锂离子电池正极材料知识概述PPT(共 42张)

合集下载

《锂离子电池正极材料:原理、性能与生产工艺》读书笔记思维导图PPT模板

《锂离子电池正极材料:原理、性能与生产工艺》读书笔记思维导图PPT模板
பைடு நூலகம்
08 第8章 磷酸盐材料
09 第9章 富锂锰基固溶 体材料及其生产工艺
010
第10章 锂离子电池 正极材料的测试方法
011
第11章 锂离子电池 正极材料展望
012 参考文献
本书详细介绍了锂离子电池几种关键正极材料:钴酸锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂、磷 酸锰锂、磷酸锰铁锂和富锂锰基固溶体。主要内容包括这些电极材料的发展历史、结构特征、工作原理、生产工 艺流程、主要设备的选型、原材料与产品标准和应用领域等。本书还包括锂离子电池的研究开发史、基本工作原 理、有关的热力学和动力学计算、产品的检测评价以及未来发展趋势等。本书可作为锂离子电池正极材料研究领 域的科研工作人员和工程技术人员的参考书,也可作为高等院校高年级学生和研究生的参考书。
第1章 锂离子电池概述
第2章 高温固相合成反应的基 本原理
第3章 正极材料生产的关键设 备
第4章 钴酸锂
第5章 锰酸锂
第6章 镍钴锰酸锂(NCM)三 元材料
第7章 镍钴铝酸锂(NCA)材 料
第8章 磷酸盐材料
第9章 富锂锰基固溶体材料及 其生产工艺
第10章 锂离子电池正极材料 的测试方法
《锂离子电池正极材料:原理、性 能与生产工艺》
PPT书籍导读
读书笔记模板




目录
01 第1章 锂离子电池概 述
02
第2章 高温固相合成 反应的基本原理
03
第3章 正极材料生产 的关键设备
04 第4章 钴酸锂
05 第5章 锰酸锂
06 第6章 镍钴锰酸锂 (NCM)三元材料
目录
07 第7章 镍钴铝酸锂 (NCA)材料

锂离子电池正极材料知识概述PPT(共 42张)

锂离子电池正极材料知识概述PPT(共 42张)

压实密度
压实密度与材料的理论密度和颗粒形貌、粒度分布等有关。 理论密度 = 单胞内原子总质量/单胞体积
三元材料可以看作为Ni、Co和Mn取代LiCoO2中的Co,与 LiCoO2同为六方结构,都属R-3m空间群。 Ni、Co和Mn的原子 量、离子半径相近,因此理论密度相近。
在实际应用中,LiCoO2的压实密度(RX767)可达4.2 g/cm3,
目前研究较多的锂离子电池正极材料有LiCoO2、镍钴二元, 镍钴锰、锰类化合物、LiFePO4等。
3. 锂离子电池正极材料
3.1 LiCoO2
LiCoO2最早是由Goodenough等人在1980年提出可以用 于锂离子电池的正极材料,之后得到了广泛的研究。
LiCoO2具有合成方法简单,工作电压高,充放电电压 平稳,循环性能好等优点,是最早用于商品化的锂离子电 池的正极材料,也是目前应用最广泛的正极材料。
LixMn2O4在过放电(1 x 2)的情况下, 在3 V左右出现电压平台,锂离子嵌入到空的16c 八面体位置,产生结构扭曲,原来的立方体 LiMn2O4转变为四面体Li2Mn2O4,锰从3.5价还 原为3.0价。该转变伴随着严重的Janh-Teller畸变, c/a变化达到16%,晶胞体积增加6.5%,导致表 面的尖晶石粒子发生破裂。因此,LiMn2O4只能 作为理想4 V锂离子电池正极材料,其理论容量 为148 mAh/g,实际容量为120 mAh/g。
3.1.1 LiCoO2的结构
3
1
4 2
Co3+ (3b)
O2 (6c)
Li+ (3a)
LiCoO2具有-NaFeO2结构,属六方晶系, R-3m空间群,其中6c位上的O为立方密堆积,3a 位的Li和3b位的Co分别交替占据其八面体孔隙, 在[111] 晶面方向上呈层状排列,理论容量为274 mAh/g。

锂离子电池正极材料 ppt课件

锂离子电池正极材料  ppt课件

PPT课件
7
二、锂离子电池对正、负极材料的要求
(1) 具有稳定的层状或隧道的晶体结构。
(2) 具有较高的比容量。
(3) 有平稳的电压平台。
(4) 正、负极材料具有高的电位差。
(5) 具有较高的离子和电子扩散系数。
(6) 环境友好。
PPT课件
8
锂电关键技术---正极材料
商品化锂离子电池中正极材料(LiCoO2)的比容量远远小于负 极材料,成为制约锂离子电池整体性能进一步提高的重要因素。
锂离子电池 正极材料
PPT课件
1
一、 锂离子电池回顾
* 锂离子电池工作原理
PPT课件
2
*锂离子电池电极反应
充电
正极反应: LiCoO2
放电
负极反应: 6C+xLi++xe-
Li1-xCoO2+xLi++xe-
充电
放电 LixC6
充电
电池反应: 6C+LiCoO2
放电
PPT课件
Li1-xCoO2+ LixC6
Ni-based
LiNiO2
Co-based
LiCoO2
PO4-based
LiMPO4
主要正极材料
Mn-based
LiMn2O4
容量、稳定性、制备条件
PPT课件
成本、安全、环保
9
三、锂离子电池正极材料
大多数可作为锂离子电池的活性正极材料是含锂的过渡金属化合物,而且以 氧化物为主。 目前已用于锂离子电池规模生产的正极材料为LiCoO2。PPT课件19
LiNi1yCoyO2的电化学性能与其组成密切相关,Co的 加入能够提高电化学循环稳定性。稳定性的提高; 但是

锂离子电池正极材料(1)幻灯片PPT

锂离子电池正极材料(1)幻灯片PPT

3、Olivine(橄榄石) Mn…..)
LixMPO4
(M=Fe、
§5.3.1具有α-NaFeO2型结构的材料
一、 LiCoO2 ,LiNiO2 ,LiMnO2几种材料 二、材料改进措施
三、正极材料的合成方法 § 5.3.2 具有尖晶石结构的LiMn2O4正极材料 § 5.3.3 具有橄榄石型的复合阴离子正极材料
=Li(oct)M(oct)O2(cp)
❖ 在锂离子电池中,LiMO2为还原态产物,充电时被氧化 成MO2。
❖ 晶格结构的另一个特征是在MO2中锂离子占据的八面 体位置互相连成一维隧道或二维、三维空间,以便锂的
2、LiCoO2
❖ 层状LiCoO2的研究始 于1980年,在理想层 状LiCoO2结构中,Li+ 和Co3+各自位于立方 紧密堆积氧层中交替的 八面体位置,c/a比为 4.899,但是实际上, 由于Li+和Co3+与氧原 子的作用力不一样,氧 原子的分布并不是理想 的密堆结构,而是发生 偏离,呈现三方对称性。
Li1-xCoO2存在的问题:
当锂脱出0.5左右时会发生:发生可逆相变,从三 方对称性转变成为单斜对称性,但不会导致 CoO2次晶格发生明显破坏,因此认为在循环过 程中不会导致结构发生明显的退化;
❖ 但衰当减锂,脱并出伴大随于着0钴.5的时损,失C。oO该2损不失稳是定由,于容钴量从发其生 所在的平台迁移到锂所在的平面,导致结构不稳 定,而且钴离子通过锂离子所在的平面迁移到电 解 质 中 。 因 此 , X 射 线 衍 射 表 明 , x<0.5 , CoCo原子间距稍微降低,而x>0.5,Co-Co原子间 距反而增加。
3、 LiNiO2
与LiCoO2相比,LiNiO2价格便宜,实际脱锂量要高 出30mAh/g

锂离子电池三元正极材料ppt

锂离子电池三元正极材料ppt

失效机制
容量衰减
明确三元正极材料的失效机制,为优化电池 的循环寿命提供理论支持。
研究三元正极材料在充放电过程中的容量衰 减机制,以为延长电池寿命提供技术支持。
08
参考文献
参考文献
文章标题:锂离子电池三元正极材料的研究进展 作者:张三、李四、王五 发表时间:2020年
THANKS
谢谢您的观看
,可以优化其晶体结构、提高电子导电性和离子扩散系数,进而提高
电池的电化学性能。
02
离子掺杂
通过引入具有特定价态的离子(如Li+、H+、Na+等)对三元正极材
料进行掺杂改性,可以调整其能带结构和电子分布,提高电化学反应
活性和稳定性。
03
共掺杂
将两种或多种元素或离子同时掺入三元正极材料中,实现多元素协同
锂离子电池的工作原理主要涉 及锂离子在正负极之间的迁移 和插入反应。在充电过程中, 锂离子从正极迁移到负极,放
电过程中则相反。
电压与能量
锂离子电池的正负极材料决定 了电池的电压和能量密度。
充放电效率
充放电效率取决于多个因素, 包括电池的化学性质、制造工
艺和使用条件等。
锂离子电池的正极材料
1 2
钴酸锂
三元正极材料是锂离子电池中的关键组成部分,直接影响电 池的性能和安全性。
研究目的和意义
研究三元正极材料的目的是为了提高锂离子电池的能量密 度、寿命和安全性,以满足日益增长的市场需求。
三元正极材料的研究对于推动电动汽车、储能系统等领域 的发展具有重要意义。
02
锂离子电池概述
锂离子电池的工作原理
电极反应
多样化储能需求
随着可再生能源的大规模并网和分布式能源的发展,储能需求多样化,而三元正极材料具 有高能量密度和良好的循环性能,适用于各种储能应用场景。

锂离子电池三元正极材料(全面)正式版PPT文档

锂离子电池三元正极材料(全面)正式版PPT文档
全锂化状态下稳定性好
正极材料的结构特点
〔1〕层状或隧道结构, 以利于锂离子的脱嵌,且在锂离 子 脱嵌时无结构上的变化 , 以保证 电极具有 良好 的可逆性 能;
( 2 ) 锂离子在其 中的嵌入 和脱 出量大 , 电极 有较高的 容量 ,并且在锂离子脱嵌时, 点电击极添反加响标的题自由能变化不大, 以保证电池充放电电压平稳;
改性
(1)可以在LiNiO2正极材料 掺杂Co、Mn、Ca、F、Al等 元素,制成复合氧化物正极 材料以增强其稳定性,提高 充放电容量和循环寿命。
(2) 还可以在LiNiO2材料中掺杂P2O5 ; 点击添加标题
(3) 参加过量的锂,制备高含锂的锂镍氧化物。
锰酸锂
试验发现过渡金属代替 Co改善了正极材料结构的稳定性; (2) 还可以在LiNiO2材料中掺杂P2O5 ;
1000℃空气气
点击添加标题
氛下煅烧而成。
改性
为了提高 LiCoO2的容量,改善其循环性能、降 低本钱,人们采取了 掺杂和包覆的方法。具体采用以下几种方法:(1)用过渡金属和非过渡金属 (Ni、Mn、Mg、A1、In、Sn),来替代LiCoO2的Co用以改善其循环性能 。试验发现过渡金属代替 Co改善了正极材料结构的稳定性;而掺杂非过 渡金属会牺牲正极材料的比容量;
为了提高 LiCoO2的容量,改善其循环性能、降 低本钱,人们采取了掺杂和包覆的方法。 (3) 参加过量的锂,制备高含锂的锂镍氧化物。 提高材料的导电并改善充放电循环性能 LiNi1/3Co1/3Mn1/3O2
( 3 ) 锂 离子在其中应有较大的扩散系数, 以使电池有 良 好 的快速充放 电性能。
钴酸锂
钴酸锂具有三种物相 , 即层状结构 的 尖晶石结构的 和岩盐相 。目前,在锂离子电池 中,应用最多的是层状 的 LiCoO2 ,其理 论容量为 274mAh/g , 实际容量在140—155 mAh/g 。其优点为 :工作电压高,充放电电压平稳 ,适合大电流放电,比能量高 , 循环性能好。缺点 是 :实际比容量仅为理论容量的 50%左右, 钴的利用率低 ,抗过充电性能差点,击在添较加高标充题电电压下比容量迅 速 降低。另外,再加上钻资源匮乏,价格高的因素,因此 ,在很大 程度上减少了钴系锂离子 电池的使用范围,尤其是在电动汽车和 大型储藏 电源方面受到限制。

锂离子电池正极材料幻灯片PPT

锂离子电池正极材料幻灯片PPT
锂离子电池正极材料幻灯 片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
电化学性能
LiCoO2
LiNiO2 LiMn2O4
数字指尖晶石结构中的晶体位置
二、LiMn2O4正极材料的电化学性能
❖ 当锂离子含量达到x=0.35时 只有B相。
❖ 当x=0.5时电位下降至4.03V, 同时晶格参数增大,此时一半 的 Li8a 位被锂填满 ,电位下 降缓慢,此后锂随机嵌入,形 成固溶体,晶格参数的变化不 明显,电位在4.03~3.9V。
migration of Mn(2+) to the negative electrode and deposition thereof
基于以上影响因素,对尖晶石材料采取的改性措施有以 下三个方面。
一是体相掺杂,如掺入某些阳离子(Al、B、Co等) 或阴离子(如F、S)、或同时掺入阳离子和阴离子可以 减轻Mn的溶解;
二是表面包覆或表面修饰,如在表面形成一层络合物 钝化层,来减少尖晶石与H+的接触,这既可减轻电极表 面电解质的氧化,同时也降低了电极发生歧化反应的可 能;
三是优化电极配方和晶粒粒度及分布
四、材料的改性
1、掺杂
Ni掺杂
Ni在LiMn2O4以二价形式存在,虽然锂的嵌入导 致锰的平均价态低于3.5,即可达到3.3,但是并 没有发现四方相的存在。它同钴、铬一样,能够 稳定尖晶石结构的八面体位置(NiO2的Ni—O结 合能为1029kJ/mol),使循环性能得到提高。 当充电电压从4.3V提高到4.9V时,发现在4.7V 附近有一新的电压平台,对应于镍从+2价变化 到+4价,可作为5V锂二次电池的正极材料。

第1章-锂离子电池材料ppt课件

第1章-锂离子电池材料ppt课件
此外,正极材料在锂离子电池中占有较大 比例(正负极材料的质量比为3:1~4:1),故正 极材料的性能在很大程度上影响着电池的性能 ,并直接决定着电池的成本。
锂离子电池正极材料研究现状
大多数可作为锂离子电池的活性正极材料是含 锂的过渡金属化合物,而且以氧化物为主。 目前已 用于锂离子电池规模生产的正极材料为LiCoO2。
1.10 锂离子电池对正、负极材料的要求
(1) 具有稳定的层状或隧道的晶体结构; (2) 具有较高的比容量; (3) 有平稳的电压平台; (4) 正、负极材料具有高的电位差; (5) 具有较高的离子和电子扩散系数; (6) 环境友好。
2 正极材料
正极材料概述
正极材料是锂离子电池的重要组成部分, 在锂离子充放电过程中,不仅要提供正负极嵌 锂化合物往复嵌入/脱嵌所需要的锂,而且还要 负担负极材料表面形成固体电解质界面膜(SEI) 所需的锂。
LiCoO2、LiNiO2结构示意图
2.1.2 LiCoO2/Li组成的纽扣电池
Anode current collector(capA) node Separator
Gasket Cathode Cathode current collector(can) Fig. The cross sectional view of coin type LiCoO2/Li coupled cell.
2.2 LiNiO2正极材料
与LiCoO2相比,LiNiO2因价 格便宜且具有高的可逆容量,被认 为最有希望成为第二代商品锂离子 电池材料。而LiCoO2制备困难, 按LiCoO2制备工艺合成LiNiO2所 得到材料的电化学性能极差,原因 在于LiCoO2属于R3m群,其晶格 参数为ah=0.29 nm,ch=1.42 nm ,ch/a h=4.9,属于六方晶系,且 和立方晶系相应值接近,说明镍离 子的互换位置与LiCoO2相比对晶 体结构影响很小。而(3a)、(3b)位 置原子的互换,严重影响材料的电 化学活性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池正极材料知识
• 1. 锂离子电池的结构 • 2. 正极材料的选择 • 3. 各种正极材料
3.1 LiCoO2 3.2 LiNiO2 3.3 三元 3.4 LiFePO4
1. 锂离子电池的结构
2. 锂离子电池正极材料的选择
发展高能锂离子电池的关键技术之一就是正极材料的开 发。近几年来,负极材料和电解质的研究都取得了较大的进 展,相对而言,正极材料的发展较为缓慢,商品化锂离子电 池中正极材料的比容量远远小于负极材料,成为制约锂离子 电池整体性能进一步提高的重要因素。因此,正极材料的研 究受到越来越多的重视。
LiCoO2充放电过程中的结构相变
零应力表面处理
充放电过程中的导电率和晶胞体积变化
• 充电过程中,随着脱 锂,电导率会剧增6 个数量级,达到1 S/cm ;
• 充电过程中,c轴变 长,a轴变短,晶胞 体积变大
总之,作为锂离子电池正极材料,LiCoO2具有下列特点: 1. 合成方法比较简单; 2. 工作电压高,充放电电压平稳,循环性能好; 3. 实际容量较低,只有理论容量的一半; 4. 钴资源有限,价格昂贵;
3.1.1 LiCoO2的结构
3
1
4 2
Co3+ (3b)
O2 (6c)
Li+ (3a)
LiCoO2具有-NaFeO2结构,属六方晶系, R-3m空间群,其中6c位上的O为立方密堆积,3a 位的Li和3b位的Co分别交替占据其八面体孔隙, 在[111] 晶面方向上呈层状排列,理论容量为274 mAh/g。
(003)衍射峰反映的是六方结构,而(104)衍射峰反映的是六方结构 和立方结构的总和。根据文献报道, I(003)/I(104)和 c/a比值越大, (006)/(102)和(108)/(110)分裂越明显,说明材料的六方晶胞有序化程度越高, 越接近于理想的六方结构,晶体结构越完整。一般的,c/a比值应大于4.90, I(003)/I(104)比值应大于1.20。
作为理想的锂离子电池正极材料,锂离子嵌入化合物必须满足以下要 求:
(1)具有较高的氧化还原电位,保证锂离子电池的高电压特性;
LiCoO2(Li+/Li)
Graphite(Li+/Li)
பைடு நூலகம்
(2)允许大量的锂离子嵌入脱出,保证锂离子电池的高 容量特性; 理论容量的计算:C0 = 26.8n m/M Co---- 理论容量;n---- 成流反应的得失电子数; m ---- 活性物质完全反应的质量;M----活性物质的摩尔质 量
3.1.2 LiCoO2的电化学行为
LiCoO2的理论容量为274 mAh/g,但在实际应用时,锂离子从 LixCoO2中可逆嵌脱最多为0.5个单元,实际容量只有140 mAh/g左 右。 LixCoO2在x = 0.5 附近会发生六方到单斜的结构相变,同时 晶胞参数发生微小变化。当x 0.5时,LixCoO2中的钴离子将从其 所在的平面迁移到锂所在的平面,导致结构不稳定而使钴离子通 过锂离子所在的平面迁移到电解液中,并且此时钴(CoO2)的氧 化性很强,容易和电解液发生反应失氧,造成很大的不可逆容量 损失。因此在实用锂离子电池中,0 x 0.5,充放电电压上限为 4.2 V,在此范围内,LiCoO2具有平稳的电压平台(约3.9 V),充 放电过程中不可逆容量损失小,循环性能非常好。
目前研究较多的锂离子电池正极材料有LiCoO2、镍钴二元, 镍钴锰、锰类化合物、LiFePO4等。
3. 锂离子电池正极材料
3.1 LiCoO2
LiCoO2最早是由Goodenough等人在1980年提出可以用 于锂离子电池的正极材料,之后得到了广泛的研究。
LiCoO2具有合成方法简单,工作电压高,充放电电压 平稳,循环性能好等优点,是最早用于商品化的锂离子电 池的正极材料,也是目前应用最广泛的正极材料。
5. 钴毒性较大,环境污染大
3.2 LiNiO2
与LiCoO2相似,理想的LiNiO2为-NaFeO2 型六方层状结构,属 R-3m空间群, Li 和Ni分别占据3a位和3b位,LiNiO2正极材料的理论 容量为275 mAh/g,实际容量达到180-200 mAh/g。相对于LiCoO2而言, 镍的储量比钴大,价格便宜,而且环境污染小。
从电子结构来看,由于Li+(1s2)能级与O 2 (2p6)能级 相差较大,而Co3+(3d6)更接近于O2(2p6)能级,所以LiO间电子云重叠程度小于Co-O间电子云重叠程度,Li-O键远 弱于Co-O键,在一定的条件下,Li+离子能够在CoO层间嵌入 脱出,使LiCoO2成为理想的锂离子电池嵌基材料。由于锂离 子在键合强的CoO层间进行二维运动,锂离子导电率高;另 外,共棱的CoO6的八面体分布使Co与Co之间以Co-O-Co的形 式发生作用,电子导电率也较高。
与LiCoO2相比,LiNiO2的制备条件比较苛刻,其组成和结构随合成条件的改 变而变化。因为Ni2+难于氧化,按照制备LiCoO2的工艺合成出的LiNiO2几乎不具 备电化学活性,必须要在含有O2的气氛中进行反应,合成的产物往往是非整比的 LixNi2-xO2。在这种非整比产物中,部分Ni2+占据Li+位置(3a),在锂位产生部分 无序的阳离子分布,降低了材料的结构有序性,为了维持Ni2+进入Li-O层后体系 的电中性平衡,Ni-O层中也必然有等量的Ni2+存在(3b),化学式可以表示为 [Li+yNi2+1-y]3a[Ni2+1-yNi3+y]3bO22,这就是“阳离子混排”现象。
以LiCoO2为例: Co = 96500/M = 96500*1000/3600*98 = 273 mAh/g
LiNiO2为274 mAh/g; LiMn2O4为148 mAh/g, LiFePO4为170 mAh/g。
(3)嵌入脱出过程的可逆性好,充放电过程中材料结 构变化较小; (4)锂离子能够快速的嵌入和脱出,具有高的电子导 电率和离子导电率; (5)在电解液中化学稳定性好; (6)低廉,容易制备,对环境友好等。
相关文档
最新文档