[精品]《机械设计基础》第五版直齿圆柱齿轮齿面接触疲劳强度计算
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(齿轮传动)

圣才电子书
(2)齿面点蚀
十万种考研考证电子书、题库视频学习平台
①产生原因
a.疲劳点蚀首先出现在齿根表面靠近节线处;
b.在该处同时啮合的齿数较少,接触应力较大;
c.在该区域齿面相对运动速度低,难于形成油膜润滑,故所受的摩擦力较大;
d.在摩擦力和接触应力作用下,容易产生点蚀现象。
6 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
④传递动力的齿轮,其模数不宜小于 1.5mm。 ⑤对于开式传动,考虑到齿面磨损,可将算得的 m 值加大 10%~15%。
2.计算载荷
计算齿轮强度时,通常用计算载荷 KFn 代替名义载荷 Fn ,其中 K 为载荷系数。
五、直齿圆柱齿轮传动的齿面接触强度计算 齿面接触疲劳强度校核公式为
设计公式为
式中,“+”用于外啮合,“-”用于内啮合; ZE ——弹性系数; ZH ——区域系数,对于标准齿轮, ZH 2.5 。
H 应取配对齿轮中的较小的接触应力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 11 章 齿轮传动
11.1 复习笔记
一、轮齿的失效形式和设计计算准则 1.轮齿的失效形式 轮齿的主要失效形式有 5 种:轮齿折断、齿面点蚀、齿面胶合、齿面磨损和齿面塑性 变形。 (1)轮齿折断 ①产生原因 轮齿折断一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中。 ②主要类型 a.过载折断 轮齿因短时意外的严重过载而引起的突然折断,称为过载折断。 b.疲劳折断 在载荷的多次重复作用下,弯曲应力超过弯曲疲劳极限时,齿根部分将产生疲劳裂纹, 裂纹的逐渐扩展最终将引起轮齿折断,这种折断称为疲劳折断。 ③单(双)侧工作 a.若轮齿单侧工作,就任一侧而言,其应力都是按脉动循环变化。 b.若轮齿双侧工作,则弯曲应力可按对称循环变化作近似计算。
标准直齿圆柱齿轮齿面接触疲劳强度计算

三、标准直齿圆柱齿轮齿面接触疲劳强度
1.齿轮齿面接触疲劳强度条件
H ZH ZE Z
2KT1 bd12
u u
1
[ H
]
2.按齿面接触疲劳强度的设计式
a
u 1
3
KT1
2 a u
ZH ZE Z
H
2
mm
d1
3
2KT1
d
u 1
u
ZH ZE Z
H
2
mm
a
b a
;
d
ห้องสมุดไป่ตู้
b d1
5-5 标准直齿圆柱齿轮齿面接触疲劳强度计算 三、标准直齿圆柱齿轮齿面接触疲劳强度
5-5 标准直齿圆柱齿轮齿面接触疲劳强度计算 一、圆柱体的接触应力
H
Fn 2 E2
σH =
Fn
1
LρΣ
π
1
- μ12 E1
+ 1 - μ22 E2
Fn — 法向总压力
H
1 E1
L — 接触线长度 E1、E2 — 弹性模量
L
μ1、μ2 — 泊松比
ρΣ — 两圆柱体综合曲率半径
5-5 标准直齿圆柱齿轮齿面接触疲劳强度计算
5-5 标准直齿圆柱齿轮齿面接触疲劳强度计算 二、标准直齿圆柱齿轮齿面接触应力 4.齿轮齿面接触应力
弹性系数:ZE
1
[(1 12 ) (1 22 )]
E1
E2
表5 5
节点区域系数:ZH
2
sin cos
齿轮齿面接触应力
H ZH ZE Z
2KT1 u 1 bd12 u
N/mm2
5-5 标准直齿圆柱齿轮齿面接触疲劳强度计算
15直齿圆柱齿轮传动的强度计算

二、齿轮传动的强度计算
齿轮传动的强度计算是根据轮齿可能出现的失效形式和 设计准则来进行的,由于轮齿的主要失效形式是齿面疲劳点 蚀和轮齿疲劳折断,因此只讨论齿面接触疲劳强度和齿根弯 曲疲劳强度的计算
1.齿面接触疲劳强度计算 1.齿面接触疲劳强度计算
针对齿面点蚀失效进行的 齿面点蚀是因为接触应力过大引起的。 接触应力过大引起的 齿面点蚀是因为接触应力过大引起的。齿轮啮合可看 作是分别以接触处的曲率半径ρ 作是分别以接触处的曲率半径ρl、ρ2为半径的两个圆柱 赫兹应力公式计算 体的接触,其最大接触应力可由赫兹应力公式计算, 体的接触,其最大接触应力可由赫兹应力公式计算,即
10.10 直齿圆柱齿轮传动的强度计算 一、轮齿的受力分析与计算载荷
轮齿的受力分析
以主动轮O1为受力体,受Fn、T1,见右图 主动轮O 为受力体, 可分解为两个相互垂直的力: Fn可分解为两个相互垂直的力: Ft——圆周力 圆周力 Fr——径向力 径向力 根据力的平衡,有:
其中: 其中: 主动轮传递的转矩N mm T1 -主动轮传递的转矩N·mm 主动轮分度圆直径mm; mm;非标准时用节圆直径代替 d1 -主动轮分度圆直径mm;非标准时用节圆直径代替
对于斜齿圆柱齿轮传动从前端面进入啮合到后端面脱离啮合其在啮合线上的长度比直齿圆柱齿轮增加了btg斜齿圆柱齿轮的啮合面斜齿圆柱齿轮传动的重合度端面重合度附加重合度附加重合度是由于齿的倾斜而产生它随齿宽b和的增大而增大这是斜齿轮传动平稳承载能力较高的原因之一当量齿轮及当量齿数在研究斜齿轮法面齿形时可以虚拟一个与斜齿轮的法面齿形相当的直齿轮称这个虚拟的直齿轮为该斜齿的当量齿轮其齿数则称四斜齿圆柱齿轮的当量齿数和最小齿数在进行强度计算和用成形法加工齿轮选择铣刀时必须知道斜齿轮的法面齿形通常用近似的方法来分析做法如图所示过斜齿轮分度圆柱上齿廓的任一点c作齿的法面nn该法面与分度圆柱面的交线为一椭圆椭圆的长半轴为
《机械设计基础》习题(含答案)及答案

机械设计基础复习题(一)一、判断题:正确的打符号√,错误的打符号×1.在实际生产中,有时也利用机构的"死点"位置夹紧工件。
( )2. 机构具有确定的运动的条件是:原动件的个数等于机构的自由度数。
( ) 3.若力的作用线通过矩心,则力矩为零。
( )4.平面连杆机构中,连杆与从动件之间所夹锐角称为压力角。
( )5.带传动中,打滑现象是不可避免的。
( )6.在平面连杆机构中,连杆与曲柄是同时存在的,即只要有连杆就一定有曲柄。
( )7.标准齿轮分度圆上的齿厚和齿槽宽相等。
( )8.平键的工作面是两个侧面。
( )910.螺纹中径是螺纹的公称直径。
()1112.在运动副中,高副是点接触,低副是线接触。
1314151617 ( ) 18.代号为6205( )( ).直齿圆柱齿轮的正确啮合条件是相等,相等。
带传动设计中,为了限制带的弯曲应力,应对带轮的加以限制。
4.硬齿面齿轮常用渗碳淬火来得到,热处理后需要加工。
5.要将主动件的连续转动转换为从动件的间歇转动,可用机构。
6.轴上零件的轴向固定方法有、、、等。
7.常用的滑动轴承材料分为、、三类。
8.齿轮轮齿的切削加工方法按其原理可分为和两类。
9.凸轮机构按从动件的运动形式和相对位置分类,可分为直动从动件凸轮机构和凸轮机构。
10.带传动的主要失效形式是、及带与带轮的磨损。
11.蜗杆传动对蜗杆导程角和蜗轮螺旋角的要求是两者大小和旋向。
闭式蜗杆传动必须进行以控制油温。
12.软齿面齿轮常用中碳钢或中碳合金钢制造,其中大齿轮一般经处理,而小齿轮采用处理。
13.若要将主动件的往复摆动转换为从动件的间歇转动,可用机构。
14.只传递扭矩而不受弯矩的轴称为,同时承受扭矩和弯矩的轴称为。
15.滑动轴承与轴颈表面直接接触的部分称为。
三、单项选择题1.作用在刚体上的二力平衡条件是( )。
A.大小相等、方向相反、作用线相同、作用在两个相互作用物体上B.大小相等、方向相反、作用线相同、作用在同一刚体上C.大小相等、方向相同、作用钱相同、作用在同一刚体上D.大小相等、方向相反、作用点相同2.下列机构中,不属于间歇机构的是( )。
圆柱齿轮传动的强度计算

1 直齿圆柱齿轮传动的强度计算1.齿面接触疲劳强度计算为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算。
因此,齿轮接触疲劳强度计算准则为:齿面接触应力σH小于或等于许用接触应力σHP,即σH≤σHP赫兹公式由于直齿轮在节点附近往往是单对齿啮合区,轮齿受力较大,故点蚀首先出现在节点附近。
因此,通常计算节点的接触疲劳强度。
图a表示一对渐开线直齿圆柱齿轮在节点接触的情况。
为了简化计算,用一对轴线平行的圆柱体代替它。
两圆柱的半径ρ1、ρ2分别等于两齿廓在节点处的曲率半径,如图b所示。
由弹性力学可知,当一对轴线平行的圆柱体相接触并受压力作用时,将由线接触变为面接触,其接触面为一狭长矩形,在接触面上产生接触应力,并且最大接触应力位于接触区中线上,其数值为式中σH-接触应力〔Mpa〕Fn-法向力〔N〕L-接触线长度〔mm〕rS-综合曲率半径〔mm〕;±-正号用于外接触,负号用于内接触ZE-材料弹性系数〔〕,,其中E1、E2分别为两圆柱体材料的弹性模量〔MPa〕;m1、m2分别为两圆柱体材料的泊松比。
上式说明接触应力应随齿廓上各接触点的综合曲率半径的变化而不同,且靠近节点的齿根处最大〔图c、d〕。
但为了简化计算,通常控制节点处的接触应力。
节点处的参数〔1〕综合曲率半径由图可知,,代入rE公式得式中:,称为齿数比。
对减速传动,u=i;对增速传动,u=1/i。
因,则有〔2〕计算法向力〔3〕接触线长度L引入重合度系数Ze,令接触线长度将上述参数代入最大接触应力公式得接触疲劳强度计算公式令,称为节点区域系数。
则得(1) 齿面接触疲劳强度的校核公式齿面接触疲劳强度的校核公式为(2) 齿面接触疲劳强度设计公式设齿宽系数,并将代入上式,则得齿面接触疲劳强度的设计公式式中:d1-小齿轮分度圆直径〔mm〕;ZE-材料弹性系数(),按下表查取;注:泊松比m1=m2=0.3Z H-节点区域系数,考虑节点处轮廓曲率对接触应力的影响,可由下左图查取。
机械设计基础第五版直齿圆柱齿轮齿面接触疲劳强计算

近威得节克点提处出最,容一易直沿发用生至点
蚀今),:故取节点处的应力
作为计算依据。
节点C处:
1
N1C
d1 2
sin
2
N2C
d2 2
sin
u z2 d2 d2 2
C
z1 d1 d1 1
1 1 1 2 1
1 2
1 2
2(d2 d1)
d1d2 sin
2 (u 1)
d1 sin u
法向计算载荷:
Fnc
2 KT1
d1 cos
重合度系数:
Z
4
3
计入以上参数后, 得:
接触线长度:
b
L
Z
2
端面重合度:
1.88
3.2
1 z1
1 z2
cos
H
1
1
12
E1
1 22
E22Leabharlann sincos Z2KT1 u 1 bd12 u
ZE
1
(1 12 1 22 )
d1
Ad 3
T1
d H
2
u 1 u
Ad值见表4-8
H
2
几点说明:
① H1 H 2
② 设计式中代入的是min{[σH]1,[σH]2}, 计算偏于安全。
③齿轮传动的接触疲劳强度取决于中心距或齿轮分度 圆直径。 ④ Φd 。 当Φd过大时,会使轮齿受力不均。为便于装 配和调整,b1=b2+5~10mm。
若设计新的齿轮传动时,尺寸均未知,分度圆直径 的初步计算公式:
E1
E2
ZH
2
sin cos
解决设计齿轮传动时齿面接触疲劳强度不够的问题
1
H
设计式:
d1
3
2KT1
d
1ZLeabharlann ZH ZH 2 直齿面接触强度的计算
• 参数取值说明
影接直齿轮齿面接触强度的因素分析
• 从赫兹接触应力公式的校核式中可以得出影响齿 面接触强度的因素主要有:
• ZE---弹性系数 • d1---主动轮分度圆直径 • µ---大齿轮齿数Z2与小齿轮齿数Z1之比。
原因
• 齿面接触疲劳强度不够造成齿轮失效
具体分析
• 直齿轮齿面接触强度的计算 • 影接直齿轮齿面接触强度的因素分析 • 解决方案
直齿面接触强度的计算
• 赫兹接触应力公式
H
1
Fn
L
1
12
E1
1 22
E2
H
直齿面接触强度的计算
P H
整理得:
校核式:
H ZEZH Z
2KT1 bd12
解决方案
• 齿面接触疲劳强度不够则表示许用接触应力过小, 这时必须降低接触应力,具体易于改变的变量可 以是:
• 降低弹性系数ZE • 增大主动轮分度圆直径d1
解决方案
• 具体解决办法: • 使用弹性系数较低材料的齿轮,比如说灰铸铁齿
轮 • 增大主动轮分度圆直径,使用直径更大的齿轮来
设计该齿轮传动
单级直齿圆柱齿轮减速器计算
单级直齿圆柱齿轮减速器计算、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。
查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。
则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为:σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s 因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。
《机械设计基础》 项目8 齿轮系传动承载能力分析与设计 例8-1
例8-1 设计一单级直齿圆柱齿轮减速器。
已知:传递功率P =10Kw ,电动机驱动,小齿轮转速n 1=955r/min ,传动比i =4,单向运转,载荷平稳。
使用寿命10年,单班制工作。
解 (1)选择齿轮材料及精度等级小齿轮选用45钢调质,硬度为220HBS ;大齿轮选用45钢正火,硬度为180HBS 。
因为是普通减速器,由表7-8选8级精度,要求齿面粗糙度R a ≤3.2~6.3μm 。
(2)按齿面接触疲劳强度设计因两齿轮均为钢质齿轮,可应用式(8-9)求出d 1值,确定有关参数与系数; ① 转矩T 166511109.55109.551010(N m)955P T n =⨯=⨯⨯=⋅ ② 载荷系数K 及材料的弹性系数Z E查表8-3取K =1.1;查表8-4得Z E =189.8③ 齿数z 1和齿宽系数Ψd小齿轮的齿数z 1取为25,则大齿轮齿数z 2=100。
因单级齿轮传动为对称布置,而齿轮齿面又为软齿面,由表8-7选取Ψd =1。
④ 许用接触应力[σH ]由图8-17查得σH1im1=560MPa ,σHlim2=530MPa 。
由表8-2查得S H =1N 1=60njL h =60×955×1×(10×52×40)=1.19×1099821 1.2110 3.03104N N i ⨯===⨯ 查图8-16得Z N1=1,Z N2=1.06由式(8-4)可得1lim111560[]560(MPa)1N H H H z S σσ⋅⨯=== 2lim22 1.06530[]562(MPa)1N H H H z S σσ⋅⨯=== 故158.06(mm)d 1158.06 2.32(mm)25d m Z === 取标准模数m=2.5mm 。
(3)主要尺寸计算d 1=mz 1=2.5×25=62.5(mm )d 2=mz 2=2.5×100=250(mm )b =Ψd˙d 1=1×62.5=62.5(mm )经圆整后取 b 2=65mm ;b 1=b 2+5=70(mm )a=21m (z 1+z 2)=21×2.5×(25+100)=156.25(mm ) 按齿根弯曲疲劳强度校核由式(8-10)求出σF ,如σF ≤[σF ],则校核合格。
机械设计基础试题(含答案)
二、填空题16.槽轮机构的主要参数是 和 。
17.机械速度的波动可分为 和 两类。
18.轴向尺寸较大的回转件,应进行 平衡,平衡时要选择 个回转平面。
19.当一对齿轮的材料、齿数比一定时,影响齿面接触强度的几何尺寸参数主要是 和 。
20.直齿圆柱齿轮作接触强度计算时,取 处的接触应力为计算依据,其载荷由 对轮齿承担。
21.蜗杆传动作接触强度计算时,铝铁青铜ZCuAl10Fe 3制作的蜗轮,承载能力取决于抗 能力;锡青铜ZCuSn10P 1制作的蜗轮,承载能力取决于抗 能力。
22.若带传动的初拉力一定,增大 和 都可提高带传动的极限摩擦力。
23.滚子链传动中,链的 链速是常数,而其 链速是变化的。
24.轴如按受载性质区分,主要受 的轴为心轴,主要受 的轴为传动轴。
25.非液体摩擦滑动轴承进行工作能力计算时,为了防止过度磨损,必须使 ;而为了防止过热必须使 。
16.槽数z 拨盘圆销数K 17. 周期性 非周期性 18.动 两19. 分度圆直径d 1(或中心距a ) 齿宽b20. 节点 一 21. 胶合 点蚀22.包角1α 摩擦系数23. 平均 瞬时24.弯矩 扭矩25. [][]υυp p p p ≤≤三、分析题26. 图1所示链铰四杆机构中,各构件的长度为a =250mm,b =650mm,C =450mm,d =550mm 。
试问:该机构是哪种铰链四杆机构,并说明理由。
图1最短杆与最长杆长度之和(250+650)小于其余两杆长度之和(450+550),满足存在曲柄的必要条件,且最短杆为连架杆。
故该铰链四杆机构为曲柄摇杆机构。
27.图2所示展开式二级斜齿圆柱齿轮传动,I轴为输入轴,已知小齿轮1的转向n1和齿轮1、2的轮齿旋向如图所示。
为使中间轴II所受的轴向力可抵消一部分,试确定斜齿轮3的轮齿旋向,并在图上标出齿轮2、3所受的圆周力F t2、F t3和轴向力F a2、F a3的方向。
(垂直纸面的力,向纸内画稍,向纸外画⊙)27.答案参见第27题答案图斜齿轮3、4的轮齿旋向Ft2、Fa2、Ft3、Fa3的方向28.计算图3所示机构的自由度(若图中含有复合铰链、局部自由度和虚约束等情况时,应具体指出)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法向计算载荷:
Fnc 2 KT1 d1 cos
接触线长度:
L b 2 Z
重合度系数:
4 Z 3
端面重合度:
1 1 1.88 3.2 z z cos 2 1
计入以上参数后, 得:
H
2 Z 2 2 sincos 1 1 1 2 E E 1 2
1 N1C
节点C处:
2 N 2C
d1 sin 2
d2 sin 2
C
2 z2 d 2 d 2 u 1 z1 d1 d1
2 1 1 2 1 2
1 1 1 2( d 2 d1 ) d1d 2 sin 2 (u 1) d1 sin u
4.5.1直齿圆柱齿轮齿面接触疲劳强度计算
L ★思路: 齿轮强度计算是根据齿轮可能出现的失效形式来进
行的。在一般闭式齿轮传动中,轮齿的失效主要是 计算模型:两平行圆柱体相 齿面接触疲劳点蚀和轮齿弯曲疲劳折断。齿面疲劳 接触的赫兹( 1881年提出)公式:
点蚀与齿面接触应力的大小有关,而齿面的最大接 触应力可近似用赫兹公式进行计算。
③齿轮传动的接触疲劳强度取决于中心距或齿轮分度
圆直径。 ④ Φd 。 当Φd过大时,会使轮齿受力不均。为便于装
配和调整,b1=b2+5~10mm。
若设计新的齿轮传动时,尺寸均未知,分度圆直径 的初步计算公式:
d1 Ad 3
Ad值见表4-8
d H T1来自2u 1 u Fn 1 2 L 1 12 1 2 E2 E1 H
H
Fn——法向载荷(N); L——接触线长度(mm); μ1、μ2
——
——综合曲率半径 (mm)。
1
泊松比;
E1、E2--弹性模量
1
1
1
2
实验表明:齿根部分靠 ◆应用到齿轮中(1908年 近节点处最容易发生点 威得克提出,一直沿用至 蚀,故取节点处的应力 今): 作为计算依据。
1
2 KT1 u 1 bd12 u
ZE
1 1 1 1 2 ( ) E1 E2
2 2
2 ZH sin cos
ZH-区域系数,图4-14(标准直齿轮时α=20°, ZH =2.5)
ZE-弹性影响系数, 表4-6
校核计算 Z Z Z H E H 式为:
2 KT1 u 1 H 2 bd1 u
令ψd=b/d1代入校核计算式,并整理得设计计算式:
2 KT1 u 1 Z E Z H Z 设计计算 3 d1 式为: d u H
2
几点说明:
① H1 H 2 ② 设计式中代入的是min{[σH]1,[σH]2},
计算偏于安全。