重大危险源分级标准

合集下载

重大危险源确认的标准及范围

重大危险源确认的标准及范围

重大危险源确认的标准及范围一、重大危险源确认标准(一)《重大危险源辨识》(GB18218-2000)(二)《化学品安全标监编写规定》(GB15258-1999)(三)《职业性接触物危害程度分级》(GB5044-85)(四)《石油化工企业设计规范》(GB50160-92)(五)《建筑设计防火规范》(GBJ16-87)(六)《机关、团体、企业、事业单位消防安全管理规定》(公安部令第61号)二、重大危险源确认的范围根据上述重大危险源确认标准及国家安监局《关于开展重大危险源监督管理工作的指导意见》要求,结合我市安全生产监管实际,本次确认的重大危险源是指:一是长期地或者临时地生产、搬运、使用或储存危险物品,且危险物品的数量等于或超过临界量的场所和设施,以及其他存在危险能量等于或超过临界量的场所和设施;二是存在重特大事故隐患、容易造成群死群伤或财产重特大损失,给社会带来重特大影响的单位、场所、路段、水域等;三是一年内发生过二次工伤死亡事故或一次3人以上死亡事故的单位。

重大危险源确认的类别如下:1、贮罐区(贮罐);贮罐区(贮罐)重大危险源是指贮存表中所列类别的危险物品,且贮存量达到或超过其临界量的贮罐区或单个贮罐。

贮存量超过其临界量包括以下两种情况:(1)贮罐区(贮罐)内有一种危险物品的贮存量达到或超过其对应的临界量;(2)贮罐区内贮存多种危险物品且每一种物品的贮存量均未达到或超过其对应临界量,但满足下面的公式:q Q q Q q Q n n11221++⋅⋅⋅+≥ 式中,q q q n 12,,, ——每一种危险物品的实际贮存量。

Q Q Q n 12,,, ——对应危险物品的临界量。

表1 贮罐区(贮罐)临界量表*注:毒性物质分级见表2。

表2 毒性物质分级(GB15258-1999 《化学品安全标签编写规定》)2、库区(库);库区(库)重大危险源是指储存表3中所列类别的危险物品,且贮存量达到或超过其临界量的库区或单个库房。

重大危险源一二三四级标准

重大危险源一二三四级标准

重大危险源一二三四级标准
矿渣粉烧失量负值是指矿渣粉在烧失过程中损失的质量小于或等于其本身的质量。

这通常是由于矿渣粉中含有过多的水分或挥发性物质,导致其在高温下容易失去质量。

关于重大危险源的分级标准,不同国家和地区可能会有不同的标准。

以下是一般常见的重大危险源分级标准:
一级重大危险源:指可能造成特别重大事故的危险源,通常是指那些具有极高危险性的设施、设备或场所,如大型石油化工企业、核电站等。

二级重大危险源:指可能造成特大事故的危险源,通常是指那些具有较高危险性的设施、设备或场所,如大型化工厂、炼油厂等。

三级重大危险源:指可能造成重大事故的危险源,通常是指那些具有中度危险性的设施、设备或场所,如煤矿、金属矿山等。

四级重大危险源:指可能造成一般事故的危险源,通常是指那些具有较低危险性的设施、设备或场所,如小型化工厂、加油站等。

需要注意的是,具体的分级标准可能因不同的行业、地区和国家而有所不同。

此外,对于不同级别的重大危险源,应采取不同的管理和预防措施,以确保其安全运行。

重大危险源等级分类(新版)

重大危险源等级分类(新版)
作业面高度超过80m的幕墙外立面安装过程、钢结构、网架和索膜结构的吊运、安装过程。
作业面高度不超过80m的幕墙外立面安装过程、钢结构、网架和索膜结构的吊运、安装过程。
幕墙、钢结构、网架和索膜结构的预埋螺栓、搭设龙骨过程。
基坑出现大面积渗漏、流砂、管涌、隆起或陷落等,导致基坑局部失稳、或周边建(构)筑物出现沉降裂缝或结构裂缝。
基坑侧壁出现渗水、坑底和基坑周边水浸,周边地面少量裂缝,周边建筑物出现少量非结构性裂缝。
高边坡工程
土方开挖
未按设计要求或设计工况分层开挖、出现大面积严重超挖情况的。
开挖过程中未按规定分层开挖造成局部超挖情况。
地下暗挖盾构机吊入吊出工程。
其他吊装工程。
脚手架工程
搭设高度H
落地式钢管脚手架工程,H≥50m。(87号文)
落地式钢管脚手架工程,24m≤H<50m。
(87号文)
落地式钢管脚手架工程,H<24m。
提升高度H
附着式整体和分片提升脚手架工程,H≥150m。(87号文)
附着式整体和分片提升脚手架工程,
H<150m。(87号文)
周边环境
离基坑1倍开挖深度范围内有重要的地下设施、重要管线、浅基础或摩擦桩基础的建筑物,距离基坑边50m(软土地区为100m)范围内有在建或运行的地铁隧道。
离基坑1-2倍开挖深度范围内有重要的地下设施、重要管线、浅基础或摩擦桩基础的建筑物。
地质条件
基坑及周边软土厚度大于等于5m。
基坑及周边软土厚度大于等于3m、小于5m。
出现大面积渗漏、流砂、管涌、隆起或陷落等,导致边坡局部失稳、或周边建(构)筑物出现沉降裂缝或结构裂缝。
侧ቤተ መጻሕፍቲ ባይዱ出现渗水、坑底和边坡周边水浸,周边地面少量裂缝,周边建筑物出现少量非结构性裂缝。

重大危险源辨识及重大事故隐患分级标准

重大危险源辨识及重大事故隐患分级标准

重大危险源辨识及重大事故隐患分级标准
一、重大危险分级标准
重大危险源的范围包括:贮罐区(贮罐)、库区(库)、生产场所、压力管道、锅炉、压力容器、煤矿(井工开采)、金属非金属地下矿山、尾矿库。

(一)属于《重大危险源辨识》(GB 18218)范围的危险物质,以GB 18218所列临界值为基准,进行重大危险源分级。

(二)在《重大危险源辨识》(GB 18218)范围以外的危险物质(场所和设施)以安监管协调字[2004]56号文所列临界值进行辨识和分级(毒性物质除外,毒性物质分级按照《湖北省重大危险源安全监督管理暂行规定》第八条第一项和第三项之规定实施)。

二、重大事故隐患分级标准
事故隐患分为一般事故隐患和重大事故隐患。

一般事故隐患,是指危害和整改难度较小,发现后能够立即整改排除的隐患。

重大事故隐患,是指危害和整改难度较大,应当全部或者局部停产停业,并经过一定时间整改治理方能排除的隐患,或者因外部因素影响致使生产经营单位自身难以治理的隐患。

依据国家相关法规、规定以及标准,按照可能发生事故的最严重后果、整改时间、投入资金进行定性或定量的评估,重大事故隐患可分为四级。

重大危险源分级标准

重大危险源分级标准

重大危险源分级标准重大危险源分级标准是指根据危险源的性质、规模和可能造成的危害程度,对危险源进行科学分类和分级,以便采取相应的安全防护措施,保障人身安全和财产安全。

重大危险源分级标准的制定和实施,对于预防和控制事故风险,保障公众生命财产安全,具有重要意义。

一、重大危险源的定义。

重大危险源是指在生产、储存、运输、使用等活动中,可能造成重大伤亡事故或者对环境造成重大破坏的危险源。

这些危险源具有一定的规模和危害程度,一旦发生事故,将对周围区域和人群造成严重影响。

二、重大危险源分级标准。

1. 一级重大危险源,具有极大的危害程度,可能引发大范围的重大伤亡事故或者对环境造成严重破坏的危险源。

例如,核电站、化工厂等。

2. 二级重大危险源,具有较大的危害程度,可能引发较大范围的伤亡事故或者对环境造成较大破坏的危险源。

例如,油气管道、煤矿等。

3. 三级重大危险源,具有一定的危害程度,可能引发局部的伤亡事故或者对环境造成一定破坏的危险源。

例如,化工仓库、危险化学品储存点等。

三、重大危险源分级标准的意义。

1. 保障人身安全,通过对重大危险源进行科学分类和分级,可以针对不同级别的危险源采取相应的安全防护措施,最大限度地保障人身安全。

2. 防范事故风险,对重大危险源进行分级管理,有利于加强对危险源的监管和控制,减少事故风险的发生。

3. 保护环境安全,科学分级管理重大危险源,可以有效降低环境污染和破坏的风险,保护生态环境安全。

四、重大危险源分级标准的制定。

1. 参考国家标准和行业标准,制定重大危险源分级标准时,应参考国家相关标准和行业标准,充分考虑危险源的特点和危害程度。

2. 结合实际情况,针对不同行业和领域的特殊情况,可以结合实际情况进行细化和完善,确保分级标准的科学性和适用性。

3. 定期评估和修订,重大危险源分级标准应定期进行评估和修订,及时跟进行业发展和技术进步的情况,保持标准的及时性和有效性。

五、重大危险源分级标准的应用。

重大危险源分级标准

重大危险源分级标准

重大危险源分级标准(征求意见稿)1适用范围本规范规定了重大危险源评估分级的方法和程序。

本规范为重大危险源评估分级技术规范,适用于包括储罐区、库区、生产场所等重大危险源。

2规范性引用文件下列文件中的条款,通过本规范的引用而成为本标准的条款。

凡是标注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规范。

《中华人民共和国安全生产法》《危险化学品安全管理条例》《安全生产许可证条例》《重大危险源辨识》(GB18218)《安全评价通则》《关于规范重大危险源监督与管理工作的通知》(安监总协调字[2005]125号)3术语和定义下列术语和定义适用于本规范。

3.1重大危险源major hazard installations重大危险源是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或超过临界量的单元(包括场所和设施)。

4重大危险源分级判据重大危险源分级判据如表1所示。

表1 重大危险源分级判据①一级重大危险源:可能造成死亡30人(含30人)以上的重大危险源;②二级重大危险源:可能造成死亡10-29人的重大危险源;③三级重大危险源:可能造成死亡3-9人的重大危险源;④四级重大危险源:可能造成死亡1-2人的重大危险源。

5重大危险源死亡人数及财产损失计算方法可能造成的死亡人数评价程序为:①将重大危险源的周边区域划分成等间隔的网格区,用一笛卡尔坐标体系的网格覆盖城市的区域地图(如图1所示),网格间距大小取决于当地人口密度,以不影响计算结果为准。

②确定每一网格内的人员数量,通过火灾(室内火灾除外)、爆炸、毒物泄漏扩散事故后果模型计算重大危险源事故在每一网格中心处产生的热辐射、超压或毒物浓度的数值,然后通过热辐射、冲击波超压、中毒概率函数将其其转化为造成死亡的概率。

重大危险源分级

重大危险源分级

重大危险源分级
一、重大危险源分级指标的计算方法
依据《危险化学品重大危险源辨识》(GB18218-2018),重大危险源的分级指标按下式计算:
式中:
R——重大危险源分级指标;
α——该危险化学品重大危险源厂区外暴露人员的校正系数;
β1β2β3...βn——与每种危险化学品相对应的校正系数;
q1q2q3...q n——每种危险化学品的实际存在量,单位为吨(t);
Q1Q2Q3...Q n——与每种危险化学品相对应的临界量,单位为吨(t);
二、重大危险源分级指标的计算过程
按照《危险化学品重大危险源辨识》(GB18218-2018)第4.3条中的表3、表4取危险化学品的校正系数β,并根据表5取得暴露人员校正系数α,通过计算R值对该重大危险源进行分级,详见下表:表6.2-1 重大危险源分级指标计算一览表
表6.2-2 重大危险源分级指标一览表
100
50
5010
10
对照《危险化学品重大危险源辨识》(GB18218-2018)第4.3.3条重大危险源分级标准,即上表6.2-2,黄冈永安药业有限公司储罐区构成四级重大危险源。

三、重大危险源分级指标结果
综上所述,根据《危险化学品重大危险源辨识》(GB18218-2018)进行辨识,黄冈永安药业有限公司储罐区构成了四级危险化学品重大危险源。

重大危险源的等级按照其危险程度划分为几级

重大危险源的等级按照其危险程度划分为几级

重大危险源的等级按照其危险程度划分为几级导读:重大危险源按其危险程度,被划分为四级:一级、二级、三级和四级。

这四个等级依据可能造成的伤亡人数确定,一级最高,表示可能致死30人以上;二级可能致死10-29人;三级可能致死3-9人;四级可能致死1-2人。

一、重大危险源的等级按照其危险程度划分为几级重大危险源根据其危险程度,被明确划分为四个等级,即一级、二级、三级和四级。

这四个等级是根据可能造成的伤亡人数来划分的。

1.一级为最高级别,代表可能造成死亡30人(含30人)以上的重大危险源。

2.二级表示可能造成死亡10~29人的重大危险源。

3.三级表示可能造成死亡3~9人的重大危险源。

4.四级则代表可能造成死亡1~2人的重大危险源。

这种分级方法不仅有助于对重大危险源进行科学监控和管理,也为制定相应的应急预案和措施提供了重要依据。

二、重大危险源要去哪里备案重大危险源是需要进行备案的,而备案的机构通常是当地负责安全生产监督管理的部门和有关部门。

根据《危险化学品重大危险源监督管理暂行规定》第二条:从事危险化学品生产、储存、使用和经营的单位(以下统称危险化学品单位)的危险化学品重大危险源的辨识、评估、登记建档、备案、核销及其监督管理,均适用该规定。

三、重大危险源备案所需材料1.需要提交重大危险源的运行情况、安全管理规章制度及安全操作规程的制定和落实情况。

2.需要提供重大危险源的辨识、分级、安全评估、登记建档、备案等相关记录。

3.还需要提交重大危险源的监测监控情况、安全设施和安全监测监控系统的检测、检验以及维护保养情况等资料。

4.重大危险源事故应急预案的编制、评审、备案、修订和演练情况也是备案所需的重要材料之一。

这些材料将作为备案机构评估重大危险源安全状况的依据,也是确保重大危险源得到有效监控和管理的重要保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重大危险源分级标准作者:佚名文章来源:本站原创点击数:4783 更新时间:2009-3-14级标准(征求意见稿)1适用范围本规范规定了重大危险源评估分级的方法和程序。

本规范为重大危险源评估分级技术规范,适用于包括储罐区、库区、生产场所等重大危险源。

2规范性引用文件列文件中的条款,通过本规范的引用而成为本标准的条款。

凡是标注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规《中华人民共和国安全生产法》《危险化学品安全管理条例》《安全生产许可证条例》《重大危险源辨识》(GB18218)《安全评价通则》《关于规范重大危险源监督与管理工作的通知》(安监总协调字[2005]125号)3术语和定义下列术语和定义适用于本规范。

3.1重大危险源major hazard installations重大危险源是指长期地或者临时地生产、搬运、使用或者储存危险物品,且危险物品的数量等于或超过临界量的单元(包括场所和设施4重大危险源分级判据危险源等级分级判据死亡人数一级重大危险源可能造成30人(含30人)以上二级重大危险源可能造成10一29人三级重大危险源可能造成3—9人四级重大危险源可能造成1-2人具体判别的依据如下:①一级重大危险源:可能造成死亡30人(含30人)以上的重大危险源;②二级重大危险源:可能造成死亡10-29人的重大危险源;③三级重大危险源:可能造成死亡3-9人的重大危险源;④四级重大危险源:可能造成死亡1-2人的重大危险源。

5重大危险源死亡人数及财产损失计算方法可能造成的死亡人数评价程序为:危险源的周边区域划分成等间隔的网格区,用一笛卡尔坐标体系的网格覆盖城市的区域地图(如图1所示),网格间距大小取决于当地人口不影响计算结果为准。

一网格内的人员数量,通过火灾(室内火灾除外)、爆炸、毒物泄漏扩散事故后果模型计算重大危险源事故在每一网格中心处产生的热辐射毒物浓度的数值,然后通过热辐射、冲击波超压、中毒概率函数将其其转化为造成死亡的概率。

③将每一网格中心的死亡率与人口数量相乘,即得到死亡的人数。

④将所有网格的死亡人数求和,即得到总的死亡人数。

财产损失半径的方法评估事故后果造成的损失,并假定此半径内没有损失的财产与此半径外损失的财产相互抵消,或者说此半径内的财产完此半径外的财产完全无损失。

财产损失半径通过火灾、爆炸事故后果模型确定。

6重大危险源评价分级程序重大危险源的评价分级程序如下图所示。

如果一种危险物质具有多种事故形态,按照后果最严重的事故形态考虑,即遵循“最大危险原则附录A:重大危险源事故后果模型A.1 储罐区重大事故后果分析A.1.1储罐区的主要事故后果类型A.1.1.1池火灾如汽油、苯、甲醇、乙酸乙酯等,一旦从储罐及管路中泄漏到地面后,将向四周流淌、扩展,形成一定厚度的液池,若受到防火堤、隔堤液体将在限定区域(相当于围堰)内得以积聚,形成一定范围的液池。

这时,若遇到火源,液池可能被点燃,发生地面池火灾。

A.1.1.2蒸气云爆炸气体如H2、天然气等,泄漏后随着风向扩散,与周围空气混合成易燃易爆混合物,在扩散扩过程中如遇到点火源,延迟点火,由于存在某因和条件,火焰加速传播,产生爆炸冲击波超压,发生蒸气云爆炸。

的液化气体如液化石油气、液化丙烷、液化丁烷等,其沸点远小于环境温度,泄漏后将会由于自身的热量、地面传热、太阳辐射、气流运发,在液池上面形成蒸气云,与周围空气混合成易燃易爆混合物,并且随着风向扩散,扩散扩过程中如遇到点火源,也会发生蒸气云爆炸A.1.1.3喷射火对于易燃易爆气体如H2、天然气,以及易燃易爆的液化气体来说,泄漏后可能因摩擦产生的静电立即点火,产生喷射火。

A.1.1.4沸腾液体扩展蒸气云爆炸的液化气体容器在外部火焰的烘烤下可能发生突然破裂,压力平衡被破坏,液体急剧气化,并随即被火焰点燃而发生爆炸,产生巨大的火事故被称为沸腾液体扩展为蒸气云爆炸。

A.1.1.5中毒事故化气体如液氯、液氨等,由于沸点小于环境温度,泄漏后会因自身热量、地面传热、太阳辐射、气流运动等迅速蒸发,生成有毒蒸气云,漏源周围,随后由于环境温度、地形、风力和湍流等因素影响产生漂移、扩散,范围变大,浓度减小。

A.1.2储罐区主要事故后果模型A.1.2.1池火灾事故后果模型池火灾火焰的几何尺寸及辐射参数按如下步骤计算。

①计算池直径②确定火焰高度③计算火焰表面热通量④目标接收到的热通量的计算⑤视角系数的计算A.1.2.2蒸气云爆炸事故后果模型炸产生的冲击波超压是其主要危害。

冲击波超压可通过传统的TNT当量系数法进行计算,将事故爆炸产生的爆炸能量等同于一定当量的T根据爆炸能量直接计算。

(1)TNT当量法①确定闪蒸系数②计算云团中燃料的质量③计算TNT当量④将实际距离转化为无因次距离(2)直接计算法A.1.2.3喷射火事故后果模型的可燃物泄漏时形成射流,如果在泄漏裂口处被点燃,则形成喷射火。

假定火焰为圆锥形,并用从泄漏处到火焰长度4/5处的点源模型来表①火焰长度计算②热辐射的通量计算A.1.2.4沸腾液体扩展为蒸气云爆炸事故后果模型计算主要包括如下步骤。

①火球直径②火球持续时间③火球抬升高度④火球表面热辐射能量⑤视角系数⑥大气热传递系数⑦火球热辐射强度分布函数A.1.2.5中毒事故后果模型(1)泄漏模型①液体泄漏速率模型可根据流体力学中的柏努力方程计算泄漏量。

当裂口不规则时,可采取等效尺寸代替;当泄漏过程中压力变化时,则往往采用经验公式。

没有考虑泄漏速率对时间的依赖关系(压力随时间而降低以及液压高度下降)。

因此,计算出的泄漏速率是保守的最大可能泄漏速率。

②气体泄漏模型压力气体泄漏通常以射流的方式发生,泄漏的速度与其流动的状态有关,其特征可用临界流(最大出口速度等于声速)或亚临界流来描述。

③两相流泄漏模型1975年建议了两相流泄漏关系式。

假设源容器和泄漏点之间的管道长度和管道直径之比L/D>12,泄漏点压力与泄漏点上流压力之比Pc/(3)非重气云扩散模型①瞬间泄漏扩散模型②连续泄漏扩散模型地面类型Z0/m 地面类型Z0/m草原、平坦开阔地≤0.1农作物地区0.1~0.3村落、分散的树林0.3~1 分散的高矮建筑物(城市)1~4密集的高矮建筑物(大城市) 4有效粗糙度Z0≤0.1m地区的扩散参数按下表选取。

表4 Z0≤0.1m地区的扩散参数大气稳定度σy/m σz/mABCDEF 0.22x(1+0.0001x)-1/20.16x(1+0.0001x)-1/20.11x(1+0.0001x)-1/20.08x(1+0.0001x)-1/20.06x(1+0.0001x)-1/20.04x(1+0.0001x)-1/2 0.20x0.12x0.08x(1+0.0002x)-1/20.06x(1+0.0015x)-1/20.03x(1+0.0003x)-1/20.016x(1+0.0003x)-1/2有效粗糙度Z0≥0.1m的粗糙地形扩散系数为:式中,σy0、σz0按表4中的数值取值。

其他系数按表5取值。

表5 不同大气稳定度下的系数值稳定度 A B C D E Fa0b0c0d0e0f0g0 0.0421.100.03640.43640.050.2730.024 0.1151.50.0450.8530.01280.1560.0136 0.151.490.01820.870.010460.0890.0071 0.382.530.130.550.0420.350.03 0.32.40.110.860.016820.270.022 0.572.9130.09440.7530.02280.290.023(3)重气云扩散模型有盒子模型和平板模型两类。

盒子模型用来描述瞬间泄漏形成的重气云团的运动,平板模型用来描述连续泄漏形成的重气云羽的运动。

这的核心是因空气进入而引起的气云质量增加速率方程。

①盒子模型盒子模型使用如下假设:I、重气云团为正立的坍塌圆柱体,圆柱体初始高度等于初始半径的一半。

II、在重气云团内部,温度、密度和危险气体浓度等参数均匀分布。

III、重气云团中心的移动速度等于风速。

A.2 库区重大事故后果分析A.2.1库区的主要事故类型根据储存场所的不同以及储存危险品特性的不同,库区主要的事故后果类型如下:库中存储TNT等爆炸性物品时,容易发生凝聚相含能材料爆炸,产生非常严重的后果。

由于爆炸性物品不得露天堆放,只能存储在仓库中常发生的是受限空间的爆炸。

易燃、易爆的气体(包括液化气体)如液化石油气钢瓶等在仓库中存储时,发生泄漏并在扩散过程中遇到点火源,则很容易发生蒸气云爆炸(3)有毒气体(包括液化气体)如液氯、液氨钢瓶在仓库中存储时,发生泄漏并扩散很容易引起中毒事故。

(4)易燃液体如苯、甲醇等瓶装、桶装的化工原料在仓库中存储时,泄漏后很容易引发室内池火灾。

(5)易燃固体、自燃物品、遇湿易燃物品等瓶装、桶装、袋装的物品在仓库中存储时,容易发生室内固体火灾事故。

(6)易燃液体的桶装的化工原料在堆场中存储时,泄漏后很容易引发大面积的池火灾。

(7)易燃固体物品在堆场中存储时,容易发生固体火灾事故。

A.2.2库区的主要事故后果模型A.2.2.1凝聚相含能材料爆炸能材料爆炸能产生多种破坏效应,如热辐射、一次破片作用、有毒气体产物的致命效应,但破坏力最强,破坏区域最大的是冲击波的破坏此,爆炸模型主要考虑冲击波的伤害作用。

A.2.2.2蒸气云爆炸见A.1.3节蒸气云爆炸事故后果模型。

A.2.2.3毒物的泄漏扩散见A.1.3节中毒事故后果模型。

A.2.2.4池火灾见A.1.3节池火灾事故后果模型。

A.2.2.5固体火灾A.3 生产场所重大事故后果分析A.3.1生产场所主要事故类型生产场所的事故类型非常复杂,因反应介质、工艺设备与机器、操作条件的不同而不同,常见的危害较大的主要包括以下几类:(1)爆炸①物理爆炸及设备由于设计、制造、腐蚀或低温、材料缺陷、交变载荷的作用,使得器壁的平均应力超过材料的屈服点或强度极限,导致脆性疲劳、蚀破裂发生物理爆炸,也可因安全泄放装置失灵、液化气体充装过量、严重受热膨胀、违章超负荷运行等发生物理爆炸。

常见的如水夹汽容器、液化器气瓶等的爆炸。

②化学爆炸和机器内的物质发生极迅速、剧烈的化学反应而产生高温高压可引发瞬间的爆炸现象。

一般可分为简单分解爆炸、复杂分解爆炸和爆炸性工、石油化工生产中发生的化学爆炸绝大部分是爆炸性混合物爆炸。

例如由于负压操作、系统串气、水封不严或失效,空气串入到装置中炸性混合物,发生化学爆炸;再如硝化反应过程中,由于温度控制不良,很容易引起爆炸。

相关文档
最新文档