电率和低电阻,以减少能量损耗和提高电池的效率。
正极材料还需要具备良好的结构稳定性和热稳定性。
在电池的充放电过程中,正极材料会经历锂离子的嵌入和脱嵌,导致晶格的变化和体积的膨胀。
如果正极材料的结构不稳定,就会导致电极材料的破裂和电池的寿命下降。
因此,正极材料需要具备足够的结构强度和稳定性,以抵抗循环充放电过程中的应力和变形。
正极材料的选择还要考虑其成本和环保性。
随着锂离子电池的广泛应用,对正极材料的成本和资源消耗也越来越重视。
因此,研究人员正在不断探索新型的正极材料,以提高电池的性能并减少成本。
同时,正极材料的环保性也是一个重要的考量因素,研究人员需要寻找那些对环境影响较小的材料,以实现可持续发展的目标。
总的来说,锂离子电池正极材料的选择是一个综合考量多方面因素的过程,需要兼顾性能、稳定性、成本和环保性等方面。
随着科技的不断进步和创新,相信未来会有更多优秀的正极材料涌现,为锂离子电池的发展带来新的突破和进步。
锂离子电池正极材料

锂离子电池正极材料
锂离子电池正极材料一直都是电池研究领域中的热点之一。
锂离子电池的正极材料决定着电池的能量密度、使用寿命和安全性能等关键指标,因此对正极材料的研究和开发具有重要意义。
目前,锂离子电池的正极材料主要包括锂铁磷酸盐、锂镍钴锰酸、锰酸锂、氧化钴、钴酸锂等几种类型。
其中,锂铁磷酸盐是一种新型的正极材料,由于其良好的循环稳定性和高温性能,受到了广泛的关注。
锂铁磷酸盐具有较高的放电电位和平缓的电位曲线,可以大幅度提高电池的能量密度和安全性能。
锂镍钴锰酸是一种常用的正极材料,它具有较高的放电电位和较高的容量,是一种相对较安全的正极材料。
然而,锂镍钴锰酸的循环稳定性较差,容易导致电池容量下降和寿命缩短,因此需要进一步优化。
锰酸锂是一种传统的正极材料,具有较高的放电电位和良好的循环性能,但容量较低。
为了提高容量和循环稳定性,研究人员通过掺杂和复合等手段,对锰酸锂进行了改性,取得了不错的效果。
氧化钴是一种具有高容量和高电压的正极材料,但由于其在充放电过程中产生的氧气极易造成安全隐患,目前在电动汽车等领域的应用较为有限。
钴酸锂是一种传统的正极材料,具有较高的放电电位和较高的容量,但容易因结构不稳定而发生不可逆的容量衰减,导致电
池寿命缩短。
因此,一些研究人员通过合成纳米级的钴酸锂颗粒,以改善其循环稳定性和容量。
综上所述,锂离子电池正极材料的研究和开发是电池领域的重要课题。
未来,希望能够通过不断的探索和创新,开发出更加容量高、循环稳定性好、安全性能优越的正极材料,以满足不同应用领域对锂离子电池的要求。
锂离子电池的正极材料

锂离子电池是一种非常受欢迎的充电电池,它具有较高的能量密度、较低的成本和较长的循环寿命,用于各种消费电子产品。
锂离子电池的正极材料一般分为金属锂和锂基材料。
金属锂是锂离子电池中最早使用的正极材料,因其具有高能量密度和良好的稳定性,在锂离子电池的研发中受到广泛的应用。
然而,金属锂具有易燃和腐蚀性的危险,以及在多次充电和放电过程中可能形成的液滴,使其应用得到了限制。
为了解决金属锂的缺陷,人们开发出了一种新型的锂基材料,它可以在充电和放电过程中产生的液滴和热量较低,因此可以更好地应用于安全性要求比较高的电子产品中。
目前,锂基正极材料主要有氧化物类(如石墨烯、石墨、金刚石)、金属芳烃类(如金属芳烃和金属有机框架材料)和硫和硅类材料(如碳硫和碳硅等)。
在锂离子电池研发中,这些锂基正极材料被广泛使用,取得了良好的应用效果。
总之,锂离子电池的正极材料有金属锂和锂基材料两种,它们的性能各有优劣,用于不同的应用场合,在电池研发中起着不可替代的作用。
锂离子电池正极材料

锂离子电池正极材料锂离子电池是一种常见的二次电池,广泛应用于手机、笔记本电脑、电动汽车等领域。
而锂离子电池的正极材料是决定电池性能的关键因素之一。
本文将对锂离子电池正极材料进行介绍和分析。
首先,我们来看一下锂离子电池正极材料的种类。
目前常见的锂离子电池正极材料包括钴酸锂、锰酸锂、三元材料(镍锰钴酸锂)、磷酸铁锂等。
这些材料各有特点,如钴酸锂具有高容量和高能量密度,但成本较高;锰酸锂价格低廉,但容量较低;三元材料综合性能较好,但成本也较高。
因此,在实际应用中,选择合适的正极材料需要综合考虑成本、性能、安全性等因素。
其次,我们需要了解锂离子电池正极材料的性能指标。
正极材料的性能直接影响着电池的能量密度、循环寿命和安全性。
常见的性能指标包括比容量、循环寿命、安全性能等。
比容量是指单位质量或单位体积的电池可以释放的电荷量,循环寿命是指电池在一定循环次数内能够保持较高的容量,安全性能则是指电池在过充、过放、高温等恶劣环境下的安全性能。
因此,选择合适的正极材料需要综合考虑这些性能指标。
最后,我们来谈一谈未来的发展方向。
随着电动汽车、储能系统等领域的快速发展,对锂离子电池正极材料的需求也在不断增加。
未来,人们对正极材料的要求将更加苛刻,需要具有更高的能量密度、更长的循环寿命、更好的安全性能等。
因此,未来的发展方向可能包括新型材料的研发、工艺技术的改进、安全性能的提升等方面。
综上所述,锂离子电池正极材料是决定电池性能的关键因素之一,选择合适的正极材料对于提高电池的能量密度、循环寿命和安全性能至关重要。
未来,随着科学技术的不断进步,相信锂离子电池正极材料的性能将会得到进一步提升,为电池应用领域带来更大的发展空间。
锂离子电池基础知识问题原创版(附参考答案)

1.被誉为“锂电之父”的是( )
A.Tarascon
2.以下哪项不属于锂离子电池的特点( )
B.Armand
A.开路电压高 B.充放电寿命长 C.有记忆效应 D.自放电率低
3.已知某款材料,D90=18μm,所代表的含义是( )
A.粒径大于 18μm 的占 90% B.粒径小于 18μm 的占 90%
A.三元材料 B.天然石墨 C.碳纳米管 D.硬碳
7.已知某款材料,其压实密度为 4.15 g/cm3,则其最可能是( )
A.钴酸锂 B.人造石墨 C.磷酸铁锂 D.硅碳复合材料
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
锂离子电池基础科学问题_VII_正极材料

Fundamental scientific aspects of lithium batteries (VII)—Positive electrode materials
MA Can,LV Yingchun,LI Hong
(Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
1
[1]
收稿日期:2013-12-11;修改稿日期:2013-12-13。 基金项目 :中国科学院知识创新工程方向性项目( KJCX2-YW-W26 ) 和国家重点基础研究发展计划(973)项目(2012CB932900) 。 第一作者:马璨(1989—) ,女,硕士研究生,研究方向为锂离子电池 高容量正极材料,E-mail:macan07@;通讯联系人:李泓,研 究员,研究方向为固体离子学和锂电池材料,E-mail:hli@。
LiFePO4 橄榄石结构 Pmnb a=4.692,b=10.332,c=6.011 1.8×1016~2.2×1014 3.6 0.80~1.10 2.20~2.30 170 130~140 130~160 3.4 3.2~3.7 2000~6000 无毒 好 20~75 ℃ 15~20 万 电动汽车及大规模储能
图2 Fig. 2 目前重要的锂离子电池正极材料容量与电压曲线 Comparison for some kinds of positive electrode materials available nowadays
第1期
马
璨等:锂离子电池基础科学问题(VII)——正极材料
表1 常见锂离子电池正极材料及其性能[6-12]
54 年
储
锂电池的工作原理正极材料负极材料和电解质的作用

锂电池的工作原理正极材料负极材料和电解质的作用锂电池的工作原理:正极材料、负极材料和电解质的作用锂电池作为一种常见的可充电电池,广泛应用于移动设备、电动汽车等领域。
了解锂电池的工作原理对于我们理解其性能和使用方式具有重要意义。
本文将介绍锂电池的工作原理,着重探讨正极材料、负极材料以及电解质在电池中的作用。
一、正极材料正极材料是锂电池中能够储存锂离子的部分。
目前常见的锂电池正极材料有三种,即锰酸锂(LiMn2O4)、三元材料(如锂镍锰酸锂LiNi1/3Co1/3Mn1/3O2)和钴酸锂(LiCoO2)。
正极材料的特性直接影响到锂电池的容量、输出功率和循环寿命。
在充放电过程中,正极材料会发生锂离子的嵌入与脱嵌反应。
充电时,锂离子从正极材料中脱嵌出来,通过电解质中的离子通道迁移到负极材料中。
放电时,锂离子从负极材料脱嵌并通过电解质重新嵌入到正极材料中。
正极材料的结构和组成决定了锂离子嵌入与脱嵌的反应速率和容量。
二、负极材料负极材料是锂电池中能够嵌入锂离子的部分,其主要材料是石墨(碳)。
在充电过程中,锂离子通过电解质迁移到负极材料中嵌入,形成锂离子的储存状态。
在放电过程中,锂离子从负极材料中脱嵌出来,重新与正极材料反应释放出能量。
负极材料的特性也会对锂电池性能产生重要影响。
石墨负极材料具有较高的电导率和稳定的循环特性,但其嵌锂机制存在容量极限和安全隐患。
为了提高锂电池的性能,一些新型负极材料如硅基材料被研究和开发,以实现更高的嵌锂容量和更长的循环寿命。
三、电解质电解质是锂电池中锂离子传导的介质,通常采用有机溶液或固态电解质。
电解质起到锂离子传递的桥梁作用,使得锂离子可以在正极材料和负极材料之间来回迁移。
在锂电池中,电解质需要具备良好的离子传导性能和稳定的化学特性。
常用的有机溶液电解质如碳酸盐溶液,固态电解质如氧化物玻璃体等,都能满足电池的工作要求。
同时,在研发新型电解质时也需要考虑其对电池的安全性和稳定性的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LiFePO4 橄榄石结构 Pmnb a=4.692,b=10.332,c=6.011 1.8×1016~2.2×1014 3.6 0.80~1.10 2.20~2.30 170 130~140 130~160 3.4 3.2~3.7 2000~6000 无毒 好 20~75 ℃ 15~20 万 电动汽车及大规模储能
提供较高的电极电位, 这样电池输出电压才可能高; ③整个电极过程中,电压平台稳定,以保证电极输 出电位的平稳;④为使正极材料具有较高的能量密 度,要求正极活性物质的电化当量小,并且能够可 + + 逆脱嵌的 Li 量要大;⑤Li 在材料中的化学扩散系 数高,电极界面稳定,具有高功率密度,使锂电池可 适用于较高的充放电倍率,满足动力型电源的需求; ⑥充放电过程中结构稳定,可逆性好,保证电池的循 环性能良好;⑦具有比较高的电子和离子电导率;⑧ 化学稳定性好,无毒,资源丰富,制备成本低。 能全面满足上述要求的正极材料体系并不容易 发现, 也没有明确的理论可以指导正极材料的选择, 锂离子电池的正极材料研究主要是在固体化学与固 体物理的基础上,由个别研究者提出材料体系,然 后经过长期的研究开发使材料逐渐获得应用。几个 [3] 1981 年, Goodenough 等 提出层 标志性的研究有:
Fundamental scientific aspects of lithium batteries (VII)—Positive electrode materials
MA Can,LV Yingchun,LI Hong
(Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
+
相应电池电芯的质量比
主要应用领域
在 O3 相 LiCoO2 中,随着 Li 的脱出,材料会 [17] 经历三个相变过程 。以 Li1–xCoO2 表示,第 1 个 相变过程发生在锂脱出量 x=0.07~0.25 过程中,由 [3,14,18] H1→H2, c 轴伸长 2%, Co—Co 间距明显缩短 , 引起能带分散, 造成价带与导带重叠, 电导率提高, 使材料由原来的半导体向金属导体转变。在脱锂量 x=0.25~0.5 过程中,Li1–xCoO2 的结构和金属性的 电子电导保持不变。另外两个相变发生在 x=0.5 附 + 近,首先是 Li 无序与有序的转变,接着是材料由 [19-20] 六方相向单斜相转变 。早期认为 O3-LiCoO2 的 [19, 21] 电化学循环过程中体现固溶体的行为 , 2003 [22] Yang 等 利用 HRTEM 给出了 O3-LiCoO2 的晶 年, 格原子相,随后 STEM 给出了更清晰的 O3-LiCoO2 [23] [24] 原 子 相 。 2012 年 , Lu 等 等 通 过 球 差 矫 正 ABF-STEM 技术首次在脱锂态 O3 结构的 Li1–xCoO2 中直接观察到 O2 结构,认为在 0.07≤x≤0.25 过程 中 O3 向 O2 转变,0.25≤x≤0.43 过程中 O2 向 O1 转变, 在 0.43≤x≤0.52 过程中 O2 向 O1 转变完成。 构建了 O1、O2 和 O3 三个相在电化学循环过电池正极材料
在目前的锂离子电池体系中,整个电池的比容
(b)LiMn2O4
量受限于正极材料的容量。在电池的生产中,正极 材料的成本占总材料成本的 30%以上。因此,制备 成本低同时具有高能量密度的正极材料是目前锂离 子电池研究与生产的重要目标。 目前商业化使用的锂离子电池正极材料按结构 主要分为以下三类:①六方层状晶体结构的 LiCoO2; ②立方尖晶石晶体结构的 LiMn2O4;③正交橄榄石晶 体结构的 LiFePO4。其晶体结构如图 1 所示,目前已 经应用的锂离子电池正极材料的容量-电压曲线如图 2 所示,Li 扩散系数及理论容量等见表 1。 1.1 六方层状结构 LiCoO2 正极材料 LiCoO2 是第一代商业化锂离子电池的正极材 料 。 完全脱出 1 mol Li 需要 LiCoO2 的理论容量为 274 mA·h/g, 在 2.5~4.25 V vs. Li /Li 的电位范围内 一般能够可逆地嵌入脱出 0.5 个 Li,对应理论容量 为 138 mA·h/g,实际容量也与此数值相当。 LiCoO2 有低温合成相和高温合成相两种, 高温 相呈 O3 排列
[13] + [3] +
(c)LiFePO4
图1 Fig.1
常见锂离子电池正极材料的结构
The structures of traditional positive electrode materials
, 低温相呈 O2
[14-16]
O3-LiCoO2 排列。
为热力学稳定结构,O 沿(001)方向的排布式为 ABCABC…,在亚稳态的 O2-LiCoO2 和 O1-LiCoO2 中O沿 (001) 方向的排布式分别为 ABACABAC… 和 ABAB…。在不同的层状结构中,电化学循环过 程中随着 Li 含量的不断变化(Li 离子和空位的相
1 1
The properties of commercial positive electrode materials[6-12]
磷酸铁锂 锰酸锂 LiMn2O4 尖晶石 Fd-3m a=b=c=8.231 1014~1012 4.2 2.2~2.4 >3.0 148 100~120 130~180 3.8 3.0~4.3 500~2000 无毒 良好 >50 ℃快速衰退 9~15 万 电动工具、 电动自行车、 电动汽车及大规模储能 LiCoO2 层状 R-3m a=2.82,c=14.06 1011~1012 5.1 2.8~3.0 3.6~4.2 274 135~150 180~240 3.7 3.0~4.5 500~1000 钴有放射性 差 20~55 ℃ 26~30 万 传统 3C 电子产品 钴酸锂 层状 R-3m — 1010~1011 / 2.6~2.8 >3.40 273~285 155~220 180~240 3.6 2.5~4.6 800~2000 镍、钴有毒 尚好 20~55 ℃ 15.5~16.5 万 电动工具、电动自行车、 电动汽车及大规模储能 三元镍钴锰 Li(NixCoyMnz)O2
年 55
Table 1
中文名称 化学式 晶体结构 空间点群 晶胞参数/Å 锂离子表观扩散系数 /cm2·s1 理论密度/g·cm3 振实密度/g·cm3 压实密度/g·cm3 理论容量/mA·h ·g1 实际容量/mA·h ·g 能量/Wh·kg1 平均电压/V 电压范围/V 循环性/次 环保性 安全性能 适用温度/℃ 价格/元·吨
第3卷 第1期 2014 年 1 月
储 能 科 学 与 技 术 Energy Storage Science and Technology
Vol.3 No.1 Jan. 2014
专家讲座
锂离子电池基础科学问题(VII)——正极材料
马 璨,吕迎春,李 泓
(中国科学院物理研究所,北京 100190) 摘 要:提高锂离子电池正极材料的综合性能以满足其对能量存储日益提高的要求,一直是锂离子电池领域最
重要的研究方向。目前的正极材料主要基于层状结构、尖晶石结构以及橄榄石结构,采用这些材料的锂离子电 池可以基本满足消费电子、电动车辆、规模储能等要求。本文小结了目前广泛使用的锂离子电池正极材料的性 能特点,讨论了当前正极材料的研究和发展状况。 关键词:锂离子电池;正极材料 doi:10.3969/j.issn.2095-4239.2014.01.008 中图分类号:O 646.21 文献标志码:A 文章编号:2095-4239(2014)01-053-13
Abstract:One of the key challenges for improving the performance of lithium ion batteries to meet increasing energy storage demand is the development of advanced cathode materials. Layered, spinel and olivine structured cathode materials are able to meet the requirements and have been widely used. In this paper, we summarize briefly the characteristics of cathode materials that have applied in commercial products, and discuss the state-of-the-art development of the materials. Key words:lithium-ion batteries;positive electrode materials 1980 年 , Armand 等 提 出 了 摇 椅 式 电 池 (rocking chair battery)的概念,在充放电过程中, + Li 在正负极层状化合物之间来回不停穿梭。 鉴于含 Li 的负极材料在空气中一般不稳定,安全性较差, 目前开发的锂离子电池均以正极材料作为锂源。 为了使锂离子电池具有较高的能量密度、功率 密度,较好的循环性能及可靠的安全性能,对正极 [2] 材料的选择应满足以下条件 :①正极材料起到锂 源的作用,它不仅要提供在可逆的充放电过程中往 + 返于正负极之间的 Li ,而且还要提供首次充放电 + 过程中在负极表面形成 SEI 膜时所消耗的 Li ;②
1
[1]
收稿日期:2013-12-11;修改稿日期:2013-12-13。 基金项目 :中国科学院知识创新工程方向性项目( KJCX2-YW-W26 ) 和国家重点基础研究发展计划(973)项目(2012CB932900) 。 第一作者:马璨(1989—) ,女,硕士研究生,研究方向为锂离子电池 高容量正极材料,E-mail:macan07@;通讯联系人:李泓,研 究员,研究方向为固体离子学和锂电池材料,E-mail:hli@。