变频器控制电路设计方法

合集下载

变频器常用的控制电路

变频器常用的控制电路

这些输入输出分配地址。这里的PLC采用三菱FX2N-48MR继电器输出型PLC,变频器
采用三菱FR-A540变频器,其起停控制的I/O分配如表4.1所示。
输入
输出
输入继电器 X0 X1 X2 X3 X4
输入元件 SB1 SB2 SB3 SB4 A-C
作用
输出继电器
接通电源按 钮
Y0
切断电源按

Y1
变频器起动
即具有记忆功能;在A地按下SB5或在B地按下SB6按钮,RM端子接通,频率下降,松开按
钮,则频率保持。从而在异地控制时,电动机的转速都是在原有的基础上升降的,很好地实
现了两地控制时速度的衔接。
图4.7 升降速端子实现的两地控制电路
4.6 变频器并联控制电路
• 变频器的并联运行、比例运行多用于传送带、流水线的控制场合。 • 一、由模拟电压输入端子控制的并联运行 • 1.运行要求 • (1) 变频器的电源通过接触器由控制电路控制; • (2) 通电按钮能保证变频器持续通电; • (3) 运行按钮能保证变频器连续运行,且运行过程中变频器不能断电; • (4) 停止按钮只用于停止变频器的运行,而不能切断变频器的电源。 • (5) 任何一个变频器故障报警时都要切断控制电路,从而切断变频器的电源。 • 2.主电路的设计过程 • (1) 空气开关QF控制电路总电源,KM控制两台变频器的通、断电; • (2) 两台变频器的电源输入端并联; • (3) 两台变频器的VRF、COM端并联; • (4) 两台变频器的运行端子由继电器触点控制。
两种情况及特点:
• 2.模拟电流控制端子IRF • 大多是反馈信号或远程控制信号。
• 二、接点控制端子的通断控制
• 接点控制端子是以“通”、“断”来进行控制的,因此其控制 信号也是以“有”和“无”相区别。应用时可由以下信号进行 控制:

变频器原理及接线图

变频器原理及接线图

五、变频器的主要功能操作键说明
主要功能
PRG
FUNC/DATA ∧,∨ SHIFT》 RESET 由现行画面转换为菜单画面,或者在运行?跳闸模式转换至其初始 画面 LED监视更换,设定频率存入,功能代码数据存入。 数据变更,游标上下移动(选择),画面轮换 数据变更时数位移动,功能组跳越(同时按此键和增加或减少键) 数据变更取消,显示画面转换。报警复位(仅在报警初始画面显示 时有效)
5
具有多种信号输入输出端口,非常方便接入 通讯网络控制,实现生产自动化控制
交直交变频器系统框图

整流部分 交流 直流
直流中间电路
逆变部分 直流 交流
M
控制系统
控制电路完成对主电路的控制,整流电路将交流电变换成直流电, 直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流 电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的 变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的 电路。
(2)F02运行操作
该参数设定的目的是将键盘面板上的启停运行功能移植 到外接开关上 当F02参数为0时:启停调整由键盘面板的绿色按钮设定 当F02参数为1时:启停调整由外接开关控制(常开辅助触头)
(3)F03 F04
最高频率 基本频率
不知道同学们有没有注意,我们的变频器的最高频率为60HZ,其实变 频器的最高输出频率和额定频率都是可以调节的,但其设定值应和驱动 装置匹配,如果设定值过大,则有可能损坏电动机。 最高频率的设定范围: G11S:50 ~ 400Hz 基本频率(额定频率)
功率控制功能:(C01~C33)
电动机1参数:(P01~P09) 电动机2参数:(A01~A18)
高级功能:(H03~H39)

《变频及伺服应用技术》优质教案

《变频及伺服应用技术》优质教案

《变频及伺服应用技术》优质教案一、教学内容本节课选自《电气自动化技术》教材第十二章《变频及伺服应用技术》,详细内容包括:变频调速原理、变频器的种类及选型、变频器控制电路设计、伺服系统的组成及原理、伺服驱动器的应用和调试。

二、教学目标1. 掌握变频调速的原理及其在实际工程中的应用。

2. 学会分析变频器的种类及选型,能根据实际需求进行合理选择。

3. 能够设计简单的变频器控制电路,并了解伺服系统的组成及原理。

三、教学难点与重点重点:变频调速原理、变频器及伺服驱动器的选型和应用。

难点:变频器控制电路设计、伺服系统的调试。

四、教具与学具准备1. 教具:PPT、板书、实物模型、示波器、万用表。

2. 学具:笔记本、教材、实验箱、变频器、伺服驱动器。

五、教学过程1. 导入:通过展示实际工程中应用的变频及伺服系统,引起学生兴趣,引出本节课的主题。

2. 理论讲解:(1)变频调速原理:讲解变频器的工作原理,以及变频调速的优点。

(2)变频器种类及选型:分析不同类型变频器的特点,指导学生如何进行选型。

(3)变频器控制电路设计:讲解设计方法,结合实例进行说明。

(4)伺服系统组成及原理:介绍伺服系统的基本构成,讲解其工作原理。

(5)伺服驱动器应用及调试:分析伺服驱动器的应用场景,讲解调试方法。

3. 实践操作:(1)学生分组进行变频器控制电路的设计与搭建。

(2)学生进行伺服系统的调试,观察并记录实验数据。

4. 例题讲解:结合教材中的例题,进行详细讲解,巩固所学知识。

5. 随堂练习:布置相关的练习题,让学生及时巩固所学知识。

六、板书设计1. 变频调速原理2. 变频器种类及选型3. 变频器控制电路设计4. 伺服系统组成及原理5. 伺服驱动器应用及调试七、作业设计1. 作业题目:(1)简述变频调速原理及其优点。

(2)分析变频器选型的依据,举例说明。

(3)设计一个简单的变频器控制电路。

(4)简述伺服系统的组成及工作原理。

2. 答案:(1)见教材第十二章第一节。

变频器控制电动机正反转设计

变频器控制电动机正反转设计
10 6
东瞧晨 舛技
21年 期 01 第3
变频 器 控 制 电动机 正反 转设 计
刘 萍
( 黑龙 江龙煤集 团鹤 岗分公司热电厂, 黑龙 江 鹤 岗 140 ) 5 10


该文介绍 了当前流行的节能设备变 频器 的原理 , 并针对最常用 的电动机正 反转控制进 行 了简 单设 计。采用理论 与应用 相结合 的方
・收稿 日期 :0 0— O一2 21 1 8
作者简 介: 刘萍 (94一) 大学 , 17 , 工程师 , 黑龙江龙 煤集 团鹤 岗热
路 由两部 分组 成 : 电动机工作主电路和实现电动机正反转 目的 的控 制 电 路 。主电路包括交 流接触 器 K 的主触 头 、 M 变频器 内 置 的正相序 和反 相序 A / C A D D / C变换 器 以及 三相 交 流电动机 M 等。控制电路包括变频器 U F的 内置辅 助 电路 , 制按 钮 S 1 S 2 停 止按 钮 S 3 正 反转 控 制 控 B 、B , B,
图 2 电压 型 变频 器
() 2 转差频率控制变频器 : 转差频率控制方 式是 对 V f /
控 制的一 种改进 , 这种控 制需 要 由安 装在 电动机 上 的
速度传感器检测 出电动机 的转速 , 构成速度 闭环 , 速度 调节器 的输 出为转差频 率 , 变频器 的输 出频率则 由 而 电动机 的实 际转速与所需转差频率之 和决定 。 由于通 过控制转差频率 来控制转 矩 和 电流 , v f 与 / 控制相 比 其加减速特性和 限制过流的能力得到提高。 () 3 矢量控制变 频器 : 量控 制是 一种 高性能 异 矢 步 电动机控制方式 , 它的基本思路是 : 将异步 电动机的 定子 电流分 为产 生磁场 电流 的分 量 ( 磁 电流 ) 励 和与 其垂直 的产生转矩 的电流分量 ( 转矩 电流) 并分别 加 , 以控制 。由于在这种控制方式 中必须 同时控 制异步 电 动机定子 电流 的幅值和相位 , 即定子电流 的矢 量 , 因此 这种控制方式被称为矢量控制方式。 通用变频器大 多采用 交 一直 一交 变频 变压 方式 , 其基本构成如图 3所示 。

变频器原理及接线图

变频器原理及接线图

其它异常
存储器异常、键盘通信异常、CPU异常等等
二、变频器的用途
变频器在日常生活及工业生产中用途非常广泛.比 如我们日常生活中的供水,住户只要上了七楼以上,自 来水公司的压力就很难满足需要了,水压不够,打不开 热水器,启动不了全自动洗衣机的电磁阀,因为它们是 靠水压来开启的。所以,对于一般的高层建筑,我们可 以利用变频器的调速特性和编程自动化控制功能,把它 装配在地下水池的水泵上,让水泵直接往用户管道供水。 用户用水量大,变频器控制水泵自动加速运行;用户用 水量小,变频器控制水泵减速运行;无人用水,自动减 速甚至停机。这就是我们通常说的变频恒压供水。
• “01” • … • “99” 4. 使用上/ 下箭头 键逐步进入所要的参数组,例如,“03”。 5. 按下 MENU/ENTER (菜单/ 进入)键。 显示已选的参数组的一个参数。例如,“0301”。 6. 使用上/ 下箭头键找到你所需要修改的参数。
7. 按下 MENU/ENTER (菜单/ 进入)键,采取下列二者之一的方式: 按下后并保持2 秒 钟,或快速连续按两次 。则会显示参数值,并在参数值下带 字样。
主要内容
一、变频器简介 二、变频器的用途 三、变频器的安装方法 四、变频器外部线路的连接 五、ABB ACS510变频器操作说明及简单设定 六、ABB ACS510变频器的故障处理 七,变频器的维护 八,变频器主电路外围设备选择
一、变频器简介
变频器(Variable-frequency Drive,VFD) 是应用变频技术与微电子技术,利用电力半导体器 件的通断通过改变电机工作电源频率方式来控制交 流电动机的电力控制设备。
参数 3002 PANEL COMM ERROR (控制盘丢失故障)。

变频器的控制方式及合理选用

变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。

其控制方式经历以下四代。

(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。

其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。

他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。

以内切多边形逼近圆的方式而进行控制的。

经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

(3)第三代以矢量控制(磁场定向法)又称VC控制。

其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。

通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。

(4)第四代以直接转矩控制,又称DTC控制。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。

变频器控制电路设计方法(1)

变频器控制电路设计方法(1)

控制线路的设计方法
功能添加法 较简单的控制线路 步进逻辑公式法 多个工作过程自动循环的复杂线路
功能添加法举例说明
设计要求: 1、有两台电动机,正转运行, 2、第一台电机必须先开后停,正常停车为 斜坡停车。 3、如果任何一台电机过载时,两台电机同 时快速停车。
设计两个能独立开停的控制线路
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
第三次添加功能后,虽然过载后两台电机 能快速停车,但停车后1KA、2KA线圈仍 处于吸合状态,无法重新起动,除非先按 下按钮2SB1和1SB1,使1KA、2KA线圈失 电,很不方便。我们可以用KA的触点使 1KA、2KA线圈自动失电,主电路不变
第四次添加功能——过载停车后,1KA、2KA线 圈自动失电
第二次添加功能——第一台电机不能先停。将 2KA的常开触点与停车按钮1SB1并联
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
L
N
1QS 2QSFU1SB Nhomakorabea 2SB1

变频器设计方案

变频器设计方案

1. 引言变频器(Variable Frequency Drive,VFD)是一种通过控制电源电压和频率来实现电机转速调节的设备。

它在工业控制领域中广泛应用,能够提供高效、精准的电机控制,实现节能和增强设备性能的目标。

本文将介绍一个典型的变频器设计方案,包括硬件和软件设计。

2. 变频器硬件设计2.1 电源电路设计变频器需要提供稳定的电源供电,同时还需要保护电机和电源不受电网的干扰和故障。

在电源电路设计中,需要考虑以下几个关键因素:•电源的稳定性和可靠性:选择高质量的电源组件,如电容、电感和变压器,以确保电源的输出电压和频率的稳定性。

•过电压和过电流保护:使用快速保险丝或保护电路来防止电机和电源过载。

•滤波电路:采用电源滤波器来消除电网中的高频噪声和干扰。

2.2 控制电路设计控制电路是变频器的核心部分,负责接收用户输入的指令,并通过 PWM(脉宽调制)技术来控制电源的输出电压和频率。

在控制电路设计中,需要考虑以下几个关键因素:•微控制器选择:选择适合的微控制器来执行电机控制算法。

常用的微控制器有 PIC、AVR 和 STM32 等。

•PWM生成:使用微控制器的定时器和输出比较器来生成 PWM 信号,并根据用户的输入来调节占空比和频率。

•保护功能:设计过流、过温和电机转速保护功能,以保护电机和变频器免受损坏。

2.3 输出级设计输出级负责将控制电路生成的 PWM 信号转换为高压交流信号驱动电机。

它由功率半导体器件(如 IGBT 或 MOSFET)、保护电路和电路保护元件组成。

在输出级设计中,需要考虑以下几个关键因素:•功率器件选择:根据电机的功率和工作特性选择合适的功率半导体器件,以提供足够的电流和电压。

•温度管理:设计散热器和风扇来控制功率器件的温度,在高负载情况下保持电路的稳定性。

•短路和过电流保护:使用保护电路来检测电机的过电流和短路,及时切断输出电路,以保护电机和变频器。

3. 变频器软件设计变频器的软件设计主要包括电机控制算法和用户界面设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档