【专题】圆的内接四边形

合集下载

浙教版九年级上册第三章圆的基本性质 专题:圆内接四边形与正多边形

浙教版九年级上册第三章圆的基本性质 专题:圆内接四边形与正多边形

专题:圆内接四边形与正多边形一.选择1. 如图,⊙O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD的度数是()A.120°B.130°C.140°D.150°2. 如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°3. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()cmA. 6cm B. 12cm C. 6cm D. 4cm4. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长为()A.1B.C.4-2D.3-45. 已知⊙的半径为1,以它的内接正三角形,正方形,正六边形的边心距为三边作三角形,则()A. 这个三角形是锐角三角形B. 这个三角形是直角三角形C. 这个三角形是钝角三角形D. 不能构成三角形6. 以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.7. 如图,六边形 ABCDEF内接于⊙O,则∠A+∠C+∠E的值为( )A.90°B.180°C.270D.3608. 如图,在正六边形ABCDEF中,△BCD的面积为4,则△BCF的面积为()A.16B.12C.8D.69. 如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°10. 如图,⊙O的内接四边形ABCD的两组对边的延长线分别交于点E、F,若∠E=α,∠F=β,则∠A等于( )A. α+βB.C. 180°﹣α﹣βD.11. 如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是().A.3B.4C.D.2+12. 如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是弧EB的中点,则下列结论不成立的是( )A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE13. 如图,平面上有两个全等的正十边形ABCDEFGHIJ、A′B′C′D′E′F′G′H′I′J′,其中A点与A′点重合,C点与C′点重合,则∠BAJ′的度数为()A.96°B.108°C.118°D.126°14. 如图,⊙O是正五边形ABCDE的外接圆,P是上一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°15. 如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8 B.12 C.16 D.20二.填空题16. 如图,⊙C经过正六边形ABCDEF的顶点A,E,则所对的圆周角∠APE等于____.17. 如图,点A,B,C,D都在⊙O中,∠ABC=90°,AD=3,CD=2,则⊙O的面积是____.18.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=12,则CD=_____.19. 如图,正五边形ABCDE和正三角形AMN都是的内接多边形,则 ______ .20. 小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为____cm.21. 如图,边长为4的正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上,CD与PN交于点H,则HN的长为____.三.解答题22. 如图,已知点A、B、C、D顺次在⊙O上,AB=BD,BM⊥AC于点M.求证:AM=DC+CM.23. 如图,BD,CE是△ABC的两条高,F和G分别是DE和BC的中点,O是△ABC的外心.求证:AO∥FG.24. 已知在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E.(1)当∠BAC为锐角时,如图1,求证:∠CBE=∠BAC.(2)当∠BAC为钝角时,如图2,CA的延长线与⊙O相交于点E,(1)中的结论是否仍然成立?请说明理由.25. 如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.26. 如图①,正方形ABCD内接于⊙O,E为上任意一点,连接DE,AE.(1)求∠AED的度数;(2)如图②,过点B作BF∥DE交⊙O于点F,连接AF.若AF=1,AE=4,求DE的长.27. 如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β,请你用含有α、β的代数式表示∠A的大小.28. 如图,已知四边形ABCD内接于⊙O,∠D=90°,P为上一动点(不与点C,D重合).(1)若∠BPC=30°,BC=3,求⊙O的半径;(2)若∠A=90°,=.求证:PB-PD=PC.29. 某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=____,请简要说明圆内接五边形ABCDE为正五边形的理由.(2)如图2,请证明丙同学构造的六边形各内角相等.(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n (n≥3,n为整数)”的关系,提出你的猜想(不需证明).30. 如图1、图2、图3、…,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是____,图3中∠MON的度数是____;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案1. --------------------------------------------------------------------------答案:B.解:连接OD,∵BC=DC,∴=,∴∠BOC=∠COD=130°,∴∠BOD=360°-2×130°=100°,∴∠BCD=∠BOD=50°,∴∠BAD=180°-∠BCD=180°-50°=130°.故选B.【解题方法提示】分析题目先根据题意画出辅助线,如图,连接OD,此时你有思路吗?根据圆心角、弧、弦的关系由BC=DC得,则∠BOC=∠COD=130°,再利用周角定义计算出∠BOD=100°;再根据圆周角定理得到∠BCD=∠BOD=50°,然后根据圆内接四边形的性质计算∠BAD的度数.2. --------------------------------------------------------------------------答案:B.解:∵AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,∴四边形ABCD是⊙O的内接四边形,∴∠D+∠ABC=180°.∵∠BOC=40°,OC=OB,∴∠ABC=(180°-40°)÷2=70°,∴∠D=180°-70°=110°.故选B.【考点提示】本题考查圆内接四边形的性质和等腰三角形的性质,分析题意,确定出四边形ABCD是⊙O的内接四边形是解题的切入点;【解题方法提示】由已知条件可知四边形ABCD是⊙O的内接四边形,则圆内接四边形的对角互补,因此要求∠D的度数,需求出∠ABC的度数;由OC=OB,∠BOC=40°,结合三角形内角和定理可求出∠ABC的度数,从而进一步求出∠D的度数.3. --------------------------------------------------------------------------答案:C【解答】解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故答案为C【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.4. --------------------------------------------------------------------------答案:C.解:设EF=x.∵EF⊥AB,∴∠EFB=90°.∵四边形ABCD是正方形,∴∠ABC=90°.∵BD是正方形ABCD的对角线,∴∠FBE=45°,∴△EFB是等腰直角三角形,∴FB=x,∴BE=x.∵正方形ABCD的边长为4,∴BD=4.∵∠BAE=22.5°,∠BAD=90°,∴∠EAD=67.5°.∵∠EAD=67.5°,∠ADB=45°,∴∠AED=67.5°,∴AD=ED.∵AD=ED,AD=4,∴ED=4.∵BD=BE+ED,BD=4,BE=x,ED=4,∴x+4=4.解得x=4-2,即EF=4-2.故选C.【解题方法提示】分析题意,首先设EF=x,由正方形的性质即可得到∠ABC=90°,进而可得△EFB是等腰直角三角形,所以有BE= x;接下来根据正方形的边长为4,可得BD=4;结合角度间的关系可推出AD=ED=4,再根据BD=BE+ED,BD=4,BE=x,ED=4列方程求解即可.5. --------------------------------------------------------------------------B分别求半径为1的圆内接正三角形,正方形,正六边形的边心距,再利用勾股定理的逆定理判断.解:如图1,O为正三角形的中心,则OB=1,∠OBD=30°,则边心距OD= BO= ;如图2,O为正方形的中心,则OB=1,∠OBE=45°,则边心距OE= ;如图3,O为正六边形的中心,AB为边,则OA=1,∠OAB=60°,则边心距OH= ;∵OD 2+OE 2=OH 2,∴三角形是直角三角形.故选B.6. --------------------------------------------------------------------------【解答】解:如图1,∵OC=1,∴OD=1×sin30°= ;如图2,∵OB=1,∴OE=1×sin45°= ;如图3,∵OA=1,∴OD=1×cos30°= ,则该三角形的三边分别为:、、,∵()2+()2=()2,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是 × × = ,故选:D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.7. --------------------------------------------------------------------------答案:D8. --------------------------------------------------------------------------答案:C.解:△BCD与△BCF同底,其高的比为1:2,∵△BCD的面积为4,∴△BCF的面积为8.故选C.【考点提示】本题是关于正多边形与圆的题目,首先回想一下正六边形的性质有哪些;【解题方法提示】利用正六边形的性质可得出:△BCD与△BCF同底,其高的比为1:2;根据三角形的面积关系可知,△BCF的面积是△BCD面积的2倍,据此问题得解.9. --------------------------------------------------------------------------答案:C.解:连结BD,如图.∵点D是的中点,∴=,∴∠ABD=∠CBD.∵∠ABC=50°,∠ABD=∠CBD,∴∠ABD=×50°=25°.∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°-25°=65°.故选C.10. --------------------------------------------------------------------------D【解答】解:连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+α+β=180°,∴∠A= .故选D.【分析】连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,即2∠A+α+β=180°,再解方程即可.11. --------------------------------------------------------------------------答案:B.解:连接A′E′,BD,过F′作F′H⊥A′E′于H,则四边形A′E′DB是矩形.∵正六边形ABCDEF的边长为2,∠A′F′E′=120°,∴∠F′A′E′=30°,∴F′H=1,A′H=,∴A′E′=2.∵将它沿AB方向平移1个单位,∴A′B=1,∴阴影部分A′BCDE′F′的面积=S△A′F′E′+S矩形A′E′DB+S△BCD=2××2×1+1×2=4.故选B.【解题方法提示】连接A′E′,BD,过F′作F′H⊥A′E′于H,得到四边形A′E′DB是矩形;解直角三角形求出F′H,A′H,进而求得A′E′的值;最后根据矩形和三角形的面积公式即可得到结论.12. --------------------------------------------------------------------------解:A、∵点C是弧EB的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B、∵点C是弧EB的中点∴BC=CE,本选项正确;C、∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D、AC不一定垂直于OE,本选项错误,故选D13. --------------------------------------------------------------------------答案:B.解:∵两个图形为全等的正十边形∴CB′=AB′=AB=BC,∠ABC=∠AB′C==144°,∵CB′=AB′=AB=BC,∴四边形ABCB′为菱形,∵四边形ABC B′为菱形,∴∠BAB′=180°-144°=36°,∴∠BAJ′=∠B′AJ′-∠B′AB=144°-36°=108°.故选B.【解题方法提示】由正多边形的各边相等可得CB′=AB′=AB=BC,即四边形ABCB′为菱形,想想还能得到哪些性质?由正n边形每一个内角度数=,可得∠ABC=∠AB′C=144°;由∠BAB′=180°-144°=36°,结合∠B′AJ′=144°,即可求出∠BAJ′的度数,试试吧!14. --------------------------------------------------------------------------答案:B.解:∵正五边形内接于⊙O,∴的度数为72°.由圆周角定理的推论可知∠P=36°.故选B.15. --------------------------------------------------------------------------答案:C.解:连接BD、OC.∵四边形BEDC是⊙O的内接四边形,∠ACB=90°,∠EDC=135°,∴∠BED=90°,∠EBC=45°.圆内接四边形的对角互补在Rt△BED中,BE2=BD2-ED2.∵∠BED=90°,∴△AED是直角三角形.∵∠EDC=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=ED,∴BE2=BD2-AE2,∴AE2+BE2=BD2.勾股定理∵∠BED=90°,∴BD为⊙O的直径.直径所对的圆周角是直角∵∠EBC=45°,∴∠EOC=90°,∠EFC=45°,∴△FOC是等腰直角三角形.等腰直角三角形的判定∵CF=2,∴OF=OC=2,即⊙O的半径为2,∴BD=4,∴AE2+BE2=BD2=16.勾股定理故选C.【解题方法提示】连接BD,由圆内接四边形的性质可得∠BED=90°,∠EBC=45°,在Rt△BED中,由勾股定理可得BE2=BD2-ED2,由圆的知识可知BD是⊙O的直径,则BD经过点O;由题目信息可得△AED是等腰直角三角形,则AE=ED,结合上步结论可得BE2=BD2-AE2,即AE2+BE2=BD2,问题转化为求BD的长;连接OC,由圆周角定理可得∠EOC=90°,由同弧所对的圆周角相等可得∠EFC=45°,则△FOC是等腰直角三角形,由CF的长可得OF的长,即得到圆的半径,进而可得直径BD的长,至此本题不难解答.16. --------------------------------------------------------------------------答案:30°.解:连接AC、EC,如图所示:∵六边形ABCDEF是正六边形,∴∠BCD=∠BAF=∠F=∠DEF=∠B=∠D==120°,AB=BC,CD=DE,∴∠BCA=∠BAC=(180°-∠B)=30°,同理∠ECD=30°,∴∠ACE=∠BCD-∠BCA-∠ECD=60°,∴∠APE=∠ACE=30°.17. --------------------------------------------------------------------------答案:π.解:连接AC,∵点A、B、C、D都在⊙O上,∠ABC=90°,∴AC是直径,∴∠ADC=90°,∵AD=3,CD=2,∴AC==,∴⊙O的面积是π×()2=π.【考点提示】本题考查圆的相关知识,掌握圆周角定理是解题的关键;【解题方法提示】连接AC,点A、B、C、D都在⊙O上,∠ABC=90°,根据圆周角定理可得到AC是直径;接下来根据勾股定理可得AC=,进而求解⊙O的面积.18. --------------------------------------------------------------------------第1空:5【解答】解:连接OA,∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,∠D=60°,∵BD为⊙O的直径,∴∠BCD=90°,∴∠DBC=30°,∴∠ABO=60°,∵BO=AO,∴△ABO是等边三角形,∴BO=AB=5,∴BD=10,∴CD=5,故答案为:5.【分析】连接OA,根据等腰三角形的性质可得∠ABC=∠ACB=30°,根据圆内接四边形对角互补可得∠D=60°,然后再证明△ABO是等边三角形,进而可得BO的长,从而可得DB长,然后可得CD长.19. --------------------------------------------------------------------------解:连接OA,五边形ABCDE是正五边形,,是正三角形,,,故答案为:.连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.20. --------------------------------------------------------------------------答案:8.解:设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2,∴小正六边形的边长为7cm,即PM=7cm,∴S△MPN=cm2.∵OG⊥PM,且O为正六边形的中心,∴PG=PM=cm,在Rt△OPG中,根据勾股定理得:OP==7cm.设OB=xcm,∵OH⊥AB,且O为正六边形的中心,∴BH=x,OH=x,∴PH=(5-x)cm,在Rt△PHO中,根据勾股定理得:OP2=(x)2+(5-x)2=49,解得x=8(负值舍去),则该圆的半径为8cm.【考点提示】此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键;【解题方法提示】设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,由正六边形的性质及邻补角性质得到三角形三角形PMN为等边三角形,由小正六边形的面积求出边长,确定出PM的长;进而求出三角形PMN的面积,利用垂径定理求出PG的长,在直角三角形OPG中,利用勾股定理求出OP的长,设OB=xcm,根据勾股定理列出关于x的方程,求出方程的解即可得到结果.答案:2-2.解:在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,∴BM=BC=2,∴CM=2,∴AM=4+2=6.∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN-CM=6-2,∵∠BCD=120°,∴∠HCN=30°.∵∠M=∠N=90°,∴△BMC∽△HNC,∴,∴,∴HN=2-2.【解题方法提示】根据正方形和正六边形的性质结合已知可得AB=BC=4,∠CBM=60°,∠M=90°,则根据直角三角形的性质可得∠BCM=30°;由上步可得BM=BC=2,根据勾股定理可得CM=2,由AM=AB+BM得到AM的长,再根据正方形的性质得出MN的长;由CN=MN-CM可得出CN的长,由∠BCD=120°结合第一步可得∠HCN=30°,再结合∠M=∠N=90°可得△BMC∽△HNC;根据相似三角形的性质可得,据此得出HN的长.证明:在MA上截取ME=MC,连接BE.∵BM⊥AC,∴BE=BC,∴∠BEC=∠BCE.∵AB=BD,∴=,∴∠ADB=∠BAD.∵∠ADB=∠BCE,∴∠BCE=∠BAD.∵∠BCD+∠BAD=180°,∠BEA+∠BCE=180°,∴∠BEA=∠BCD.∵∠BAE=∠BDC,∴△ABE≌△DBC,∴AE=CD,∴AM=AE+EM=DC+CM.【重点难点】本题重点考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了圆内接四边形的性质、等腰三角形的判定与性质、三角形全等的判定与性质.【辅助线提示】在MA上截取ME=MC,连接BE,根据垂直平分线的性质,那么有AM=DC+CM=DC+EM,此时就将问题转化为证明DC=AE;【解题方法提示】依据弦、弧的关系以及圆周角定理,可得∠ADB=∠BAD以及∠ADB=∠BCE,进行等量代换即可得∠BCE=∠BAD;再结合圆的内接四边形以及邻补角的性质,易得∠BEA=∠BCD,从而可证出△ABE≌△DBC,得到AE=CD,至此问题可解.23. --------------------------------------------------------------------------【解答】证明:如图,连接GD和GE.∵∠BDC=∠BEC=90°,BG=GC,∴,又∵DF=EF,∴GF⊥DE,延长OA交DE于H.∵∠BDC=∠BEC=90°∴B,C,E,D四点共圆,,即,又∵OA=OB,∴,∠EAH+∠AEH=90°,∴AD⊥DE,即OA⊥DE∴AO∥FG.【分析】根据∠BDC=∠BEC=90°,可判断出B,C,E,D四点共圆,然后利用同弧所对的圆周角相等且等于圆心角的一半可得出,,,结合OA=OB可判断出OA⊥DE,继而可得出结论.24. --------------------------------------------------------------------------解:(1)连接AD.∵AB是直径,∴∠ADB=90°,即AD⊥BC.∵AB=AC,∴∠BAD=∠CAD=∠BAC.∵∠CAD=∠CBE,∴∠CBE=∠BAC.(2)结论成立.理由如下:连接AD.∵AB为直径,∴AD⊥BC.∵AB=AC,∴∠BAD=∠CAD=∠BAC.∵∠CAD+∠DAE=180°,∠CBE+∠DAE=180°,∴∠CAD=∠CBE,∴∠CBE=∠BAC.25. --------------------------------------------------------------------------解析(1)首先连接BD,由在⊙O的内接四边形ABCD中,∠C=120°,根据圆的内接四边形的性质,∠BAD的度数,又由AB=AD,可证得△ABD是等边三角形,则可求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠E的度数;(2)首先连接OA,由∠ABD=60°,利用圆周角定理,即可求得∠AOD的度数,继而求得∠AOE的度数,继而求得答案.试题解析:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD-∠DOE=30°,∴n==12.答案26. --------------------------------------------------------------------------解:(1)如图①,连接OA,OD,∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图②,连接CF,CE,CA,过点D作DH⊥AE于点H.∵BF∥DE,AB∥CD,∴∠CDE=∠ABF.∵四边形ABCD是⊙O的内接正方形,∴AC为⊙O的直径,∴∠AEC=∠CFA=90°.∵∠AED=∠ACD=45°,∠BFC=∠BAC=45°,∴∠DEC=∠BFC=135°.∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=.∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4-x)2+x2,解得x=或,∴DE=DH=或.【考点提示】本题是一道有关直径所对的圆周角是直角、同弧或等弧所对的圆周角相等的题目;【解题方法提示】所对的圆周角是∠AED,圆心角是∠AOD.∠DEC=∠AED+∠AEC.AC2=AD2+DC2=2AD2.在Rt△ADH中,利用勾股定理建立关于x的方程.27. --------------------------------------------------------------------------(1)证明:∵∠ADC是△DCE的一个外角,∠ABC是△BCF的一个外角,∴∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF.∵∠E=∠F,∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC.(2)解:∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°.∵∠ADC=∠ABC,∠ADC+∠ABC=180°,∴∠ADC=∠ABC=90°.∵在△ABE中,∠ABC=90°,∠E=42°,∴∠A=48°.(3)解:连接EF.∵四边形ABCD是⊙O的内接四边形,∴∠ECD=∠A.∵∠ECD是△CEF的一个外角,∴∠ECD=∠CEF+∠CFE.∵∠ECD=∠CEF+∠CFE,∠ECD=∠A,∴∠A=∠CEF+∠CFE.∵∠A+∠CEF+∠CFE+∠AEB+∠AFD=180°,∠E=α,∠F=β,∴2∠A+α+β=180°,∴∠A=90°-.28. --------------------------------------------------------------------------解:(1)连接AC.∵∠D=90°,∴AC是⊙O的直径,∴∠ABC=90°.∵∠BAC=∠BPC=30°,∴AC=2BC=6,所以⊙O的半径为3;(2)∵∠BAD=90°,∴∠BCD=90°.∵AC为⊙O直径,∴∠ADC=∠ABC=90°,∴四边形ABCD为矩形.∵=,∴AB=AD,∴矩形ABCD为正方形,∴BC=DC.在BP上截取BE=DP,连接CE,DP.∵BE=DP,∠CBP=∠PDC,BC=DC,∴△BCE≌△DCP,∴∠BCE=∠DCP,PC=CE,又∵∠BCE+∠ECD=∠BCD=90°,∴∠DCP+∠ECD=∠ECP=90°,∴△CPE为等腰直角三角形,∴PE=PC,∴PB-BE=PB-PD=PE=PC.29. --------------------------------------------------------------------------解:(1)∵五边形的内角和=(5-2)×180°=540°,∴∠ABC==108°,理由:∵∠A=∠B=∠C=∠D=∠E,∠A对着,∠B对着,∴=,∴-=-,即=,∴BC=AE.同理可证其余各边都相等,∴五边形ABCDE是正五边形;(2)由图知∠AFC对,∵=,而∠DAF对的=+=+=,∴∠AFC=∠DAF.同理可证,其余各角都等于∠AFC,故图2中六边形各角相等;(3)由(1)、(2)可知,当n(n≥3,n为整数)是奇数时,各内角都相等的圆内接多边形是正多边形;当n(n≥3,n为整数)时偶数时,各内角都相等的圆内接多边形不一定为正多边形.(1)先根据多边形内角和定理求出正五边形的内角和,再求出各角的度数;根据同弧所对的圆周角相等,得出=,利用等式的性质,两边同时减去即可得到=根据同弧所对的弦相等,得出DC=AE;(2)由图知∠AFC对,由=,而∠DAF对的=+=+=,故可得出∠AFC=∠DAF.,同理可证,其余各角都等于∠AFC,由此即可得出结论;(3)根据(1)、(2)的证明即可得出结论.30. --------------------------------------------------------------------------解:(1)连结OB、OC.∵M、N分别是⊙O的内接正三角形ABC,∴OB、OC分别为∠ABC、∠ACB的角平分线,∠ABC=∠ACB,∴∠OBM=∠OCN.∵等边△ABC内接于⊙O,∴∠BOC=120°.∵BM=CN,OC=OB,∠OBM=∠OCN,∴△OMB≌△ONC,∴∠BOM=∠NOC,∴∠MON=∠BOC.∵∠BOC=120°,∠MON=∠BOC,∴∠MON=120°.(2)同(1)可得图2中∠MON的度数是90°,图3中∠MON的度数是72°;(3)在图1中,∠MON==120°,在图2中,∠MON==90°,在图3中,∠MON==72°.故在正n边形中,∠MON的度数为.【解题方法提示】对于(1),连结OB、OC,可以得到∠OBM=∠OCN.结合已知条件,就能证得△OMB≌△ONC;根据全等三角形的性质推出∠BOM=∠NOC,于是有∠MON=∠BOC.结合∠BOC的度数,求出∠MON的度数;对于(2),运用(1)中同样的方法,还可求出图2以及图3中∠MON的度数;对于(3),根据(1)和(2)的结果找出规律,就能确定∠MON的度数与正多边形的边数的关系.。

中考数学专题测试-四边形的证明与计算(答案解析)

中考数学专题测试-四边形的证明与计算(答案解析)

【考点分析】一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

二、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

四、证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。

2020年中考数学压轴专题12 圆的有关性质与计算 (学生版)

2020年中考数学压轴专题12 圆的有关性质与计算 (学生版)

决胜2020中考数学压轴题全揭秘精品专题12 圆的有关性质与计算【典例分析】【考点1】垂径定理【例1】(2019·湖北中考真题)如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是¶AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【变式1-1】(2019·四川中考真题)如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A.25B.4 C.213D.4.8【变式1-2】(2019·四川中考真题)如图,Oe的直径AB垂直于弦CD,垂足是点E,22.5∠=o,CAOOC=,则CD的长为( )6A.62B.32C.6 D.12【考点2】弧、弦、圆心角之间的关系【例2】(2019·四川自贡中考真题)如图,⊙O中,弦AB与CD相交于点E,AB CD、.=,连接AD BC求证:⑴»»AD BC=;=.⑵AE CE【变式2-1】(2018·黑龙江中考真题)如图,在⊙O中,,AD⊥OC于D.求证:AB=2AD.【变式2-2】(2019·江苏中考真题)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.【考点3】圆周角定理及其推论【例3】(2019·陕西中考真题)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【变式3-1】(2019·北京中考真题)已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【变式3-2】(2019·湖北中考真题)如图,点A,B,C均在⊙O上,当40∠=︒时,AOBC∠的度数是()A.50︒B.55︒C.60︒D.65︒【考点4】圆内接四边形【例4】(2019·贵州中考真题)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为_______;【变式4-1】(2019·甘肃中考真题)如图,四边形ABCD内接于Oe,若40∠=︒,则CA∠=()A.110︒B.120︒C.135︒D.140︒【变式4-2】(2019·四川中考真题)如图,正五边形ABCDE内接于⊙O,P为»DE上的一点(点P不与∠的度数为()点D重合),则CPDA.30°B.36︒C.60︒D.72︒【考点5】正多边形和圆【例5】(2019·山东中考真题)如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.【变式5-1】(2019·山东中考真题)若正六边形的内切圆半径为2,则其外接圆半径为__________. 【变式5-2】(2019·陕西中考真题)若正六边形的边长为3,则其较长的一条对角线长为___.【考点6】弧长和扇形的面积计算(含阴影部分面积计算)【例6】(2019·广西中考真题)如图,ABC ∆是O e 的内接三角形,AB 为O e 直径,6AB =,AD 平分BAC ∠,交BC 于点E ,交O e 于点D ,连接BD . (1)求证:BAD CBD ∠=∠;(2)若125AEB ∠=︒,求»BD 的长(结果保留π).【变式6-1】(2019·湖北中考真题)如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.【变式6-2】(2019·四川中考真题)如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90o 后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .A .2πB .2πC .178π D .198π 【考点7】与圆锥有关的计算【例7】(2019·湖南中考真题)如图,在等腰ABC △中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .【变式7-1】(2019·广西中考真题)已知圆锥的底面半径是115角是_____度.【变式7-2】(2019·辽宁中考真题)圆锥侧面展开图的圆心角的度数为216︒,母线长为5,该圆锥的底面半径为________.【变式7-3】(2019·西藏中考真题)如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm【达标训练】一、单选题1.(2019·山东中考真题)如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.(2019·广西中考真题)如图,,,,A B C D 是⊙O 上的点,则图中与A ∠相等的角是( )A .B Ð B .C ∠C .DEB ∠D .D ∠3.(2019·吉林中考真题)如图,在O e 中,»AB 所对的圆周角050ACB ∠=,若P 为»AB 上一点,055AOP ∠=,则POB ∠的度数为( )A .30°B .45°C .55°D .60°4.(2019·山东中考真题)如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒5.(2019·贵州中考真题)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .2 D .226.(2019·甘肃中考真题)如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°7.(2018·贵州中考真题)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°8.(2019·浙江中考真题)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A .1B .2C .3D .29.(2019·浙江中考真题)如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒10.(2019·宁夏中考真题)如图,正六边形ABCDEF 的边长为2,分别以点,A D 为圆心,以,AB DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是( )A .4633π-B .8633π-C .41233π-D .41233π-11.(2019·江苏中考真题)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .63πB .632πC .63πD .632π12.(2019·山东中考真题)如图,在边长为4的正方形ABCD 中,以点B 为圆心,AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是(结果保留π)( )A .8π-B .162π-C .82π-D .182π-13.(2019·浙江中考真题)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32π B .2π C .3π D .6π14.(2019·湖南中考真题)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( ) A .2πB .4πC .12πD .24π15.(2019·浙江中考真题)如图,ABC △内接于圆O ,65B ∠=︒,70C ∠=︒,若22BC =,则弧BC 的长为( )A .πB .2πC .2πD .22π16.(2019·山东中考真题)如图,点A 、B ,C ,D 在⊙O 上,AB =AC ,∠A =40°,BD ∥AC ,若⊙O 的半径为2.则图中阴影部分的面积是( )A .23π3B .23π3C .43π3D .43π2 二、填空题17.(2019·广西中考真题)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道1AB=尺(1尺=10寸),则该圆材的直径为______寸.18.(2019·江苏中考真题)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为_______.19.(2019·安徽中考真题)如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____20.(2019·辽宁中考真题)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则»BC的长为____.21.(2019·湖南中考真题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB 时,OC平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.22.(2019·江苏中考真题)如图,点A 、B 、C 、D 、E 在O e 上,且弧AB 为50︒,则E C ∠+∠=________.23.(2019·甘肃中考真题)如图,在平面直角坐标系中,已知D e 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,23),OC 与D e 交于点C ,30OCA ∠=︒,则圆中阴影部分的面积为_____.24.(2019·湖北中考真题)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计O e 的面积S ,设O e 的半径为1,则1S S -=__________.25.(2019·江苏中考真题)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=____ .26.(2019·重庆中考真题)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留π)27.(2019·浙江中考真题)如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于______2cm (计算结果精确到个位).28.(2019·山东中考真题)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC=3,AC=3.则图中阴影部分的面积是_____.三、解答题29.(2019·天津中考真题)已知PA ,PB 分别与O e 相切于点A ,B ,80APB ︒∠=,C 为O e 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O e 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.30.(2019·黑龙江中考真题)图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上;(1)在图1中画出以AC 为底边的等腰直角ABC △,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰ACD V ,点D 在小正方形的顶点上,且ACD V 的面积为8.31.(2019·河南中考真题)如图,在ABC ∆中,BA BC =,90ABC ︒∠=,以AB 为直径的半圆O 交AC于点D ,点E 是¶BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:ADF BDG ∆≅∆; (2)填空:①若=4AB ,且点E 是¶BD的中点,则DF 的长为 ; ②取¶AE的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.32.(2019·江苏中考真题)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=1,以边AC 上一点O 为圆心,OA 为半径的⊙O 经过点B .(1)求⊙O 的半径;(2)点P 为»AB 中点,作PQ ⊥AC ,垂足为Q ,求OQ 的长; (3)在(2)的条件下,连接PC ,求tan ∠PCA 的值.33.(2019·广西中考真题)如图,五边形ABCDE 内接于O e ,CF 与O e 相切于点C ,交AB 延长线于点F .(1)若,AE DC E BCD =∠=∠,求证:DE BC =; (2)若2,,45OB AB BD DA F ===∠=︒,求CF 的长.34.(2019·辽宁中考真题)如图1,四边形ABCD 内接于圆O ,AC 是圆O 的直径,过点A 的切线与CD 的延长线相交于点P .且APC BCP ∠=∠ (1)求证:2BAC ACD ∠=∠;(2)过图1中的点D 作DE AC ⊥,垂足为E (如图2),当6BC =,2AE =时,求圆O 的半径.35.(2019·内蒙古中考真题)如图,在⊙O 中,B 是⊙O 上的一点,120ABC ∠=o ,弦23AC =弦BM 平分ABC ∠交AC 于点D ,连接,MA MC . (1)求⊙O 半径的长;(2)求证:AB BC BM +=.36.(2019·江苏中考真题)如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB . (1)求证:BC 是⊙O 的切线;(2)已知∠BAO=25°,点Q 是弧A m B 上的一点. ①求∠AQB 的度数; ②若OA=18,求弧A m B 的长.37.(2019·江苏中考真题)(材料阅读):地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O e ).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的. (实际应用):观测点A 在图1所示的O e 上,现在利用这个工具尺在点A 处测得α为31︒,在点A 所在子午线往北的另一个观测点B ,用同样的工具尺测得α为67︒.PQ 是O e 的直径,PQ ON ⊥.(1)求POB ∠的度数;(2)已知6400OP =km ,求这两个观测点之间的距离即O e 上»AB 的长.(π取3.1) 38.(2019·湖北中考真题)如图,点E 是ABC ∆的内心,AE 的延长线和ABC ∆的外接圆圆O 相交于点D ,过D 作直线//DG BC . (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧·BAC 的长.39.(2019·湖南中考真题)如图,AB 为O e 的直径,且3AB =C 是¶AB 上的一动点(不与A ,B 重合),过点B 作O e 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC . (1)求证:EC 是O e 的切线;(2)当30D ︒∠=时,求阴影部分面积.40.(2019·贵州中考真题)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=23,求图中阴影部分的面积.41.(2019·广东中考真题)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,∆的三个顶点均在格点上,以点A为圆心的»EF与BC相切于点D,分别交AB、AC于点E、F. ABC∆三边的长;(1)求ABC(2)求图中由线段EB、BC、CF及»FE所围成的阴影部分的面积.。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

中考数学《圆(一)》专题练习含答案解析

中考数学《圆(一)》专题练习含答案解析

圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。

【中考冲刺】圆内接四边形的性质

【中考冲刺】圆内接四边形的性质

【中考冲刺】圆内接四边形的性质【中考冲刺】圆内接四边形的性质一、选择题(共15小题)1.(2011•肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是()A .115°B.l05°C.100°D.95°2.(2010•北海)如图,四边形ABCD内接于⊙O,若∠C=36°,则∠A的度数为()A .36°B.56°C.72°D.144°6.(2006•武汉)已知:四边形ABCD是⊙O的内接四边形,∠D=50°,则∠ABC等于()A .100°B.110°C.120°D.130°12.(2002•苏州)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=()A .160°B.100°C.80°D.20°15.(1999•成都)如图,ABCD是⊙O的内接四边形,且∠ABC=115°,那么∠AOC等于()A115°B120°C130°D135°....二、填空题(共14小题)(除非特别说明,请填准确值)18.(2005•安徽)如图,ABCD是⊙O的内接四边形,∠B=130°,则∠AOC的度数是_________度.19.(2003•三明)如图:A、B、C、D是⊙O上的四个点,BD是直径,点E在AD的延长线上,只考虑小于平角的角,图上共有_________对相等的角(不添加辅助线).23.(2002•泉州)如图,已知ABCD为⊙O的内接四边形,∠B=40°,AD=CD,则∠ACD=_________度.24.(2002•南宁)圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是1:2:3,那么这四边形最大角的度数是_________度.26.(2006•盐城)已知四边形ABCD内接于⊙O,且∠A:∠C=1:2,则∠BOD=_________度.27.(2003•宁波)如图,四边形ABCD内接于⊙O,∠BCD=120°,则∠BOD=_________度.28.(2002•陕西)如图,在⊙O的内接四边形ABCD中,∠BCD=130°,则∠BOD的度数是_________度.29.(1999•辽宁)在圆内接四边形ABCD中,∠A:∠B:∠C=4:3:5,则∠D=_________度.三、解答题(共1小题)(选答题,不自动判卷)30.如图,菱形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是它的四条边AB、BC、CD、DA的中点,E、F、G、H四个点共圆吗?(友情提示:要找到一点,证明这四点到找到的这点(圆心)的距离相等即可)【中考冲刺】圆内接四边形的性质参考答案与试题解析一、选择题(共15小题)1.(2011•肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是()A .115°B.l05°C.100°D.95°考点:圆内接四边形的性质.专题:计算题.分析:根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.解答:解:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.点评:本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了邻补角的定义以及等角的补角相等.2.(2010•北海)如图,四边形ABCD内接于⊙O,若∠C=36°,则∠A的度数为()A .36°B.56°C.72°D.144°考点:圆内接四边形的性质.专题:计算题.分析:根据圆的内接四边形的对角互补得到∠A+∠C=180°,把∠C=36°代入计算即可.解答:解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,而∠C=36°,∴∠A=180°﹣36°=144°.故选D.点评:本题考查了圆的内接四边形的性质:圆的内接四边形的对角互补.3.(2006•宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A .140°B.110°C.90°D.70°考点:圆内接四边形的性质.分析:根据圆内接四边形的对角互补求∠BAD的度数即可.解答:解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故选D.点评:本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.4.(2001•咸宁)如图,圆内接四边形ABCD的外角∠ABE为85°,则∠ADC的度数为()A120°B95°C85°D42.5°....考点:圆内接四边形的性质.专题:计算题.分析:直接根据圆内接四边形的性质可得到答案.解答:解:∵∠ABE=85°,∴∠ADC=∠ABE=85°.故选C.点评:本题考查了圆内接四边形的性质:圆的内接四边形的对角互补,一个外角等于它的内对角.5.(2010•台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和()A .26 B.29 C.24D.25考点:圆内接四边形的性质;平行四边形的性质.分析:根据题意,知要求的两条对角线的和即为AD与AD边上的高的和.解答:解:∵AD=20,平行四边形的面积是120,∴AD边上的高是6.∴要求的两对角线长度和是20+6=26.故选A.点评:此题主要是能够把线段之间的对应关系弄清.6.(2006•武汉)已知:四边形ABCD是⊙O的内接四边形,∠D=50°,则∠ABC等于()A .100°B.110°C.120°D.130°考点:圆内接四边形的性质.专题:计算题.分析:根据圆内接四边形的对角互补,得∠ABC=180°﹣∠D=130°.解答:解:∵四边形ABCD是⊙O的内接四边形∴∠ABC+∠D=180°∵∠D=50°∴∠ABC=180°﹣∠D=130°.故选D.点评:本题考查了圆内接四边形的性质,圆内接四边形对角互补.7.(2004•武汉)如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是()A .50°B.80°C.90°D.100°考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的对角互补,可得∠A+∠C=180°,已知了∠C的度数,可求出∠A的度数.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠A=180°﹣∠C=100°.故选D.点评:主要考查圆内接四边形的性质.8.(2004•丰台区)如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于()A .30°B.60°C.120°D.300°考点:圆内接四边形的性质;圆周角定理.分析:∠A、∠C是圆内接四边形的内对角,根据圆内接四边形的对角互补,可求出∠C的度数.解答:解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=120°.故选C.点评:本题考查了圆内接四边形的性质.9.(2003•泉州)如图,在⊙O的内接四边形ABCD中,若∠BAD=110°,则∠BCD等于()A .110°B.90°C.70°D.20°考点:圆内接四边形的性质.分析:由圆内接四边形的对角互补知,∠BCD=180°﹣∠A=70°.解答:解:∵四边形ABCD是⊙O的内接四边形,又∵∠BAD=110°,∴∠BCD=180°﹣∠A=70°.故选C.点评:本题考查了圆内接四边形的性质,即圆内接四边形的对角互补.10.(2003•海淀区)如图,四边形ABCD内接于⊙O,E在BC延长线上,若∠A=50°,则∠DCE等于()A40°B50°C70°D130°....考点:圆内接四边形的性质.分析:根据圆内接四边形的外角等于它的内对角解答.解答:解:∵四边形ABCD内接于⊙O,∴∠DCE=∠A=50°.故选B.点评:本题利用了圆内接四边形的性质求解.11.(2003•甘肃)如图,ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,则∠BAE等于()A .90°B.30°C.135°D.45°考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的性质进行分析即可.解答:解:由圆内接四边形的外角等于它的内对角知,∠BAE=∠C=45°,故选D.点评:本题考查了圆内接四边形的性质.12.(2002•苏州)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=()A .160°B.100°C.80°D.20°考点:圆内接四边形的性质;圆周角定理.分析:根据同弧所对的圆周角与圆心角的关系,易求得圆周角∠BAD的度数;由于圆内接四边形的内对角互补,则∠BAD+∠BCD=180°,由此得解.解答:解:∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°;又∵∠BAD=∠BOD=80°,∴∠BCD=180°﹣∠BAD=100°;故选B.点评:此题主要考查了圆内接四边形的性质及圆周角定理的综合应用能力.13.(2000•西城区)如图,ABCD为圆内接四边形,如果∠C=50°,那么∠A等于()A .40°B.50°C.130°D.150°考点:圆内接四边形的性质.分析:根据圆内接四边形的对角互补直接计算.解答:解:∵ABCD为圆内接四边形,∴∠A=180°﹣∠C=130°.故选C.点评:此题考查了圆内接四边形的性质.14.(2000•朝阳区)四边形ABCD内接于⊙O.如果∠D=80°,那么∠B等于()A .80°B.100°C.120°D.160°考点:圆内接四边形的性质.分析:根据圆内接四边形的对角互补,即可求得∠B的度数.解答:解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°;∵∠D=80°,∴∠B=180°﹣∠D=100°;故选B.点评:此题主要考查的是圆内接四边形的性质.15.(1999•成都)如图,ABCD是⊙O的内接四边形,且∠ABC=115°,那么∠AOC等于()A .115°B.120°C.130°D.135°考点:圆内接四边形的性质;圆周角定理.分析:先根据圆内接四边形的性质求出∠ADC的度数,再根据圆周角定理解答即可.解答:解:∵ABCD是⊙O的内接四边形,且∠ABC=115°,∴∠ADC=180°﹣∠ABC=180°﹣115°=65°,∴∠AOC=2∠ADC=2×65°=130°.故选C.点评:此题比较简单,考查的是圆内接四边形的性质及圆周角定理.二、填空题(共14小题)(除非特别说明,请填准确值)16.(2011•江津区)已知如图,在圆内接四边形ABCD中,∠B=30°,则∠D=150°.考点:圆内接四边形的性质.分析:根据圆内接四边形对角互补,直接求出即可.解答:解:∵圆内接四边形ABCD中,∠B=30°,∴∠D=180°﹣30°=150°.故答案为:150°.点评:此题主要考查了圆内接四边形的性质,灵活应用圆内接四边形的性质是解决问题的关键.17.(2005•滨州)如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的对角互补求得∠A的度数,再根据圆周角定理求解即可.解答:解:∵∠BCD=110°∴∠A=180°﹣∠BCD=70°∴∠BOD=2∠A=140°.故答案为:140.点评:综合运用圆内接四边形的性质和圆周角定理.18.(2005•安徽)如图,ABCD是⊙O的内接四边形,∠B=130°,则∠AOC的度数是100度.考点:圆内接四边形的性质;圆周角定理.专题:计算题.分析:首先根据圆内接四边形的对角互补,得∠D=180°﹣∠B=50°.再根据圆周角定理,得∠AOC=2∠D=100°.解答:解:∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠ABC=50°;∴∠AOC=2∠D=100°.点评:本题考查了圆内接四边形的性质以及圆周角定理的应用.19.(2003•三明)如图:A、B、C、D是⊙O上的四个点,BD是直径,点E在AD的延长线上,只考虑小于平角的角,图上共有二对相等的角(不添加辅助线).考点:圆内接四边形的性质;圆周角定理.分析:本题的相等角可通过两种方式获得:①圆周角定理;②圆内接四边形的性质.由圆周角定理的推论可得:∠A和∠C都是直角,这两角相等;由圆内接四边形的性质可得:四边形ABCD的外角∠CDE应该和它的内对角∠ABC相等.解答:解:∵BD是⊙O的直径,∴∠BAD=∠BCD=90°;∵四边形ABCD是圆的内接四边形,∴∠CDE=∠ABC;因此图上共有两对相等的角,即:∠BAD=∠BCD,∠CDE=∠ABC.点评:本题考查的质,需同学们熟练掌握.20.(2003•桂林)如图,在⊙O中,A、B、C三点在圆上,且∠CBD=60°,那么∠AOC=120度.考点:圆内接四边形的性质;圆周角定理.分析:本题比较简单,运用圆周角定理及圆内接四边形的性质解答即可.解答:解:过点A,C,分别作直线AE,CE,与圆相交于E,则∠AOC=2∠AEC(1)∠AEC+∠ABC=180°(2)∠CBD+∠ABC=180°即∠ABC=180°﹣60°=120°(3)由(1)(2)(3)得∠AOC=120°.点评:本题比较简单,考查的是掌握.21.(2003•大连)如图,四边形ABCD内接于⊙O,∠BOD=160°,则∠BAD的度数是80度,∠BCD的度数是100度.考点:圆内接四边形的性质.分析:根据圆周角定理,可求得∠BAD的度数;再根据圆内接四边形的对角互补,可求得∠BCD的度数.解答:解:∵∠BOD=160°∴∠BAD=∠BOD=80°∵四边形ABCD内接于⊙O∴∠BCD+∠BAD=180°,即∠BCD=100°.点评:本题主要考查了圆周角定理和圆内接四边形的性质.22.(2002•盐城)已知:如图,圆内接四边形ABCD中,∠BAD=65°,则∠BCD=115度.考点:圆内接四边形的性质.分析:根据圆内接四边形的对角互补即可求得∠BCD的度数.解答:解:∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠A=115°.点评:本题主要考查圆内接四边形的性质.23.(2002•泉州)如图,已知ABCD为⊙O的内接四边形,∠B=40°,AD=CD,则∠ACD=20度.考点:圆内接四边形的性质.分析:根据圆内接四边形的对角互补的性质,得∠D=140°,在△ACD中,根据等腰三角形的性质以及三角形的内角和定理,得:∠CAD=∠ACD=20°.解答:解:∵四边形ABCD是⊙O的内接四边形∴∠B+∠D=180°∵∠B=40°∵=∴AD=CD∴∠DAC=∠ACD∵∠D=140°∴∠ACD=∠DAC=(180°﹣∠B)=20°.点评:此题综合考查了圆内接四边形的性质、等腰三角形的性质以及三角形的内角和定理等知识的应用能力.24.(2002•南宁)圆内接四边形ABCD中,∠A、∠B、∠C的度数的比是1:2:3,那么这四边形最大角的度数是135度.考点:圆内接四边形的性质;多边形内角与外角.分析:本题可设∠A=x,则∠B=2x,∠C=3x;利用圆内接四边形的对角互补,可求出∠A、∠C的度数,进而求出∠B和∠D的度数,由此得解.解答:解:设∠A=x,则∠B=2x,∠C=3x因为四边形ABCD为圆内接四边形所以∠A=45°,∠B=90°,∠C=135°所以∠D=90°所以这个四边形的最大角的度数为135度.点评:本题需仔细分析题意,利用圆内接四边形的性质和四边形的内角和即可解决问题.25.(2002•吉林)如图,四边形ABCD内接于⊙O,∠BOD=110°,则∠BCD=125度.考点:圆内接四边形的性质;圆周角定理.分析:根据圆周角定理可求得∠BAD的度数,由于四边形ABCD内接于⊙O,根据圆内接四边形的对角互补可求得∠BCD的度数.解答:解:∵∠BOD=110°∴∠BAD=∠BOD=55°∵四边形ABCD内接∠BCD=125°.点评:本题主要考查了圆周角定理和圆内接四边形的性质.26.(2006•盐城)已知四边形ABCD内接于⊙O,且∠A:∠C=1:2,则∠BOD=120度.考点:圆内接四边形的性质;圆周角定理.专题:计算题.分析:根据圆内接四边形的性质,可得∠A+∠C=180°,联立∠A、∠C的比例关系式,可求得∠A的度数,进而可根据圆周角和圆心角的关系求出∠BOD的度数.解答:解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°;又∠A:∠C=1:2,得∠A=60°.∴∠BOD=2∠A=120°.故答案为:120.点评:本题考查圆内接四边形的性质以及圆周角定理的应用能力.27.(2003•宁波)如图,四边形ABCD内接于⊙O,∠BCD=120°,则∠BOD=120度.考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的性质,可求得∠A的度数,根据圆周角定理,可求得∠BOD的度数.解答:解:∵四边形ABCD内接于⊙O,∠BCD=120°∴∠A=180°﹣∠BCD=180°﹣120°=60°故∠BOD=2∠A=2×60°=120°.点评:本题考查的是圆周角定理及圆内接四边形的性质,比较简单.需同学们熟练掌握.28.(2002•陕西)如图,在⊙O的内接四边形ABCD中,∠BCD=130°,则∠BOD的度数是100度.考点:圆内接四边形的性质;圆周角定理.互补,可求出∠A的度数;再由圆周角定理,即可求出∠BOD的度数.解答:解:∵四边形ABCD内接于⊙O∴∠A=180°﹣∠C=50°∴∠BOD=2∠A=100°.点评:本题利用了圆周角定理,圆内接四边形的性质求解.29.(1999•辽宁)在圆内接四边形ABCD中,∠A:∠B:∠C=4:3:5,则∠D=120度.考点:圆内接四边形的性质.分析:设一份是x.根据圆内接四边形的对角互补进行求解.解答:解:设一份是x.则∠A=4x,∠B=3x,∠C=5x.根据圆内接四边形的对角互补,得∠A+∠C=180°,∠D=9x﹣3x=6x.则4x+5x=180°,x=20°.∠D=6x=120°.点评:此题考查了圆内接四边形的性质.30.如图,菱形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是它的四条边AB、BC、CD、DA的中点,E、F、G、H四个点共圆吗?(友情提示:要找到一点,证明这四点到找到的这点(圆心)的距离相等即可)考点:圆内接四边形的性质;确定圆的条件.专题:探究型.分析:由菱形的性质可得到菱形被分成四个全等的直角三角形,再利用直角三角形斜边上的中线等于斜边的一半,可得四个中点到对角线的交点的距离相等.解答:解:E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH;∵四边形ABCD是菱形,∴AB=BC=CD=DA,DB⊥AC,∵E、F、G、H分别是各边的中点,∴;∴OE=OF=OG=OH,以O为圆心、OE长为半径的圆上.点评:熟练掌握菱形的性质.明确判断几个点共圆就是要证明这几个点到某个点的距离相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又 AOC ABC ,
AOC 120 .
D 60 ,
故选: B .
D.120
3. 如图,四边形 ABCD 是 O 的内接四边形, AD BC .若 BAC 45 , B 105 ,则下列等式成立的是 (
)
9
针对训练
强化提高
A. AB 1 CD 2

39. 如图,在 O 的内接四边形 ABCD 中, AB AD , C 110 .若点 P 为 AB 上,求 P 的度数.
40. 如图,已知四边形 ADBC 是 O 的内接四边形, AB 是直径, AB 10cm , BC 8cm , CD 平分 ACB .
(1)求 AC 与 BD 的长; (2)求四边形 ADBC 的面积.
32. 如图,四边形 ABCD 内接于 O , AB 9 , AD 15 ,BCD 120 ,弦 AC 平分 BAD ,则 AC 的长是 ()
A. 7 3 C.12
B. 8 3 D.13
33. 在圆内接四边形 ABCD 中,ACB ACD 60 ,对角线 AC 、BD 交于点 E .已知 BC 3 2 ,CD 2 2 ,
9. 如图,四边形 ABDC 内接于 O , BAC 60 , AD 平分 BAC 交 O 于点 D ,连接 OB 、 OC 、 BD 、 CD .
(1)求证:四边形 OBDC 是菱形; (2)若 ABO 15 , OB 1 ,求弦 AC 长.
10. 已知四边形 ABCD 是圆内接四边形, 1112 ,求 CDE .
则 CBE 度.
36. 如图, O 的内接四边形 ABCD 中,AB BC ,D 72,则 BAC

7
针对训练
强化提高
37. 如图,已知 O 的内接四边形 ABCD 两组对边的延长线分别交于点 E 、F ,若 E F 70 ,则 A 的 度数是
38. 如图, O 的内接四边形 ABCD 中, BOD 140 ,则 A 等于
A. 30
B. 50
C. 70
D. 80
22. 如图,四边形 ABCD 内接于 O ,它的一个外角 EBC 55 ,分别连接 AC 、BD ,若 AC AD ,则 DBC 的度数为 ( )
A. 50
B. 60
C. 65
D. 70
23. 如图,四边形 ABCD 内接于 O ,连接 OA ,OC .若 OA / /BC ,BCO 70 .则 ABC 的 度数为 ( )
AC CE , AM EM 1 (7 5) 6 ,
2 在 RtAMC 中, AC AM 4 3 ,
A. 45
B. 60
C. 90
D.135
【解答】解: 四边形 ABCD 为圆的内接四边形,
A : B : C : D 1: 2 : 3 : 2 ,
10
针对训练
强化提高
而 B D 180 , D 2 180 90 .
4 故选: C . 5. 如图,在圆 O 的内接四边形 ABCD 中, AB 5 , AD 7 , BAD 60 ,点 C 为 BD 的中点,则 AC 的长是
BCD 180 80 100 .
故选: B .
2. 如图,四边形 ABCD 内接于 O ,连结 OA 、 OC .若 AOC ABC ,则 D 的大小为 ( )
A. 50
B. 60
C. 80
【解答】解: 四边形内接于 O , AOC 2ADC ,
ADC ABC 1 AOC ABC 180 . 2
(1)求证: AB AC . (2)若 BD 11 , DE 2 ,求 CD 的长.
6
针对训练
圆的内接四边形——题组题组四
强化提高
31. 如图,四边形 ABCD 内接于 O , AB 是直径, BC / /OD ,若 C 130 ,则 B 的度数为 ( ) A. 50 B. 60 C. 70 D. 80
1
针对训练
6. 如图,点 A 、 B 、 C 、 D 、 E 在 O 上,且 AB 为 50 ,则 E C .
强化提高
7. 如图,点 A , B , C , D 都在 O 上, C 是 BD 的中点, AB CD .若 ODC 50 ,则 ABC 的度数为 .
8. 如图,四边形 ABCD 内接于 O , BC 是 O 的直径, AD / /BC , AC 与 BD 相交于 点 P ,若 APB 50 ,则 PBC .
则线段 CE 的长为 ( )
A. 3 2 2
B. 7 5
C. 6 2 5
D. 2 2 3
34. 如图,四边形 ABCD 为 O 的内接四边形, AO BC ,垂足为点 E ,若 ADC 130 ,则 BDC 的度数
为( )
A. 70
B. 80
C. 75
D. 60
35. 如图,四边形 ABCD 内接于 O ,E 是 AC 上一点,且 AB AD AE ,DAC 50 ,
43 .
【解答】解: A 、 B 、 C 、 D 四点共圆, BAD 60 , BCD 180 60 120 ,
BAD 60 , AC 平分 BAD , CAD CAB 30 , 将 ACD 绕点 C 逆时针旋转120 得 CBE , 则 E CAD 30 , BE AD 7 , AC CE , ABC EBC (180 CAB ACB) (180 E BCE) 180 , A 、 B 、 E 三点共线, 过 C 作 CM AE 于 M ,
针对训练
【专题】圆的内接四边形
强化提高
圆的内接四边形——题组题组一
1. 如图,圆上有 A , B , C , D 四点,其中 BAD 80 ,则 BCD 的度数为 ( )
A. 80
B.100
C.160
D.120
2. 如图,四边形 ABCD 内接于 O ,连结 OA 、 OC .若 AOC ABC ,则 D 的大小为 (
8
针对训练
【专题】圆的内接四边形
圆的内接四边形——题组题组一
1. 如图,圆上有 A , B , C , D 四点,其中 BAD 80 ,则 BCD 的度数为 ( )
强化提高
A. 80
B.100
C.160
D.120
【解答】解: 四边形 ABCD 是圆内接四边形, BAD 80 ,
3
针对训练
强化提高
17. 如图,四边形 ABCD 内接于 O ,连结 AC ,若 BAC 35 , ACB 40 ,则 ADC .
18. 如图,四边形 ABCD 是 O 的内接四边形,已知 BOD 120 ,则 BCD 的度数为

19. 如图,在 O 的内接四边形 ABCD 中, BCD 120 , CA 平分 BCD . (1)求证: ABD 是等边三角形; (2)若 BD 3 ,求 O 的半径.
A.3
B. 3 2
C. 4 3
D. 2 3
13. 如图,已知 O 为四边形 ABCD 的外接圆, O 为圆心,若 BCD 120 , AB AD 6 ,则 O 的半径 长为 ( )
A. 2 3
B. 2
C. 2 3 3
D.3 14. 如图,四边形 ABCD 为 O 的内接四边形, AOC 110 ,则 ADC ( )
)
A. 50
B. 60
ห้องสมุดไป่ตู้C. 80
D.120
3. 如图,四边形 ABCD 是 O 的内接四边形, AD BC .若 BAC 45 , B 105 ,则下列等式成立的
是( )
A. AB 1 CD 2
B. AB 3 CD 3
C. AB 1 CD 3
D. AB 2 CD 2
BE ,若 BED 150 , AC 3 7 ,则 DE 的长为 .
5
针对训练
强化提高
26. 如图,四边形 ABCD 是 O 的内接四边形,AB 是 O 的直径,BCD 130 ,则 ABD 的度数是 .
27. 如图,四边形 ABCD 内接于 O , AB 是直径, OD / /BC , ABC 40 ,则 BCD 的度数为
28. 如图, A 、 B 、 C 、 D 是 O 上四点, BD 是 O 的直径.若四边形 ABCO 是平行四边形,则 ADB .
29. 如图,已知 A ,B ,C ,D 是 O 上的四点,延长 DC 、AB 相交于点 E ,若 BC BE .求证:DA DE .
30. 如图,四边形 ABCD 是 O 的内接四边形,点 F 是 CD 延长线上的一点,且 AD 平分 BDF ,AE CD 于 点E.
ABC 105 , DCB 75 , ACB 30 ,
CKB 90 ,
CK 3BK ,
KAB KDC , AKB DKC , AKB∽DKC , AB BK ,
CD KC AB 3 AB ,
3 故选: B . 4. 已知圆内接四边形 ABCD 中, A : B : C 1: 2 : 3 ,则 D 的大小是 ( )
2
针对训练
圆的内接四边形——题组题组二
强化提高
11. 如图,四边形 ABCD 是半圆的内接四边形, AB 是直径, DC CB .若 C 110 ,则 ABC 的度数等
于( )
A. 55
B. 60
C. 65
D. 70
12. 如图,四边形 ABCD 内接于 O ,AE CB 交 CB 的延长线于点 E ,若 BA 平分 DBE ,AD 5 ,CE 13 , 则 AE ( )
相关文档
最新文档