空间向量及其运算教案讲课教案
空间向量及其线性运算(教案)

空间向量及其线性运算(教案)课题:空间向量及其线性运算教学⽬标:1.运⽤类⽐⽅法,经历向量及其运算由平⾯向空间推⼴的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件教学重点:空间向量的概念、空间向量的线性运算及其性质;教学难点:空间向量的线性运算及其性质。
教学过程:⼀、创设情景1、蚂蚁爬⾏的问题引⼊为什么要研究空间向量.2、平⾯向量的概念及其运算法则;⼆、建构数学1.空间向量的概念:在空间,我们把具有⼤⼩和⽅向的量叫做向量注:⑴空间的⼀个平移就是⼀个向量⑵向量⼀般⽤有向线段表⽰同向等长的有向线段表⽰同⼀或相等的向量⑶空间的两个向量可⽤同⼀平⾯内的两条有向线段来表⽰ 2.空间向量的运算定义:与平⾯向量运算⼀样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a ∈=λλ运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++ ⑶数乘分配律:b a b aλλλ+=+)(3.平⾏六⾯体:平⾏四边形ABCD 平移向量a到D C B A ''''的轨迹所形成的⼏何体,叫做平⾏六⾯体,并记作:ABCD -D C B A '''',它的六个⾯都是平⾏四边形,每个⾯的边叫做平⾏六⾯体的棱。
4.共线向量与平⾯向量⼀样,如果表⽰空间向量的有向线段所在的直线互相平⾏或重合,则这些向量叫做共线向量或平⾏向量.a 平⾏于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表⽰a 、b的有向线段所在的直线可能是同⼀直线,也可能是平⾏直线. 5.共线向量定理:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,A / B使a=λb .三、数学运⽤1、例1 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1BA CB +; (2)121AA CB AC ++; (3)AA --1解:(1)11CA BA CB =+ (2)AA =++121(3)11BA CB AC AA =--2、如图,在长⽅体///B D CA OADB -中,1,2,4,3======OK OJ OI OC OB OA ,点E,F 分别是//,B D DB 的中点,设===,,,试⽤向量,,表⽰OE 和OF解:j i OE 423+=2423++=3、课堂练习已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++;(3)1()2AG AB AC -+ .四、回顾总结空间向量的定义与运算法则五、布置作业72页练习2,3《数学之友》选T3.1空间向量及其线性运算BCDMGA。
教案)空间向量及其运算

教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
空间向量及其加减运算精品教案

空间向量及其加减运算【教课目的】1.认识向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。
【教课要点】点在已知平面内的充要条件。
共线、共面定理及其应用。
【教课难点】对点在已知平面内的充要条件的理解与运用。
【讲课种类】新讲课【课时安排】1课时【教课过程】一、复习引入:1.空间向量的观点:在空间,我们把拥有大小和方向的量叫做向量注:(1)空间的一个平移就是一个向量;(2)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量;(3)空间的两个向量可用同一平面内的两条有向线段来表示。
2.空间向量的运算定义:与平面向量运算同样,空间向量的加法、减法与数乘向量运算以下(如图)CbaBb baAOD' C'OB OA AB a b ; BA OA OB a b ;OPa(R)A' B'运算律:( 1)加法互换律:ab b aaD CA B(2)加法联合律: (ab )c a (b c)(3)数乘分派律: (a b)ab3.平行六面体:平行四边形 ABCD 平移向量 a到 A B C D的轨迹所形成的几何体, 叫做平行六面体,并记作:ABCD - A B C D它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。
4.平面向量共线定理方向同样或许相反的非零向量叫做平行向量。
因为任何一组平行向量都能够平移到同一条直线上,所以平行向量也叫做共线向量。
向量 b 与非零向量 a共线的充要条件是有且只有一个实数 λ ,使 b =λ a。
这个定理称为平面向量共线定理,要注意此中对向量a的非零要求。
二、解说新课:1.共线向量与平面向量同样,假如表示空间向量的有向线段所在的直线相互平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于 b 记作 a // b。
和上节我们学习的空间向量的定义、 表示方法、空间向量的相等以及空间向量的加减与数乘运算和运算律都是平面向量的推行同样, 空间向量共线(平行)的定义也是平面向量有关知识的推行。
空间向量及其运算教案讲课教案.docx

第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算教学目标:知识与技能(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
过程与方法(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识情感态度与价值观通过本节课的学习,让学生在掌握知识的同时,体验发现数学的乐趣,从而激发学生努力学习的动力。
教学重点:(1)空间向量的有关概念;(2)空间向量的加减运算及其运算律、几何意义;(3)空间向量的加减运算在空间几何体中的应用教学难点:( 1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解。
课堂类型:新授课教学方法:研讨、探究、启发引导教学用具:多媒体教学过程:一、创设情境(老师):以前我们学过平面向量,请问所有的向量都是平面向量吗?比如:长方体中的过同一点的三条边上的向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生):这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量精品文档板书:空间向量及其运算(老师) : 实际上空间向量我们随处可见,常见的高压电线及支架所在向量。
二、讲授新课(老师) : 接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。
(一)复习回顾平面向量的基本概念1.向量概念:在平面上既有大小又有方向的量叫向量;2.画法:用有向线段AB 画出来;3.表示方式:AB或a(用小写的字母表示);4零向量:在平面中长度为零的向量叫做零向量,零向量的方向是任意的;5.单位向量:在平面中模为 1 的向量称为单位向量;6.相反向量:在平面中长度相等,方向相反的两个向量,互称为相反向量;7.相等向量:在平面中方向相同且模相等的向量称为相等向量;(二)空间向量的基本概念(老师):其实空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,(学生)在空间中,既有大小又有方向的量(老师):非常好,请大家类比平面向量得到空间向量的其他相关定义(提问学生)(学生)回答向量概念、画法、 .表示方式及零向量(零向量的方向是任意的)、单位向量、相反向量、相等向量的概念。
《3.1.1 空间向量及其线性运算》教案

《3.1.1 空间向量及其线性运算》教案一、教学目标:1.运用类比的方法,经历向量及其线性运算由平面向空间推广的过程;2.了解空间向量的概念,掌握空间向量的线性运算及其性质;3.理解空间向量共线(平行)的充要条件及共线向量定理.二、教学重难点:1.空间向量的线性运算及其性质.2.空间向量及其线性运算法则的运算.三、教学方法建议:新授课、启发式——引导发现、合作探究.四、教学过程:(A)类问题(学生自学)1、在平面内既有大小又有方向的量叫平面向量.2、在空间,既有大小又有方向的量叫空间向量.3、空间向量的加法和数乘运算满足的运算律.加法交换律: a b b a +=+;加法结合律:()() a b c a b c ++=++;数乘分配律:(λλλ a b a b +)=+.4、共线向量定理:空间任意两个向量 a , b ( a ≠0 ), a //b 的充要条件是存在实数λ,使 b =λ a .(B)类问题(学生练习,教师点拨)1、如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:(1)1 CB BA +; (2)112AC CB AA ++; (3)1 AA AC CB --.(C)类问题(学生思考,教师点拨)如图,在长方体111OADB CA D B 中,OA=3,OB=4,OC=2,OI=OJ=OK=1,点E,F 分别是DB,D1B1的中点.设 OI i =, OJ j =, OK k =,试用向量 i , j , k 表示OE 和 OF.五、问题解决情况检测:(A)类问题检测(B)类问题检测正方体AC1中,点E,F 分别为棱BC 和A1D1的中点,求证:四边形DEB1F 为平行四边形.(C)类问题检测已知空间四边形ABCD,连结AC,BD,设M,G 分别是BC,CD 的中点,化简下列各表达式,并标出化简结果向量:(1) AB BC CD ++; (2)1()2AB BD BC ++. 六、教学反思:。
空间向量及其运算(优质课)教案

空间向量及其运算(优质课)教案教学目标:1 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2 掌握空间向量的线性运算及其坐标表示;3 掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.教学过程:1.空间向量的有关概念(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律(1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a⊥b .②两向量的数量积已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).规律方法:1.选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.如本例用OA→,OB→,OC→表示OG→,MG→等,另外解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.(2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以在求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.3.数量积的应用:(1)求夹角,设向量a,b所成的角为θ,则cosθ=a·b|a||b|,进而可求两异面直线所成的角;(2)求长度(距离),运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题;(3)解决垂直问题,利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题.类型一空间向量的线性运算例1:如图3-1-6,已知平行六面体ABCD A B C D''''-.求证:2.AC AB AD AC'''++=【解析】:由于在平行六面体中,每个面都是平行四边形,故可结合空间向量加法的平行四边形法则进行向量的运算,从而证明结论.【答案】∵平行六面体的六个面均为平行四边形,,,AC AB AD AB AB AA ''∴=+=+.AD AD AA ''=+∴AC AB AD ''++()()()AB AD AB AA AD AA ''=+++++ 2().AB AD AA '=++又∵,,AA CC AD BC ''==,AB AD AA AB BC CC AC CC AC ''''∴++=++=+=2.AC AB AD AC '''∴++=练习1:如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA →1=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:AP →,A 1N →【答案】(1)AP →=a+c+2b ;(2)A 1N →=-a+b+2c练习2:【2015高考新课标2,理13】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【答案】12类型二 共线定理、共面定理的应用例2:射线AB 、AC 、AD 不共面,连结BC 、CD 、DB ,取AB 、BC 、CD 、DA 的中点E 、F 、G 、H ,如图3-1-20,试判断四边形EFGH 的图形形状,并用向量的方法证明.【答案】解法1:四边形EFGH 是平行四边形. ∵1()2EH EA AH BA AD =+=+=111,(),222BD FG FC CG BC CD BD =+=+=.EH FG ∴=∵E 点不在FG 上,∴EH ∥FG ,且EH =FG ,∴四边形EFGH 是平行四边形. 解法2:∵11(),22HG HD DG AD DC AC =+=+= 11(),22EF EB BF AB BC AC =+=+=∴.HG EF =又H 点不在EF 上, ∴HG ∥EF ,且HG =EF .∴四边形EFGH 是平行四边形.练习1:【2015江苏高考,6】已知向量a =)1,2(,b=)2,1(-,若m a +n b =)8,9(-(R n m ∈,),则n m -的值为______.【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 【答案】3-类型三 空间向量数量积的应用例3:已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值. 【解析】(1)设AB =p,AC =q ,AD =r.由题意可知:|p|=|q|=|r|=a ,且p 、q 、r 三向量两两夹角均为60°.MN=AN -AM =12(AC +AD )-12AB =12(q+r-p ), ∴MN·AB =12(q+r-p )·p =12(q ·p+r ·p-p 2)=12(a 2·cos60°+a 2·cos60°-a 2)=0. ∴MN ⊥AB,同理可证MN ⊥CD.(2)由(1)可知MN=12(q+r-p ) ∴|MN |2=MN 2=14(q+r-p )2=14[q 2+r 2+p 2+2(q ·r-p ·q-r ·p )]=14[a 2+a 2+a 2+2(22a -22a -22a )=14×2a 2=22a . ∴|MN|=22a,∴MN 的长为22a. (3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r)·(q -12p) =12(q2-12q ·p +r ·q -12r ·p)=12(a 2-12a 2cos60°+a 2cos60°-12a 2cos60°)=22a . 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=22a . ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.【答案】(1)见解析(2)MN a.(3)异面直线AN 与CM 所成角的余弦值为23练习1:在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.求BD →1与AC →夹角的余弦值.【答案】设AB =a,AD =b.1AA =cBD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1. ∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→|·|AC →|=66.1.(2014·广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)【答案】B 2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】A3.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直【答案】B4.O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断【答案】B_________________________________________________________________________________ _________________________________________________________________________________基础巩固(1)1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2【答案】D2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B.12a 2C.14a 2 D.34a 2 【答案】C3.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ,μ∈R ,且λμ≠0),则( ) A .c ∥d B .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能 【答案】B4.已知{a ,b ,c }是空间的一个基底,{a +b ,a -b ,c }是空间的另一个基底,一向量p 在基底{a ,b ,c }下的坐标为(4,2,3),则向量p 在基底{a +b ,a -b ,c }下的坐标是( )A .(4,0,3)B .(3,1,3)C .(1,2,3)D .(2,1,3)【答案】B5.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.【答案】60°6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.【答案】657能力提升(2)7.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).【答案】111244a b c ++ 8.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).【答案】锐角9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)若|c |=3,且c ∥BC →,求向量c . (2)求向量a 与向量b 的夹角的余弦值.【答案】解 (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2)=(-2,-1,2), ∴c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ), ∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3, ∴m =±1.∴c =(-2,-1,2)或(2,1,-2). (2)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1,又∵|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a |·|b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. 所以异面直线AG 与CE 所成角的余弦值为23.。
空间向量及其运算 教案
空间向量及其运算 教案教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 教学重、难点:共线、共面定理及其应用. 教学过程:(一)复习:空间向量的概念及表示; (二)新课讲解: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
读作:a 平行于b ,记作://a b.2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ= (λ唯一).推论:如果l 为经过已知点,且平行于已知向量a的直线,那么对任一点O ,点在直线l 上的充要条件是存在实数,满足等式OP OA t AB =+ ①,其中向量a叫做直线l 的方向向量。
在l 上取AB a = ,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+②当12t =时,点是线段AB 的中点,此时1()2OP OA OB =+ ③①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行:已知平面和向量a,作OA a = ,如果直线OA 平行于或在内,那么我们说向量a 平行于平面,记作://a α .说明:空间任意的两向量都是共面的.4.共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的充要条件是存在实数,x y 使alPBAOap xa yb =+.推论:空间一点位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+ 或对空间任一点O ,有OP OM xMA yMB =++ ①上面①式叫做平面MAB 的向量表达式. (三)例题分析:例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++ ,试判断:点与,,A B C 是否一定共面?解:由题意:522OP OA OB OC =++ ,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+ ,即22PA PB PC =-- , 所以,点与,,A B C 共面.说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++(其中1x y z ++=)的四点,,,P A B C 是否共面? 解:∵(1)OP z y OA yOB zOC =--++, ∴()()OP OA y OB OA z OC OA -=-+-, ∴AP y AB z AC =+,∴点与点,,A B C 共面.例2.已知ABCD,从平面AC 外一点O 引向量 ,,,OE kOA OF KOB OG kOC OH kOD ==== , (1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG .E解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+, ∵EG OG OE =- ,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OEEF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅ , ∴//,//EF AB EG AC 所以,平面//AC 平面EG .五、课堂练习:课本第96页练习第1、2、3题.六、课堂小结:1.共线向量定理和共面向量定理及其推论; 2.空间直线、平面的向量参数方程和线段中点向量公式. 七、作业:1.已知两个非零向量21,e e 不共线,如果21AB e e =+ ,2128AC e e =+,2133AD e e =- ,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠ ,若//a b ,求实数,x y 的值。
空间向量及其运算教案
向量在空间直角坐标系中的坐标的求法:设 A ( x1 , y1 , z1 ) ,B ( x2 , y2 , z2 ) ,则 AB = OB - OA = ( x2 , y2 , z2 ) - ( x1 , y1 , z1 ) = ( x2 x1 , y2 y1 , z2 z1 ) . 向量的直角坐标运算:设 a= (a1 , a2 , a3 ) ,b= (b1 , b2 , b3 ) ,则 ⑴a+b= (a1 b1 , a2 b2 , a3 b3 ) ; ⑶λa= ( a1 , a2 , a3 ) ( R ) ; ⑵a-b= (a1 b1 , a2 b2 , a3 b3 ) ; ⑷a·b= a1b1 a2b2 a3b3
变式训练 2:已知空间四边形 OABC 中,M 为 BC 的中点,N 为 AC 的中点,P 为 OA 的中
3
点,Q 为 OB 的中点,若 AB=OC,求证 PM
QN
.
例 2. 已知 O 为原点,向量 OA 3,0,1 , OB 1,1, 2 , OC OA, BC ∥ OA ,求 AC .
例 3. 如图,多面体是由底面为 ABCD 的长方体被截面 AEFG 所截而得,其中 AB=4,BC F =1,BE=3,CF=4. Z (1) 求 EF 和点 G 的坐标; (2) 求 GE 与平面 ABCD 所成的角; E G D (3) 求点 C 到截面 AEFG 的距离. y C A B x
4、空间向量运算的坐标表示 —— 夹角和距离公式 向量的模:设 a= (a1 , a2 , a3 ) ,b= (b1 , b2 , b3 ) ,求这两个向量的模.
2 2 2 |a|= a12 a2 a3 ,|b|= b12 b2 b32 .这两个式子我们称为向量的长度公式.
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
3.1空间向量及其运算教学设计教案
3.1空间向量及其运算教学设计教案第一篇:3.1空间向量及其运算教学设计教案教学准备1.教学目标(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。
2.教学重点/难点【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用3.教学用具多媒体4.标签3.1.1空间向量及其加减运算教学过程课堂小结 1.空间向量的概念: 2.空间向量的加减运算课后习题第二篇:3.1空间向量及其运算教学设计教案教学准备1.教学目标1、知识与技能:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示,会在简单问题中选用空间三个不共面向量作为基底表示其他向量。
2、过程与方法:通过类比、推广等思想方法,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会类比、推广的思想方法,对向量加深理解。
3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断拓展创新的学习习惯和品质。
2.教学重点/难点重点:理解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示;难点:理解空间向量基本定理;3.教学用具多媒体设备4.标签教学过程教学过程设计(一).复习引入1、共线向量定理:2、共面向量定理:3、平面向量基本定理:4、平面向量的正交分解:(二)、新课探究:探究一.空间向量基本定理2、空间向量基本定理3、注意:对于基底{a,b,c},除了应知道向量a,b,c不共面,还应明确(1)任意不共面的三个向量都可做为空间的一个基底。
(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是零向量。
(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算
教学目标:
知识与技能(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何
体加深对运算的理解。
过程与方法(1)培养学生的类比思想、转化思想,数形结合思想,培养探
究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运
算及其运算律的意义。
(3)培养学生空间向量的应用意识
情感态度与价值观通过本节课的学习,让学生在掌握知识的同时,体验发现数学的乐趣,从而激发学生努力学习的动力。
教学重点:(1)空间向量的有关概念;
(2)空间向量的加减运算及其运算律、几何意义;
(3)空间向量的加减运算在空间几何体中的应用
教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解。
课堂类型:新授课
教学方法:研讨、探究、启发引导
教学用具:多媒体
教学过程:
一、创设情境
(老师):以前我们学过平面向量,请问所有的向量都是平面向量吗?比如:长
方体中的过同一点的三条边上的向量
(老师):这三个向量和以前我们学过的向量有什么不同?
(学生):这是三个向量不共面
(老师):不共面的向量问题能直接用平面向量来解决么?
(学生):不能,得用空间向量
(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量
板书:空间向量及其运算
(老师):实际上空间向量我们随处可见,常见的高压电线及支架所在向量。
二、讲授新课
(老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量的知识。
(一)复习回顾平面向量的基本概念
1.向量概念:在平面上既有大小又有方向的量叫向量;
2.画法:用有向线段AB画出来;
3.表示方式:AB或a(用小写的字母表示);
4零向量:在平面中长度为零的向量叫做零向量,零向量的方向是任意的;
5.单位向量:在平面中模为1的向量称为单位向量;
6.相反向量:在平面中长度相等,方向相反的两个向量,互称为相反向量;
7.相等向量:在平面中方向相同且模相等的向量称为相等向量;
(二)空间向量的基本概念
(老师):其实空间向量就是把向量放到空间中了,请同学们给空间向量下个定义,
(学生)在空间中,既有大小又有方向的量
(老师):非常好,请大家类比平面向量得到空间向量的其他相关定义(提问学生)
(学生)回答向量概念、画法、.表示方式及零向量(零向量的方向是任意的)、单位向量、相反向量、相等向量的概念。
(老师):得到空间向量的相关定义,我们做几个题巩固一下(见课件)
(三)复习回顾平面向量的加减运算
(老师):在数学中引入一种量以后,一个很自然的问题就是研究它们的运算,空间向量的运算我们也采用与平面向量类比的方法,那么我们首先来复习回顾一下平面向量的加减运算。
(课件)
复习回顾:(找学生回答)
(学生):1.平面向量的加法法则:(称为三角形法则或平行四边形法则):记为a+;
b
a+为平行四边形的对角线OB,或三角形ABO中边OB。
几何意义:如图为b
口诀是首尾相连或相同起点。
a-;
2.减法法则:记为b
a-为平行四边形的对角线AC,方向指向被减向量。
口诀几何意义:如图中b
是:减向量终点指向被减向量终点。
3平面向量运算律:
交换律a b b a +=+,结合律)()(c b a c b a ++=++。
(老师):很好还有没有补充的?
(老师):很好,同学课下的复习很好。
我们先来探讨这样一个问题
对于两个向量来说空间向量和平面向量有没有区别?
探讨研究:
(老师):对于两个向量来说空间向量和平面向量有没有区别?
(学生讨论、演示、回答)
(学生)平面向量可在同一平面内平移,而空间向量也可在空间中平移。
平移后的向量与原向量是同一向量。
由此得出:空间任意两个向量都可转化为共面向量。
(四)空间向量加减法运算
(老师):结论一:空间任意两个向量都可转化为共面向量。
还能得到什么结论?换句话说空间任意两个向量的加减运算….?
(学生)对于任意的空间中的两个向量,。
平面向量的结论都适用
(引导学生归纳总结)用类比形式对比给出空间向量的相关定义,(课件) (老师):空间中两个向量的问题就是平面向量的问题,那么三个向量呢?多个向量呢?
(老师):三个或者多个向量的加减法怎么办?是否能使用结合律呢?请同学们分组讨论
(老师):分组讨论探究
(老师):哪个小组探究完了,请上台来汇报一下。
(学生)我们认为空间中三个或者多个向量的加法仍然可以应用结合律,演示讲解
(老师): 类比于平面向量的推广,能不能得到空间向量的推广?
(学生):(1)首尾相接的若干向量之和,等于由起始向量的起点指
向末尾向量的终点的向量;
(2)首尾相接的多个力的和向量构成封闭图形时合力为零。
现在我们知道了空间向量的相关定义,得到了空间向量的加减运算法则和运算律我们来练习一下
探究:已知平行六面体ABCD-A 1B 1C 1D 1,
12233411n n n A A A A A A A A A A -++++=12233410n A A A A A A A A ++++=()1,化简下列向量表达式并标出化简结果的向量:'
AB BC AA +-
一般的,三个不共面的向量和这三个向量有什么关系?
(学生):回答始点相同的三个不共面向量之和,等于以这三个向量
为棱的平行六面体的以公共始点为始点的对角线建立起联系。
三、课堂小结:
(老师):这节课,我们在平面向量的基础上学习了平面向量,接下来给同学们两分钟的时间总结一下这节课的主要内容
(学生)总结:
(老师):很好通过这节课的学习,我们学会了空间向量的有关概念,加减运算及其运算律以及空间向量的加减运算在空间几何体中的应用。
四、巩固练习:P86页2、3
五、布置作业P97页第1题
板书设计
教学反思。