空间向量及其运算详细教案
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
空间向量及其运算教学设计教案

空间向量及其运算教学设计教案(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除教学准备1. 教学目标1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。
2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。
3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。
2. 教学重点/难点重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示;难点:理解空间向量基本定理;3. 教学用具多媒体设备4. 标签教学过程教学过程设计(一).复习引入1、共线向量定理:2、共面向量定理:3、平面向量基本定理:4、平面向量的正交分解:(二)、新课探究:探究一.空间向量基本定理2、空间向量基本定理3、注意:对于基底{a,b,c},除了应知道向量a,b,c不共面,还应明确(1)任意不共面的三个向量都可做为空间的一个基底。
(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是零向量。
(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念。
4、应用举例析:知识点一向量基底的判断例1.已知向量{a,b,c}是空间的一个基底,那么向量a+b,a-b,c能构成空间的一个基底吗为什么解∵a+b,a-b,c不共面,能构成空间一个基底.假设a+b,a-b,c共面,则存在x,y,使c=x(a+b)+y(a-b),∴c=(x+y)a+(x-y)b.从而由共面向量定理知,c与a,b共面.这与a、b、c不共面矛盾.∴a+b,a-b,c不共面.【反思感悟】解有关基底的题,关键是正确理解概念,只有空间中三个不共面的向量才能构成空间向量的一个基底.知识点二用基底表示向量(学生独立思考,然后讲解,板演解题过程)【反思感悟】利用空间的一个基底{a,b,c}可以表示出所有向量.注意结合图形,灵活应用三角形法则、平行四边形法则.探究二.空间向量的直角坐标系1. 单位正交基底:如果空间一个基底的三个基向量互相垂直,且长度都为1,则这个基底叫做单位正交基底,通常用{i,j,k}表示.单位——三个基向量的长度都为1;正交——三个基向量互相垂直.选取空间一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k 的方向为正方向建立三条坐标轴:x轴、y轴、z轴,得到空间直角坐标系O-xyz,3. 空间向量的坐标表示:给定一个空间直角坐标系和向量a,且设i、j、k为坐标向量,则存在唯一的有序实数组,使a=a1i+a2j+a3k.以i,j,k为单位正交基底建立如图所示的空间直角坐标系.【反思感悟】空间直角坐标系的建立必须寻求三条两两垂直的直线.在空间体中不具备此条件时,建系后要注意坐标轴与空间体中相关直线的夹角.课堂小结1、师生共同回忆本节的学习内容:(1)、空间向量的正交分解;(2)、空间向量基本定理;(3)、空间向量直角坐标系;强调以下两个注意点:2.空间的一个基底是空间任意三个不共面的向量,空间的基底可以有无穷多个.一个基底是不共面的三个向量构成的一个向量组,一个基向量指一个基底的某一个向量.3.对于基底{a,b,c}除了应知道a,b,c不共面,还应明确:(1)空间任意三个不共面向量都可以作为空间向量的一个基底,基底选定以后,空间的所有向量均可由基底惟一表示.(2)由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0.课后习题当堂检测作业:请同学们独立完成配套课后练习题。
《3.1.1 空间向量及其线性运算》教案

《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
空间向量及其运算(优质课)教案

空间向量及其运算(优质课)教案教学目标:1 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2 掌握空间向量的线性运算及其坐标表示;3 掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.教学过程:1.空间向量的有关概念(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律(1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a⊥b .②两向量的数量积已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).规律方法:1.选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.如本例用OA→,OB→,OC→表示OG→,MG→等,另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.(2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以在求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.3.数量积的应用:(1)求夹角,设向量a,b所成的角为θ,则cosθ=a·b|a||b|,进而可求两异面直线所成的角;(2)求长度(距离),运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题;(3)解决垂直问题,利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题.类型一空间向量的线性运算例1:如图3-1-6,已知平行六面体ABCD A B C D''''-.求证:2.AC AB AD AC'''++=【解析】:由于在平行六面体中,每个面都是平行四边形,故可结合空间向量加法的平行四边形法则进行向量的运算,从而证明结论.【答案】∵平行六面体的六个面均为平行四边形,,,AC AB AD AB AB AA ''∴=+=+.AD AD AA ''=+∴AC AB AD ''++()()()AB AD AB AA AD AA ''=+++++ 2().AB AD AA '=++又∵,,AA CC AD BC ''==,AB AD AA AB BC CC AC CC AC ''''∴++=++=+=2.AC AB AD AC '''∴++=练习1:如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA →1=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:AP →,A 1N →【答案】(1)AP →=a+c+2b ;(2)A 1N →=-a+b+2c练习2:【2015高考新课标2,理13】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【答案】12类型二 共线定理、共面定理的应用例2:射线AB 、AC 、AD 不共面,连结BC 、CD 、DB ,取AB 、BC 、CD 、DA 的中点E 、F 、G 、H ,如图3-1-20,试判断四边形EFGH 的图形形状,并用向量的方法证明.【答案】解法1:四边形EFGH 是平行四边形. ∵1()2EH EA AH BA AD =+=+=111,(),222BD FG FC CG BC CD BD =+=+=.EH FG ∴=∵E 点不在FG 上,∴EH ∥FG ,且EH =FG ,∴四边形EFGH 是平行四边形. 解法2:∵11(),22HG HD DG AD DC AC =+=+= 11(),22EF EB BF AB BC AC =+=+=∴.HG EF =又H 点不在EF 上, ∴HG ∥EF ,且HG =EF .∴四边形EFGH 是平行四边形.练习1:【2015江苏高考,6】已知向量a =)1,2(,b=)2,1(-,若m a +n b =)8,9(-(R n m ∈,),则n m -的值为______.【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 【答案】3-类型三 空间向量数量积的应用例3:已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值. 【解析】(1)设AB =p,AC =q ,AD =r.由题意可知:|p|=|q|=|r|=a ,且p 、q 、r 三向量两两夹角均为60°.MN=AN -AM =12(AC +AD )-12AB =12(q+r-p ), ∴MN·AB =12(q+r-p )·p =12(q ·p+r ·p-p 2)=12(a 2·cos60°+a 2·cos60°-a 2)=0. ∴MN ⊥AB,同理可证MN ⊥CD.(2)由(1)可知MN=12(q+r-p ) ∴|MN |2=MN 2=14(q+r-p )2=14[q 2+r 2+p 2+2(q ·r-p ·q-r ·p )]=14[a 2+a 2+a 2+2(22a -22a -22a )=14×2a 2=22a . ∴|MN|=22a,∴MN 的长为22a. (3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r)·(q -12p) =12(q2-12q ·p +r ·q -12r ·p)=12(a 2-12a 2cos60°+a 2cos60°-12a 2cos60°)=22a . 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=22a . ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.【答案】(1)见解析(2)MN a.(3)异面直线AN 与CM 所成角的余弦值为23练习1:在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.求BD →1与AC →夹角的余弦值.【答案】设AB =a,AD =b.1AA =cBD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1. ∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→|·|AC →|=66.1.(2014·广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)【答案】B 2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A3.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直【答案】B4.O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【答案】B_________________________________________________________________________________ _________________________________________________________________________________基础巩固(1)1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2【答案】D2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B.12a 2C.14a 2 D.34a 2 【答案】C3.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ,μ∈R ,且λμ≠0),则( ) A .c ∥d B .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能 【答案】B4.已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( )A .(4,0,3)B .(3,1,3)C .(1,2,3)D .(2,1,3)【答案】B5.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.【答案】60°6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.【答案】657能力提升(2)7.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).【答案】111244a b c ++ 8.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).【答案】锐角9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)若|c |=3,且c ∥BC →,求向量c . (2)求向量a 与向量b 的夹角的余弦值.【答案】解 (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2), ∴c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ), ∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3, ∴m =±1.∴c =(-2,-1,2)或(2,1,-2). (2)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1,又∵|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a |·|b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. 所以异面直线AG 与CE 所成角的余弦值为23.。
空间向量及其运算详细教案

空间向量及其运算3。
1。
1 空间向量及其加减运算教学目标:(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
能力目标:(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识教学重点:(1)空间向量的有关概念(2)空间向量的加减运算及其运算律、几何意义.(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解.考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想.易错点:空间向量的加减运算及其几何意义在空间几何体中的应用教学用具:多媒体教学方法:研讨、探究、启发引导。
教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。
教学过程:(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?(学生):矢量,由大小和方向确定(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?(学生)向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生)这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?(学生)举例(老师):然后再演示(课件)几种常见的空间向量身影。
(教案)空间向量及其运算

(教案)空间向量及其运算空间向量及其运算【基础知识必备】⼀、必记知识精选1.空间向量的定义(1)向量:在空间中具有⼤⼩和⽅向的量叫作向量,同向且等长的有向线段表⽰同⼀向量或相等向量.(2)向量的表⽰有三种形式:a ,AB ,有向线段.2.空间向量的加法、减法及数乘运算.(1)空间向量的加法.满⾜三⾓形法则和平⾏四边形法则,可简记为:⾸尾相连,由⾸到尾.求空间若⼲个向量之和时,可通过平移将它们转化为⾸尾相接的向量.⾸尾相接的若⼲个向量若构成⼀个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0.(2)空间向量的减法.减法满⾜三⾓形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向⼀定”,另外要注意-=的逆应⽤.(3)空间向量的数量积.注意其结果仍为⼀向量.3.共线向量与共⾯向量的定义.(1)如果表⽰空间向量的有向线段在直线互相平⾏或重合,那么这些向量叫做共线向量或平⾏向量.对于空间任意两个向量a ,b(b≠0),a∥b ?a=λb,若A 、B、P 三点共线,则对空间任意⼀点O ,存在实数t ,使得OP =(1-t )OA +t OB ,当t=21时,P 是线段A B的中点,则中点公式为OP =21(OA +OB ).(2)如果向量a 所在直线OA 平⾏于平⾯α或a 在α内,则记为a∥α,平⾏于同⼀个平⾯的向量,叫作共⾯向量,空间任意两个向量,总是共⾯的.如果两个向量a 、b 不共线.则向量p 与向量a 、b共⾯的充要条件是存在实数对x 、y.使p=xa+y b.对于空间任⼀点O 和不共线的三点A 、B 、C,A 、B 、C 、P共⾯的充要条件是OP =x OA +y OB +zOC (其中x+y+z=1).共⾯向量定理是共线向量定理在空间中的推⼴,共线向量定理证三点共线,共⾯向量定理证四点共⾯.4.空间向量基本定理如果三个向量a 、b 、c 不共⾯,那么对空间任⼀向量p ,存在⼀个惟⼀的有序实数组x 、y 、z,使p=x a+yb+zc.特别的,若a 、b、c 不共⾯,且xa+yb+zc=O,则x=y =z=0.常以此列⽅程、求值.由于0可视为与任意⼀个⾮零向量共线,与任意两个⾮零向量共⾯,所以三个向量不共⾯,隐含着三向量都不是0.空间任意三个不共⾯向量都可以作为空间向量的⼀个基底.要注意,⼀个基底是⼀个向量组,⼀个基向量是指基底中的某⼀向量.5.两个向量的数量积.a·b =|a |·|b |·co s(a,b ),性质如下:(1)a·e =|a|·cos;(2)a⊥b ?a ·b =0.(3)|a |2=a ·a ;(4)|a |·|b |≥a·b .⼆、重点难点突破(⼀)重点空间向量的加法、减法运算法则和运算律;空间直线、平⾯向量参数⽅程及线段中点的向量公式.空间向量基本定理及其推论,两个向量的数量积的计算⽅法及其应⽤.(⼆)难点空间作图,运⽤运算法则及运算律解决⽴体⼏何问题,两个向量数量积的⼏何意义以及把⽴体⼏何问题转化为向量计算问题.对于重点知识的学习要挖掘其内涵,如从向量等式的学习中可以挖掘出:(1)向量等式也有传递性;(2)向量等式两边加(减)相同的量,仍得等式.即“移项法则”仍成⽴;(3)向量等式两边同乘以相等的数或点乘相等的向量,仍是等式.这样知识掌握更加深刻.⽤空间向量解决⽴体⼏何问题.⼀般可以按以下过程进⾏思考:(1)要解决的问题可⽤什么向量知识来解决?需要⽤到哪些向量?(2)所需要的向量是否已知?若未知,是否可⽤已知条件转化成的向量直接表⽰?(3)所需要的向量若不能直接⽤已知条件转化为向量表⽰,则它们分别易⽤哪个未知向量表⽰?这些未知向量与已知条件转化⽽来的向量有何关系?(4)怎样对已经表⽰出来的所需向量进⾏运算,才能得到所需要的结论?三、易错点和易忽略点导析两个向量的夹⾓应注意的问题:①(a ,b)=(b,a );②(a,b)与表⽰点的符号(a,b )不同;③如图9-5-1(a)中的∠AOB =.图(b)中的∠A O B=π-(AO ,OB ),<-OA ,OB >=【综合应⽤创新思维点拨】⼀、学科内综合思维点拨【例1】已知两个⾮零向量e 1、e 2不共线,如果=e 1+e 2,=2e 1+8e 2,=3e 1-3e 2.求证:A 、B 、C 、D共⾯.思维⼊门指导:要证A 、B 、C、D 四点共⾯,只要能证明三向量AB 、、AD 共⾯,于是只要证明存在三个⾮零实数λ、µ、υ使λ+µ+υ=0即可.证明:设λ(e 1+e 2)+µ(2e 1+8e 2)+υ(3e 1-3e2)=0.则(λ+2µ+3υ)e1+(λ+8µ-3υ)e 2=0. ∵e 1、e 2不共线,∴?=-+=++.038,032υµλυµλ上述⽅程组有⽆数多组解,⽽λ=-5,µ=1,υ=1就是其中的⼀组,于是可知-5AB ++AD =0.故AB、AC、AD共⾯,所以A、B、C、D四点共⾯.点拨:寻找到三个⾮零实数 =-5,µ=1,υ=1使三向量符合共⾯向量基本定理的⽅法是待定系数法.⼆、应⽤思维点拨【例2】某⼈骑车以每⼩时α公⾥的速度向东⾏驶,感到风从正北⽅向吹来,⽽当速度为2α时,感到风从东北⽅向吹来.试求实际风速和风向.思维⼊门指导:速度是⽮量即为向量.因⽽本题先转化为向量的数学模型,然后进⾏求解,求风速和风向实质是求⼀向量.解:设a表⽰此⼈以每⼩时α公⾥的速度向东⾏驶的向量.在⽆风时,此⼈感到风速为-a,设实际风速为v,那么此⼈感到的风速向量为v-a.如图9-5-2.设OA=-a,OB=-2a.由于PO+OA=PA,从⽽PA=v-a.这就是感受到的由正北⽅向吹来的风.其次,由于PO+OB=PB,从⽽v-2=PB.于是,当此⼈的速度是原来的2倍时感受到由东北⽅向吹来的风就是PB.由题意,得∠PBO=45°, PA⊥B O,BA=A O,从⽽△PB O为等腰直⾓三⾓形.故PO =PB=2α.即|v|=2α.答:实际吹来的风是风速为2α的西北风.点拨:向量与物理中的⽮量是同样的概念,因⽽物理中的有关⽮量的求解计算在数学上可化归到平⾯向量或空间向量进⾏计算求解.知识的交叉点正是⾼考考查的重点,也能体现以能⼒⽴意的⾼考⽅向.三、创新思维点拨【例3】如图9-5-3(1),已知E、F、G、H分别是空间四边形ABCD边AB、BC、CD、D A的中点.(1)⽤向量法证明E、F、G、H四点共⾯;(2)⽤向量法证明BD∥平⾯EFGH.思维⼊门指导:(1)要证E、F、G、H四点共⾯,根据共⾯向量定理的推论,只要能找到实数x,y,使EG=x+y即可;(2)要证BD∥平⾯EFGH,只需证向量与共线即可.证明:(1)如图9-5-3(2),连结BG,则 EG =EB +BG =EB +21(BC +BD )=EB+BF +EH =EF +EH . 由共⾯向量定理推论知,E 、F、G 、H 四点共⾯. (2)∵EH =AH -AE =21AD -21AB =21(AD -AB )=21BD , ∴EH ∥B D.⼜EH ?⾯EFG H,BD ?⾯EFG H,∴BD ∥平⾯EF GH.点拨:利⽤向量证明平⾏、共⾯是创新之处,⽐较以前纯⼏何的证明,显⽽易见⽤向量证明⽐较简单明快.这也正是⼏何问题研究代数化的特点.【例4】如图9-5-4,在正⽅体AB CD —A1B 1C 1D 1中,E 为D 1C 1的中点,试求A 1C1与D E所成⾓.思维⼊门指导:在正⽅体AC 1中,要求A 1C1与D E所成⾓,只需求11C A 与所成⾓即可.要求11C A 与DE 所成⾓,则可利⽤向量的数量积,只要求出11C A ·DE 及|11C A |和|DE |即可.解:设正⽅体棱长为m,=a,=b ,1AA =c. 则|a|=|b |=|c |=m,a ·b =b·c =c ·a =0.⼜∵11C A =11B A +11C B =+=a +b ,DE =1DD +E D 1=1DD +2111C D =c +21a,∴11C A ·DE =(a +b )(c +21a)=a·c +b ·c+21a 2+21a ·b =21a 2=21m 2. ⼜∵|11C A |=2m ,|DE |=25m, ∴cos<11C A ,DE >1111m m m 252212?=1010. ∴<11C A ,>=a rccos 1010.即A 1C 1与D E所成⾓为arc cos 1010.点拨:A 1C1与DE 为⼀对异⾯直线.在以前的解法中求异⾯直线所成⾓要先找(作),后求.⽽应⽤向量可以不作或不找直接求.简化了解题过程,降低了解题的难度.解题过程中先把11C A 及DE ⽤同⼀组基底表⽰出来,再去求有关的量是空间向量运算常⽤的⼿段.四、⾼考思维点拨【例5】(2000,全国,12分)如图9-5-5,已知平⾏六⾯体ABCD ⼀A 1B 1C1D1的底⾯AB CD 是菱形,且∠C 1CB=∠C1CD =∠BCD.(1)求证:C 1C⊥BD;(2)当1CC CD 的值为多少时,能使A 1C ⊥平⾯C 1BD?请给出证明. 思维⼊门指导:根据两向量的数量积公式a ·b =|a |·|b|cos知,两个向量垂直的充要条件是两向量的数量积为0,即a ⊥b ?a ·b=0, 所以要证明两直线垂直,只要证明两直线对应的向量数量积为零即可.(1)证明:设CD =a ,CB =b ,1CC =c.由题可知|a |=|b |.设CD 、CB 、1CC 中两两所成夹⾓为θ,于是BD =CD -CB =a -b,1CC ·=c·(a -b )=c·a -c ·b =|c |·|a |cos θ-|c |·|b |c os θ=0,∴C 1C ⊥BD.(2)解:若使A1C ⊥平⾯C1BD ,只须证A 1C ⊥BD,A 1C⊥DC 1,由于:1CA ·D C 1=(CA +1AA )·(CD -1CC )=(a +b +c )·(a -c )=|a |2+a ·b-b·c-|c |2=|a |2+|b|·|a |·cos θ-|b |·|c |cos θ-|c|2=0,得当|a|=|c|时A 1C ⊥DC1.同理可证当|a |=|c |时,A 1C ⊥BD. ∴1CC CD =1时,A 1C⊥平⾯C 1BD. 点拨:对于向量数量积的运算⼀些结论仍是成⽴的.(a-b )·(a +b )=a2-b2;(a ±b )2=a2±2a ·b +b 2.五、经典类型题思维点拨【例6】证明:四⾯体中连接对棱中点的三条直线交于⼀点,且互相平分.(此点称为四⾯体的重⼼)思维⼊门指导:如图9-5-6所⽰四⾯体AB CD 中,E 、F 、G 、H 、P 、Q分别为各棱中点.要证明EF 、GH 、P Q相交于⼀点O ,且O为它们的中点.可以先证明两条直线EF 、G H相交于⼀点O ,然后证明P 、O 、Q 三点共线,即OP 、OQ 共线.从⽽说明PQ 直线也过O 点.证明:∵E 、G 分别为AB、AC 的中点, ∴EG ∥21B C.同理HF ∥21BC.∴EG ∥HF. 从⽽四边形EGFH 为平⾏四边形,故其对⾓线EF 、GH 相交于⼀点O ,且O 为它们的中点,连接O P、OQ .∵OP =OG +GP ,OQ =OH +HQ ,⽽O 为GH 的中点,∴OG +OH =0,GP ∥21CD,QH ∥21C D. ∴GP =21CD ,QH =21CD .∴OP +OQ =OG +OH +GP +HQ =0+21CD -21CD =0.∴OP =-OQ .∴P Q经过O 点,且O 为PQ 的中点.点拨:本例也可以⽤共线定理的推论来证明,事实上,设EF 的中点为O .连接O P 、O Q ,则FQ =EQ -EF ,⽽EQ =21AC =-FP ,EF =-2FO ,则FQ =-FP +2FO ,∴FO =21(FQ +FP ),从⽽看出O 、P 、Q 三点共线且O 为PQ的中点,同理可得GH 边经过O 点且O 为G H的中点,从⽽原命题得证.六、探究性学习点拨【例7】如图9-5-7所⽰,对于空间某⼀点O ,空间四个点A、B、C 、D(⽆三点共线)分别对应着向量a =OA ,b =OB ,c =OC ,d =OD .求证:A 、B、C 、D 四点共⾯的充要条件是存在四个⾮零实数α、β、γ、δ,使αa+βb +γc+δd =0,且α+β+γ+δ=0.思维⼊门指导:分清充分性和必要性,应⽤共⾯向量定理.证明:(必要性)假设A 、B 、C 、D 共⾯,因为A、B 、C 三点不共线,故,两向量不共线,因⽽存在实数x 、y ,使=x +yAC ,即d-a =x(b -a)+y(c-a ),∴(x+y -1)a-xb -yc +d=0.令α=x+y-1, β=-x,γ=-y,δ=1.则αa+βb+γc+δd=0,且α+β+γ+δ=0.(充分性)如果条件成⽴,则δ=-(α+β+γ),代⼊得αa +βb +γc +δd =αa +βb+γc -(α+β+γ)d=0.即α(a-d)+ β(b-d )+γ(c -d )=0.⼜∵a-d=OA -OD =DA ,b-d=DB ,c-d =DC , ∴αDA +βDB +γDC =0.∵α、β、γ为⾮零实数,不妨设γ≠0.则DC =-γαDA -γβDB .∴DC 与DA 、DB 共⾯,即A 、B 、C 、D 共⾯.点拨:在讨论向量共线或共⾯时,必须注意零向量与任意向量平⾏,并且向量可以平移,因⽽不能完全按照它们所在直线的平⾏性、共⾯关系来确定向量关系.【同步达纲训练】A 卷:教材跟踪练习题 (60分 45分钟)⼀、选择题(每⼩题5分,共30分)1.点O 、A 、B 、C为空间四个点,⼜OA 、OB 、OC 为空间⼀个基底,则下列结论不正确的是( )A.O 、A、B 、C四点不共线B. O 、A、B、C 四点共⾯,但不共线C. O 、A 、B 、C 四点中任三点不共线 D. O 、A、B 、C 四点不共⾯2.在正⽅体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为的共有( )①(+BC )+1CC ②(1AA +11D A )+11C D③(AB +1BB )+11C B ④(1AA +11B A )+11C BA.1个B.2个 C.3个 D .4个3.设命题p :a 、b 、c 是三个⾮零向量;命题q:{a ,b ,c }为空间的⼀个基底,则命题p 是命题q 的( )A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分⼜不必要条件4.设A 、B 、C 、D是空间不共⾯的四点,且满⾜·AC =0,AC ·=0,·=0,则△BC D是( )A .钝⾓三⾓形 B.锐⾓三⾓形 C.直⾓三⾓形 D.不确定5.下列命题中,正确的是( )A.若a与b 共线,则a 与b 所在直线平⾏B.若a ∥平⾯β,a 所在直线为a,则a ∥βC.若{a,b,c}为空间的⼀个基底,则{a-b,b-c ,c-a}构成空间的另⼀个基底D.若OP =21OA +21OB ,则P 、A 、B三点共线6.若a=e 1+e 2+e 3,b=e 1-e 2-e 3,c =e 1+e2,d =e 1+2e 2+3e 3,且d =x a+yb +z c,则x、y 、z 分别为()A.25,-21,-1 B .25,21,1 C.-25,21,1 D.25,-21,1 ⼆、填空题(每⼩题4分,共16分)7.设向量a 与b 互相垂直,向量c与它们构成的⾓都是60°,且|a |=5,|b |=3,|c|=8,那么(a+3c)·(3b -2a ) ;(2a +b -3c )2= .8.已知向量n A A 1=2a ,a 与b的夹⾓为30°,且|a|=3,则21A A +32A A +…+n n A A 1-在向量b的⽅向上的射影的模为 .9.如图9-5-8,已知空间四边形O AB C,其对⾓线为O B 、AC ,M 是边O A 的中点,G 是△ABC 的重⼼,则⽤基向量OA 、OB 、OC 表⽰向量MG 的表达式为 .10.已知P、A、B、C 四点共⾯且对于空间任⼀点O 都有OP =2OA +34OB +λOC ,则λ= .三、解答题(每⼩题7分,共14分)11.如图9-5-9,已知点O 是平⾏六⾯体ABC D—A 1B1C 1D 1体对⾓线的交点,点P是空间任意⼀点.求证:PA +PB +PC +PD +1PA +1PB +1PC +1PD =8PO .12.如图9-5-10,已知线段A B在平⾯α内,线段AC ⊥α,线段BD ⊥AB,且与α所成⾓是30°.如果A B=a,AC=BD =b,求C、D 间的距离.B卷:综合应⽤创新练习题(90分 90分钟)⼀、学科内综合题(10分)1.如图9-5-11所⽰,已知□ABCD,O 是平⾯AC外⼀点,1OA =2OA ,1OB =2OB ,1OC =2OC ,1OD =2OD .求证:A 1、B 1、C 1、D 1四点共⾯.⼆、应⽤题(10分)2.在△ABC 中,∠C=60°,CD 为∠C 的平分线,A C=4,B C=2,过B 作BN ⊥CD 于N 延长交CA 于E,将△BDC 沿CD 折起,使∠BNE=120°,求折起后线段AB 的长度.三、创新题(60分)(⼀)教材变型题(10分)3.(P 35练习2变型)如图9-5-12已知空间四边形ABCD 的每条边和对⾓线的长都等于a,求AB 与CD 的夹⾓.(⼆)⼀题多解(15分)4.已知矩形ABCD,P为平⾯ABCD 外⼀点,且PA ⊥平⾯AB CD,M 、N 分别为PC 、PD 上的点,且M 分成定⽐2,N 分PD 成定⽐1,求满⾜=x AB +y AD +z AP 的实数x 、y 、z 的值.(三)⼀题多变(15分)5.设a ⊥b,=6π,且|a |=1,|b |=2,|c |=3,求|a +b +c |. (1)⼀变:设a ⊥b,=3π,<b ,c>=6π,且|a|=1,|b|=2,|c|=3,求|a+2b-c|.(2)⼆变:设a ⊥b,=3π,且|a|=1,|b|=2,|c|=3,|a+b+c|=3617+,求-b 与c的夹⾓.(四)新解法题(10分)6.如图9-5-13,正⽅形A BCD 和正⽅形ABEF 交于A B,M 、N 分别是BD 、AE 上的点,且AN=DM ,试⽤向量证明MN ∥平⾯EB C.7.O 为空间任意⼀点,A 、B、C 是平⾯上不共线的三点,动点P 满⾜OP =OA +λ(||||AC AB +),λ∈[0,+∞),则P 的轨迹⼀定通过△ABC 的( )A.外⼼B.内⼼ C.重⼼ D.垂⼼四、⾼考题(10分) 8.(2002,上海,5分)若a 、b、c为任意向量,m∈R ,则下列等式不⼀定成⽴的是( )A.(a +b )+c =a +(b +c ) B.(a+b)·c=a ·c +b·cC.m(a +b )=ma+m bD.(a ·b)·c =a ·(b·c )加试题:竞赛趣味题(10分)证明:ab b a -+22+ac c a -+22>bc c b -+22(a,b,c 为正实数).【课外阅读】⽤向量表⽰三⾓形的四⼼由⾼中数学新教材中的向量知识出发,利⽤定⽐分点的向量表达式,可以简捷地导出三⾓形的重⼼、内⼼、垂⼼、外⼼这四⼼的向量表达式.【例】如图9-5-14,在△ABC 中,F 是A B上的⼀点,E 是AC 上的⼀点,且FB AF =l m ,EC AE =ln (通分总可以使两个异分母分数化为同分母分数),连结C F、BE 交于点D.求D 点的坐标.解:在平⾯上任取⼀点O ,连结O A、OB 、O C、O D 、OE 、OF,由定⽐分点的向量表达式,得:OF =(OA +l m ·OB )÷(1+lm ) =ml OB m OA l +?+? ①=ln OC l n OA +?+1=n l OC n OA l +?+? ②⼜=λλ+?+1OC OF =u OE u OB +?+1 ③(其中DCFD =λ,u DE BD =). 整理①、②、③式得λ=1+m n . 所以OD =n m l l ++OA +n m l m ++OB +nm l n ++OC ④由④式出发,可得三⾓形四⼼的向量表达式:(1)若BE 、CF是△A BC两边上的中线,交点G 为重⼼.由④式可得重⼼G 的向量表达式:OG =31(OA +OB +OC ). (2)若BE 、CF 是△AB C两内⾓的平分线,交点I是内⼼.因为FB AF =a b ,EC AE =a c , 由④式可得内⼼I 的向量表达式:OI =c b a a ++OA +c b a b ++OB +cb ac ++OC . (3)若BE 、CF 是△AB C两边上的⾼,交点H是垂⼼.EC AE =Ca A c cos cos ??=Aa C ccos cos . 同理FBAF =Aa B bcos cos . 由④式可得垂⼼H 的向量表达式:OH =OA C c B b A a C a cos cos cos cos +++OB C c B b A a C b cos cos cos cos +++OC Cc B b A a C ccos cos cos cos ++.(4)若BE 、C F的交点O ′是△A BC 的外⼼,即三边中垂线交点,则O ′A=O ′B=O′C.根据正弦定理:EC AE =CBE C BE EBA A BE ∠?∠?sin sin sin sin =)(21sin sin )(21sin sin C BO A B AO C '∠-?'∠-?ππ =A A C C cos sin cos sin ??=AC 2sin 2sin .同理FB AF =A B 2sin 2sin .由④式可得外⼼O ′的向量表达式:OO =C B A A 2sin 2sin 2sin 2sin ++OA +CB A B 2sin 2sin 2sin 2sin ++OB +OC CB AC 2sin 2sin 2sin 2sin ++. 这四个向量表达式,都由④式推出,都有着各⾃轮换对称的性质.好记,好⽤!新教材的优越性,由此可见.参考答案A 卷⼀、1.B 点拨:空间向量的⼀组基底是不共⾯的.2.D点拨:++1CC =+1CC =1AC ,同理根据空间向量的加法运算法则可知(2)、(3)、(4)的计算结果也为1AC .3.B 点拨:当三个⾮零向量a 、b 、c共⾯时,a 、b 、c 不能构成空间的⼀个基底,但是{a,b,c }为空间的⼀个基底时,必有a 、b 、c 都是⾮零向量.因此由P 推不出q,⽽由q 可推出P.4.B 点拨:·AB =0?AC ⊥A B.同理可得A C⊥AD,AB ⊥AD.设AB=a ,AC =b,AD=c.则BC=22b a +,CD=22c b +,B D=22c a +.∵c os∠BCD =CDBC BD CD BC ?-+2222>0,故△BCD 为锐⾓. 同理∠CBD 、∠B DC 亦为锐⾓.则△BC D为锐⾓三⾓形.5.D 点拨:向量共线则其所在直线平⾏或重合,故A错误;向量平⾏于平⾯,则向量在⾯内或所在直线与⾯平⾏,故B 错误;取λ1=λ2=λ3=1,则λ1(a-b )+λ2(b-c)+λ3(c-a)=0,即a-b,b-c,c -a 是共⾯向量,不能构成空间的基底,故C 错.x+y +z=1 x=25, 6.A 点拨: x-y+z=2 ? y=-21, x-y=3 z =-1.⼆、7.-62,373 点拨:(a+3c)·(3b -2a )=3a ·b-2a2+9c ·b -6a ·c=3|a。
苏教版选修(2-1)3.1《空间向量及其运算》word教案

3.1空间向量及其运算3.1.1空间向量的线性运算教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa =0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.起点与重点重合的向量叫做零向量。
《空间向量及其运算》示范公开课教学设计【高中数学人教版】

《空间向量及其运算》教学设计1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 重点:理解共线向量定理和共面向量定理及它们的推论;难点:掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. (一)复习:空间向量的概念及表示; (二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.读作:a 平行于b ,记作://a b .2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ=(λ唯一). 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+①,其中向量a 叫做直线l 的方向向量.在l 上取AB a =,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+② 当12t =时,点P 是线段AB 的中点,此时1()2OP OA OB =+③ ①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行: 如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+.推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++① 上面①式叫做平面MAB 的向量表达式.(三)例题分析:al PBA O例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++, 试判断:点P 与,,A B C 是否一定共面?解:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+,即22PA PB PC =--,所以,点P 与,,A B C 共面. 说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++ (其中1x y z ++=)的四点,,,P A B C 是否共面?解:∵(1)OP z y OA yOB zOC =--++,∴()()OP OA y OB OA z OC OA -=-+-,∴AP yAB zAC =+,∴点P 与点,,A B C 共面.例2.已知ABCD ,从平面AC 外一点O 引向量,,,OE kOA OF KOB OG kOC OH kOD ====,(1)求证:四点,,,E F G H 共面;(2)平面AC //平面EG . 解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+,∵EG OG OE =-,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OEEF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅,∴//,//EF AB EG AC所以,平面//AC 平面EG .五、课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.六、作业: E1.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量及其运算
3.1.1 空间向量及其加减运算
教学目标:
(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
能力目标:
(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识
教学重点:
(1)空间向量的有关概念
(2)空间向量的加减运算及其运算律、几何意义。
(3)空间向量的加减运算在空间几何体中的应用
教学难点:
(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解。
考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。
易错点:空间向量的加减运算及其几何意义在空间几何体中的应用
教学用具:多媒体
教学方法:研讨、探究、启发引导。
教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。
教学过程:
(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?
(学生):矢量,由大小和方向确定
(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?
(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?
(学生)向量
(老师):这三个向量和以前我们学过的向量有什么不同?
(学生)这是三个向量不共面
(老师):不共面的向量问题能直接用平面向量来解决么?
(学生):不能,得用空间向量
(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算
(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?
(学生)举例
(老师):然后再演示(课件)几种常见的空间向量身影。
(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量)
(老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量
请同学们将导学案准备好,
(老师):
一、平面向量的基本概念
1.向量概念:在平面上既有大小又有方向的量叫向量;
2.画法:用有向线段AB画出来;
3.表示方式:AB或a(用小写的字母表示);
4零向量:在平面中长度为零的向量叫做零向量,零向量的方向是任意的;
5.单位向量:在平面中模为1的向量称为单位向量;
6.相反向量:在平面中长度相等,方向相反的两个向量,互称为相反向量;
7.相等向量:在平面中方向相同且模相等的向量称为相等向量;
补充:(我们学习的向量是自由向量,也就是说向量不管平移到任何位置,跟原来的向量都是相等向量)
(老师):其实空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,
(学生)在空间中,既有大小又有方向的量
(老师):非常好,请大家类比平面向量得到空间向量的其他相关定义(提问学生)
(学生)回答
现在请同学们阅读教材的84--85页,找出空间向量的相关定义,用类比的方法记忆并填写课件的表格:
(学案):试一试讲解
(老师):在数学中引入一种量以后,一个很自然的问题就是研究它们的运算,空间向量的运算我们也采用与平面向量类比的方法,那么我们首先来复习回顾一下平面向量的加减运算。
(课件)
复习回顾:(找学生回答)
a ;口(学生):1.平面向量的加法法则:(称为三角形法则或平行四边形法则):记为b
几何意义:如图为b a +为平行四边形的对角线OB ,或三角形ABO 中边OB 。
口诀是
2.减法法则:记为b a -;
几何意义:如图中b a -为平行四边形的对角线AC ,方向指向被减向量。
口诀是:
3平面向量、空间向量的运算律: 交换律a b b
a +=+,结合律)()(c
b a
c b a ++=++。
(老师):很好还有没有补充的?
4、推广
(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;
(2) 首尾相接的多个力的和向量构成封闭图形时合力为零。
(老师):很好,同学课下的复习很好。
我们先来探讨这样一个问题 对于两个向量来说空间向量和平面向量有没有区别? 探讨研究: (老师):对于两个向量来说空间向量和平面向量有没有区别? (学生讨论、演示、回答)
(学生)平面向量可在同一平面内平移,而空间向量也可在空间中平移。
平移后的向量与原向量是同一向量。
由此得出:空间任意两个向量都可转化为共面向量。
(老师):结论一:空间任意两个向量都可转化为共面向量。
还能得到什么结论?换句话说空间任意两个向量的加减运算….? (学生)对于任意的空间中的两个向量,。
平面向量的结论都适用
这样我们就能够定义空间向量的加法和减法运算 3、(引导学生归纳总结)用类比(表格)形式对比给出空间向量的相关定义,采用填空形式
12233411n n n
A A A A A A A A A A -++++=12233410n A A A A A A A A ++++=
(老师):三个或者多个向量的加减法怎么办?是否能使用结合律呢?请同学们分组讨论 (老师):分组讨论探究 (老师):哪个小组探究完了,请上台来汇报一下。
(学生)我们认为空间中三个或者多个向量的加法仍然可以应用结合律,演示讲解 (老师): 类比于平面向量的推广,能不能得到空间向量的推广? (学生):(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量;
(3) 首尾相接的多个力的和向量构成封闭图形时合力为零。
(完成表格)
现在我们知道了空间向量的相关定义,得到了空间向量的加减运算法则和运算律我们来练习一下
(学案 试一试内容) 试一试的最后一题
探究:已知平行六面体ABCD-A 1B 1C 1D 1,
一般的,三个不共面的向量和这三个向量有什么关系?
(学生):回答始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量
(老师):同学们做的很好,在平面向量中我们有这样的结论:共起点的两个不共线的向量,利用平行四边形法则,其和向量是平行四边形对角线,那么空间向量中也有相似的结论? 给出表格。
、 (老师):这节课,我们在平面向量的基础上学习了平面向量,接下来给同学们两分钟的时间总结一下这节课的主要内容 (学生)总结: (老师):很好通过这节课的学习,我们学会了空间向量的有关概念 加减运算及其运算律以及空间向量的加减运算在空间几何体中的应用。
现在请大家准备好我们开始课堂自我评价
D
12233411n n n A A A A A A A A A A -++++=12233410n A A A A A A A A ++++=()1,化简下列向量表达式并标出化简结果的向量:'
AB BC AA +-
课代表发题 下课收上来
5、课堂巩固练习:(采用学生做,学生上黑板做题、讲解)
6、探究:(课件)(课本中P92页)结合平行六面体,数形结合,理解空间向量运算的加法
交换律和结合律。
(学生做、学生讨论、学生回答) 总结为:一般地,三个不共面的向量的和可以与分别以这三个向量为边的平行六面题的对
角线建立起联系。
7、思维巩固性练习(快速猜想训练)(课件)训练1、如图,共始点的两个不共线向量的加法
满足平行四边形法则.和向量是平行四边形的对角线。
请问,共始点的三个不共面的向量满足什么法则?和向量是什么向量?
8
9
训练2:如图,已知 , 那么D 是AB 的中 点. 已知O 为⊿ABC 平面外一点,如果
OD OB
OA =+OD OC
OB OA =++A
1、如图,向量 互相平行,标出 c
b a ,,c
b a ++2、如图,已知平行六面体 ,化简下列各表达式,并在图中标出化简结果的向量:
1)2(AA AD AB -+ 1
2
1
) 1 CC
AD AB + + 1111
D C B A ABCD -。