线性规划作业 3

合集下载

运筹学 刁在筠 部分作业的参考答案线性规划部分

运筹学  刁在筠  部分作业的参考答案线性规划部分

第二章 线性规划73P 4. 将下面的线性规划问题化成标准形式12312312312max 2..236230316x x x s t x x x x x x x x −+⎧⎪−+≥⎪⎪+−≤⎨⎪≤≤⎪⎪−≤≤⎩解:将max 化为 min , 3x 用45x x −代替,则1245124512451245min 2()..23()62()30316,0x x x x s t x x x x x x x x x x x x −+−−⎧⎪−+−≥⎪⎪+−−≤⎪⎨≤≤⎪⎪−≤≤⎪≥⎪⎩令221x x ′=+,则1245124512451245min12()..2(1)3()62(1)()30307,0x x x x s t x x x x x x x x x x x x ′−+−−−⎧⎪′−−+−≥⎪⎪′+−−−≤⎪⎨≤≤⎪⎪′≤≤⎪≥⎪⎩将线性不等式化成线性等式,则可得原问题的标准形式12451245612457182912456789min221..23342437,,,,,,,0x x x x s t x x x x x x x x x x x x x x x x x x x x x x ′−+−+−⎧⎪′−+−−=⎪⎪′+−++=⎪⎨+=⎪⎪′+=⎪′≥⎪⎩73P 5、用图解法求解下列线性规划问题:(1) 121212min 3..206122x x s t x x x x +⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩解:图2.1的阴影部分为此问题的可行区域.将目标函数的等值线123x x c +=(c 为常数)沿它的负法线方向()13T−−,移动到可行区域的边界上.于是交点T),(812就是该问题的最优解,其最优值为36.75P 16. 用单纯形法求解下列线性规划问题:(1) 123123123123min 2..360210200,1,2,3j z x x x s t x x x x x x x x x x j ⎧=−−+⎪++≤⎪⎪−+≤⎨⎪+−≤⎪⎪≥=⎩解:将此问题化成标准形式123123412351236min 2..360210200,1,2,3,4,5,6j z x x x s t x x x x x x x x x x x x x j ⎧=−−+⎪+++=⎪⎪−++=⎨⎪+−+=⎪⎪≥=⎩以456,,x x x 为基变量,可得第一张单纯形表为以1x 为进基变量,5x 为离基变量旋转得以2x 为进基变量,6x 为离基变量旋转得1x 2x 3x 4x 5x 6x RHS z2 1 -1 0 000 4x 31 1 1 0060 5x 1-121010 6x 11 -1 0 01201x 2x 3x 4x 5x 6x RHS z0 3 -5 0 -20-204x 0 4 -5 1 -3030 1x 1-1 2 0 1010 6x 02-3-11101 注意单纯形表的格式!2 要用记号把转轴元标出来 3要记住在单纯形表的左边,用进基变量代替离基变量注(零行元素的获得):先将目标函数化成求最小值的形式,再把所有变量移到等式左边,常数移到等式右边。

线性规划题及答案

线性规划题及答案

线性规划题及答案线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。

在实际应用中,线性规划可以用于解决各种决策问题,如生产计划、资源分配、投资组合等。

以下是一个线性规划问题的示例:问题描述:某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的加工时间,产品B每件需要3小时的加工时间。

每天的加工时间总共有16个小时。

产品A的利润为100元/件,产品B的利润为150元/件。

工厂的目标是最大化每天的总利润。

解决步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。

2. 建立目标函数:目标函数是每天的总利润,即:Z = 100x + 150y。

3. 建立约束条件:a) 加工时间约束:2x + 3y ≤ 16,表示每天的加工时间不能超过16小时。

b) 非负约束:x ≥ 0,y ≥ 0,表示产品的生产数量不能为负数。

4. 求解最优解:将目标函数和约束条件带入线性规划模型,使用线性规划算法求解最优解。

最优解及分析:经过计算,得到最优解为x = 4,y = 4,此时总利润最大为100 * 4 + 150 * 4 = 1000元。

通过最优解的分析可知,工厂每天应生产4件产品A和4件产品B,才能达到每天最大利润1000元。

同时,由于加工时间约束,每天的加工时间不能超过16小时,这也是生产数量的限制条件。

此外,也可以通过灵敏度分析来了解生产数量的变化对最优解的影响。

例如,如果产品A的利润提高到120元/件,而产品B的利润保持不变,那么最优解会发生变化。

在这种情况下,最优解为x = 6,y = 2,总利润为120 * 6 + 150 * 2 = 960元。

这表明,产品A的利润提高会促使工厂增加产品A的生产数量,减少产品B 的生产数量,以获得更高的总利润。

总结:线性规划是一种重要的数学优化方法,可以用于解决各种实际问题。

通过建立目标函数和约束条件,可以将实际问题转化为数学模型,并通过线性规划算法求解最优解。

线性规划练习题

线性规划练习题

作业1.第7题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.02.第8题下列不满足线性规划问题的典式要求的是()。

A. 线性规划模型必须是标准形B. 基必须是单位矩阵。

C. 基变量可以出现在目标函数中D. 非基变量可以出现在目标函数中。

A.AB.BC.CD.D答案:C标准答案:C您的答案:题目分数:1.0此题得分:0.03.第13题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.04.第14题A.AB.BC.CD.D答案:D标准答案:D 您的答案:题目分数:1.0此题得分:0.05.第15题A.AB.BC.CD.D答案:A标准答案:A 您的答案:题目分数:1.0 此题得分:0.06.第16题A.AB.BC.CD.D答案:B标准答案:B 您的答案:题目分数:1.0 此题得分:0.07.第17题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.08.第18题若用二阶段法求没有可行解的线性规划问题,则在最后一张单纯表上()。

A. 人工变量的检验数没有正数B. 人工变量的检验数没有负数C. 非基变量中有人工变量D. 基变量中有人工变量A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.09.第19题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.010.第20题若目标函数求极小值的线性规划问题没有最优解,则在最后一张单纯表上()。

A. 对应非基变量的列上的系数没有正数B. 基变量的取值有负数C. 检验数没有负数D. 检验数为负的非基变量对应的列上的系数没有正数A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.011.第21题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.012.第26题A.AB.BC.CD.D答案:B标准答案:B您的答案:题目分数:1.0 此题得分:0.013.第28题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0 此题得分:0.014.第33题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.015.第34题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0 此题得分:0.016.第35题A.AB.BC.CD.D答案:D标准答案:D您的答案:题目分数:1.0此题得分:0.017.第36题A.AB.BC.CD.D答案:A标准答案:A您的答案:题目分数:1.0此题得分:0.018.第46题检验有无迂回时,必须对()进行。

数学建模线性规划上机题

数学建模线性规划上机题

例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。

每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。

现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。

它准备向生产这些钢板旳A1,A2,A3三家工厂订货。

该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。

而它们销售多种型号钢板旳价格如表4.3所示。

该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。

该怎样处理这个问题。

若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。

通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。

如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。

线性规划应用 作业

线性规划应用 作业

第五节 线性规划应用举例例1 生产计划问题某工厂可以生产n A A A 、、、 21共n 种产品,生产中需要消耗m B B B 、、、 21共m 种资源。

生产每单位产量的A j 产品需要消耗B i 种资源的数量为a ij ,各种产品每单位的利润分别为n c c c 、、、 21。

工厂的资源是有限的,每种资源的数量分别为m b b b 、、、 21。

上述情况可表示在如下生产情况表中。

解:设:n A A A 、、、 21的产量分别为n x x x 、、、 21。

问题的线性规划模型为:,,,z max 21221122222121112121112211≥≤+++≤+++≤++++++=n m n mn m m n n n n nn x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c例2.货运问题某企业租用了一节火车车皮运送甲、乙两种货物到外地销售。

这两种货物每箱的重量分别为:甲—0.2吨,乙—0.3吨;每箱的体积分别为:甲—1米3,乙—0.6米3;每箱可获得的利润分别为:甲—500元,乙—400元。

一节车皮的有效载重为56吨,有效容积为180米3。

问:为获得最大利润,甲、乙各应运载多少箱?可将该问题视为一个生产计划问题,产品为甲、乙,资源为载重量和容积,可列出相应的生产情况表如下:解:设甲、乙货物的运送两分别为x 1、x 2。

模型为:,1805.0563.02.0400500z max 21212121≥≤+≤++=x x x x x x x x解得:x 1=130,x 2=100,z =105000例3:混合配料问题某饲养厂每天需要1000公斤饲料,其中至少要含7000克蛋白质、300克矿物质、1000毫克维生素。

现有五种饲料可供使用,各种饲料每公斤营养含量及价格如下表所示:解:设每天各种饲料的选用量依次为:54321,,,,x x x x x 。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是一种优化问题求解的方法,广泛应用于经济学、管理学、工程学等领域。

本文将介绍线性规划题的基本概念和解题方法,并给出相关题目及其答案。

正文内容:1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数常用来表示利润、成本等经济指标。

1.2 约束条件:线性规划的解必须满足一系列线性等式或者不等式,称为约束条件。

约束条件可以表示资源限制、技术限制等。

1.3 变量:线性规划的解是一组变量的取值,这些变量表示决策变量,用来描述问题的决策方案。

2. 线性规划的解题方法2.1 图形法:对于二维线性规划问题,可以使用图形法求解。

通过绘制目标函数和约束条件的图形,找到目标函数的最优解。

2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法求解。

该方法通过迭代计算,逐步逼近最优解。

2.3 整数线性规划:当决策变量需要取整数值时,可以使用整数线性规划方法求解。

这种方法在实际问题中更具实用性。

3. 线性规划题目及答案3.1 例题1:某工厂生产两种产品,产品A每单位利润为10元,产品B每单位利润为15元。

生产A产品需要2小时,B产品需要3小时。

工厂每天有8小时的生产时间。

求如何安排生产,使得利润最大化。

答案:假设生产A产品x单位,B产品y单位,则目标函数为10x + 15y,约束条件为2x + 3y ≤ 8,x ≥ 0,y ≥ 0。

通过计算可得最优解为x = 2,y = 2,最大利润为70元。

3.2 例题2:某公司有两个部门,部门A和部门B。

部门A每月产生利润10万元,部门B每月产生利润15万元。

公司规定,部门A的人数不能超过100人,部门B的人数不能超过80人。

求如何分配人力资源,使得利润最大化。

答案:假设部门A的人数为x人,部门B的人数为y人,则目标函数为10x + 15y,约束条件为x ≤ 100,y ≤ 80,x ≥ 0,y ≥ 0。

线性规划作业

线性规划作业

1.(建模) Metalco 公司生产一种新的合金,新合金的成分为40%的锡、35%的锌和25%的请建立数学模型确定各种合金的比例,以使新产品的生产成本最低。

(财经社,数据模型与决策4.18,p137)2.用单纯形法求解下列线性规划问题。

(清华编写组,运筹学第三版,1.4,p45)(1)⎪⎩⎪⎨⎧≥≤+≤++=0,24261553.2max 21212121x x x x x x t s x x z (2) ⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,18231224.52max 21212121x x x x x x t s x x z3.(同上,2.9,p76)现有线性规划问题⎪⎩⎪⎨⎧≥≤++≤++-++-=0,,)2(9010412)1(203..1355max 321321321321x x x x x x x x x t s x x x z先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化? (1) 约束条件(1)的右端常数由20变为30; (2) 约束条件(2)的右端常数由90变为70; (3) 目标函数中x3的系数由13变为8;(4) x1的系数列向量由⎪⎪⎭⎫ ⎝⎛-121变为⎪⎪⎭⎫⎝⎛50;(5) 增加一个约束条件(3)10010510321≤++x x x4.(蓝伯雄,管理数学(下),2.11,p90)某厂生产甲、乙两种产品,需要A 、B 两种原料,(1) 请构造数学模型使该厂利润最大,病求解该问题。

(2) 原料A 、B 的影子价格为多少?(3) 现有新产品丙,每件需消耗3千克原料A 和4千克原料B ,问该产品的销售价格至少为多少时才值得生产?(4) 工厂可在市场上买到原料A 。

工厂是否应该购买该原料以扩大生产?在保持原问题最优基不变的前提下,最多应购入多少?可增加多少利润?。

线性规划作业

线性规划作业

线性规划作业
1.1.某厂用甲乙两种原料生产A ,B 两种产品,生产每吨产品需要各种原料的数量(吨)、每吨产品的利润及工厂现有原料量如表1所示,问该厂如何安排生产才能获得最大的总利润?建立该问题的线性规划模型。

表1
1.2. 某工厂制造A 和B 两种产品。

制造一公斤A 产品需要煤9吨,劳动力3个(以工作日计),电力4千瓦;制造一公斤B 产品需要煤4吨,劳动力10个,电力5千瓦。

制造一公斤A 产品能获利7千元,制造一公斤B 产品获利1万2千元,该厂现有煤360吨、电力200千瓦、劳动力300个,问在现有资源下,应该制造A 和B 产品各多少公斤,才能获得最大利润?建立该问题的线性规划模型。

1.3. 某公司打算利用具有下列成分(见表2)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。

1.4. 将下列线性规划问题化成标准形式
1234123412341234123 (1)min 3425 2310 315 s.t. 2322,0,0z x x x x x x x x x x x x x x x x x x x =-+-+++-=-⎧⎪-+++≤⎪⎨-+-+≥⎪⎪≥≤⎩ 123
134123
1234123(2) m i n 2
12 2 3 10,,0
z x x x x x x x x x x x x x x x x =-+-+-≤⎧⎪+-≥-⎪⎨
++-=
⎪⎪≤≥⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划作业(三)
要求:作业的上交时间为第三周 周四上课前。

习题一、P55页 1.3 (a)、(b)
提示:(1)先画可行域,并用图解法求出最优解;
(2)利用单纯形法求解线性规划的解,在寻求最优解的过程中,对每一个解,指出其在上图可行域中的对应顶点。

提示:可利用课堂上讲的改良的矩阵法计算
习题二、P56页 1.8
附加思考题(选做):
(提示:根据课件上相应例题,先化为标准型,再求所有基解,并判断)
(1)找出该线性规划问题的所有基解,指出哪些是基本可行解,并确定最优解。

(2)用图解法求解,并验证或解释上述结论
X ,0X 6
X 2X 2X X t .s X 6X 3Z max 2121212
1≥≥⎩⎨⎧≤+-≥-+= 。

相关文档
最新文档