线性规划解决实际问题专项练习

合集下载

线性规划题及答案

线性规划题及答案

线性规划题及答案线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。

在实际应用中,线性规划可以用于解决各种决策问题,如生产计划、资源分配、投资组合等。

以下是一个线性规划问题的示例:问题描述:某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的加工时间,产品B每件需要3小时的加工时间。

每天的加工时间总共有16个小时。

产品A的利润为100元/件,产品B的利润为150元/件。

工厂的目标是最大化每天的总利润。

解决步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。

2. 建立目标函数:目标函数是每天的总利润,即:Z = 100x + 150y。

3. 建立约束条件:a) 加工时间约束:2x + 3y ≤ 16,表示每天的加工时间不能超过16小时。

b) 非负约束:x ≥ 0,y ≥ 0,表示产品的生产数量不能为负数。

4. 求解最优解:将目标函数和约束条件带入线性规划模型,使用线性规划算法求解最优解。

最优解及分析:经过计算,得到最优解为x = 4,y = 4,此时总利润最大为100 * 4 + 150 * 4 = 1000元。

通过最优解的分析可知,工厂每天应生产4件产品A和4件产品B,才能达到每天最大利润1000元。

同时,由于加工时间约束,每天的加工时间不能超过16小时,这也是生产数量的限制条件。

此外,也可以通过灵敏度分析来了解生产数量的变化对最优解的影响。

例如,如果产品A的利润提高到120元/件,而产品B的利润保持不变,那么最优解会发生变化。

在这种情况下,最优解为x = 6,y = 2,总利润为120 * 6 + 150 * 2 = 960元。

这表明,产品A的利润提高会促使工厂增加产品A的生产数量,减少产品B 的生产数量,以获得更高的总利润。

总结:线性规划是一种重要的数学优化方法,可以用于解决各种实际问题。

通过建立目标函数和约束条件,可以将实际问题转化为数学模型,并通过线性规划算法求解最优解。

线性规划的应用习题

线性规划的应用习题

线性规划的应用习题1.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排这两种产品的生产,才能获得最大的利润.最大利润是多少?2.要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下:每张钢板的面积,第一种为1m2,第二种为2m2,今需要A、B、C三种规格的成品各12,15,17块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小.3.某人承揽一项业务,需做文字标牌2个,绘画标牌3个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小.4.某蔬菜收购点租用车辆,将100吨新鲜黄瓜运往某市销售,可供租用的大卡车和农用车分别为10辆和20辆,若每辆卡车载重8吨,运费960元,每辆农用车载重2.5吨,运费360元,问两种车各租多少辆时,可全部运完黄瓜,且动费最低.并求出最低运费.5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72立方米,第二种有56立方米,假设生产每种产品都需要两种木料.生产一只圆桌需用第一种木料0.18立方米,第二种木料0.08立方米,可获利润60元,生产一个衣柜需用第一种木料0.09立方米,第二种0.28立方米,可获利润100元,木器厂在现有木料情况下,圆桌和衣柜应各生产多少,才能使所获利润最多.线性规划的应用习题答案1.设x,y分别为甲、乙两种柜的日产量,目标函数z=200x+240y,线性约束条件:作出可行域.z最大=200×4+240×8=2720答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.2.设需截第一种钢板x张,第二种钢板y张,所用钢板面积zm2.目标函数z=x+2y,线性约束条件:作出可行域.作一组平行直线x+2y=t.的整点中,点(4,8)使z取得最小值.答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.3.设用甲种规格原料x张,乙种规格原料y张,所用原料的总面积是zm2,目标函数z=3x+2y,线性约束条件,作出可行域.作一组平等直线3x+2y=t.A不是整点,A不是最优解.在可行域内的整点中,点B(1,1)使z取得最小值.z最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m2.4.设租用大卡车x辆,农用车y辆,最低运费为z元.z=960x+360y.线性约束条件是:作出可行域.作直线960x+360y=0.即8x+3y=0,向上平移至过点B(10,8)时,z=960x+360y取到最小值.z最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.5.设圆桌和衣柜的生产件数分别为x、y,所获利润为z,则z=6x +10y.作出可行域.即M(350,100).当直线6x+10y=0即3x+5y=0平移到经过点M(350,100)时,z=6x +10y最大.答:圆桌和衣柜应分别生产350件、100件时,才能获得最大利润.。

线性规划解决实际问题专项练习

线性规划解决实际问题专项练习

学科:数学教学内容:研究性课题与实习作业:线性规划的实际应用【自学导引】1.线性规划问题的数学模型是已知(这里“≤”也可以是“≥”或“=”号),其中a ij (i =1,2,…,n ,j =1,2,…,m ),b i (i =1,2,…,m )都是常量,x j (j =1,2,…,m )是非负变量,求z =c 1x 1+c 2x 2+…+c m x m 的最大值或最小值,这里c j (j =1,2,…,m )是常量.2.线性规划常见的具体问题有物质调运问题、产品安排问题、下料问题.【思考导学】1.应用线性规划解决实际问题的一般步骤是什么?答:一般步骤是①设出变量,列出线性约束条件和线性目标函数;②利用图解法求出最优解,进而求得目标函数的最大(或最小)值.2.线性规划的理论和方法主要在哪两类问题中得到应用?答:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.【典例剖析】[例1] 已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?解:设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+0.8y +1.6(260-y )(万元)即z =716-0.5x -0.8y .x、y应满足作出上面的不等式组所表示的平面区域,如图7—22.设直线x+y=280与y=260的交点为M,则M(20,260).把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小.∵点M的坐标为(20,260),∴甲煤矿生产的煤向东车站运20万吨,向西车站运180万吨,乙煤矿生产的煤全部运往东车站时,总运费最少.[例2]制造甲、乙两种烟花,甲种烟花每枚含A药品3g、B药品4g、C药品4g,乙种烟花每枚含A药品2g、B药品11g、C药品6g.已知每天原料的使用限额为A药品120g、B药品400g、C药品240g.甲烟花每枚可获利2美元,乙种烟花每枚可获利1美元,问每天应生产甲、乙两种烟花各多少枚才能获利最大.解:设每天生产甲种烟花x枚,乙种烟花y枚,获利为z元,则作出可行域,如图7—23所示.目标函数为:z=2x+y.作直线l:2x+y=0,将直线l向右上方平移至l1的位置时,直线经过可行域上的点A且与原点的距离最大.此时z=2x+y取最大值.解方程组得答:每天生产甲种烟花24枚、乙种烟花24枚,能使利润总额达到最大.点评:把实际问题抽象为线性规划问题是解线性规划应用问题的关键.即根据实际问题找出约束条件和目标函数是解应用问题的关键.例1可用图示法找约束条件和目标函数,如例2可用列表去找,如:【随堂训练】1.图中阴影部分的点满足不等式组,在这些点中,使目标函数k=6x+8y取得最大值的点的坐标是_____.解析:当x∈[0,1]时,x+y≤5,即y≤5-x,代入k=6x+8y得:k≤40-2x,当x=0,y=5时,k最大为40.当x∈[1,3]时,2x+y≤6,即y≤6-2x代入k=6x+8y得:k≤48-10x,当x=1,y=4时,k最大为38.综上所述,使k取得最大值的坐标为(0,5).答案:(0,5)2.某厂生产A与B两种产品,每公斤的产值分别为600元与400元.又知每生产1公斤A产品需要电力2千瓦、煤4吨;而生产1公斤B产品需要电力3千瓦、煤2吨.但该厂的电力供应不得超过100千瓦,煤最多只有120吨.问如何安排生产计划以取得最大产值?解:设生产A、B两种产品分别为x公斤、y公斤,总产值z元,则z=600x+400y.作出不等式组表示的平面区域由得取点M(20,20)作直线3x+2y=0的平行线l1,当l1经过点M时,z的值最大,最大值为20000元.答:安排生产A产品20公斤、B产品20公斤能取得最大产值.3.某工厂有甲、乙两种产品,计划每天各生产不少于15 t.已知生产甲产品1t需煤5t、电力4千瓦、劳力3个;生产乙产品1t需煤6t、电力5千瓦、劳力10个;甲产品每1t利润7万元,乙产品每1t利润12万元,但每天用煤不超过300t,电力不超过200千瓦,劳力只有300个,问每天各生产甲、乙两种产品多少,能使利润总额达到最大?解:设每天生产甲、乙两种产品各x t、y t,利润总额为z万元,则z=7x+12y.且作出不等式组的可行域.由即P(20,24).当直线l:7x+12y=0向上平移到过P点,即生产甲、乙两种产品各20 t、24 t时,利润总额最大为428万元.【强化训练】1.某工厂生产甲、乙两种产品,已知生产甲种产品1 t需耗A种矿石8 t、B种矿石8 t、煤5 t;生产乙种产品1 t需耗A种矿石4t、B种矿石8 t、煤10 t.每1t甲种产品的利润是500元,每1 t乙种产品的利润是400元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过320 t、B种矿石不超过400 t、煤不超过450 t.甲、乙两种产品应各生产多少能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么作出以上不等式组所表示的平面区域,即可行域.令z=500x+400y作直线l:5x+4y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时,z=500x+400y取最大值.解方程组得M的坐标为(30,20).答:应生产甲产品30 t、乙产品20 t,能使利润总额最大.2.某人需要补充维生素,现有甲、乙两种维生素胶囊,这两种胶囊都含有维生素A、C、D、E和最新发现的Z.甲种胶囊每粒含有维生素A、C、D、E、Z分别是1 mg、1 mg、4 m g、4 mg、5 mg;乙种胶囊每粒含有维生素A、C、D、E、Z分别是3 mg、2 mg、1 mg、3 mg、2 mg.如果此人每天摄入维生素A至多19 mg,维生素C至多13 mg,维生素D 至多24 mg,维生素E至少12 mg,那么他每天应服用两种胶囊各多少粒才能满足维生素的需要量,并能得到最大量的维生素Z.解:设该人每天服用甲种胶囊x粒,乙种胶囊y粒,则z=5x+2y.作出以上不等式组所表示的平面区域,即可行域.作直线l:5x+2y=0,把直线向右上方平移,直线经过可行域上的点M时,与原点距离最大,此时z=5x+2y取得最大值,解方程组得M点坐标为(5,4)此时z=5×5+2×4=33(mg).答:每天应服用5粒甲种胶囊,4粒乙种胶囊满足维生素的需要量,且能得到最大量的维生素Z为33mg.3.张明同学到某汽车运输队调查,得知此运输队有8辆载重量为6 t的A型卡车与6辆载重量为10 t的B型卡车,有10名驾驶员.此车队承包了每天至少搬运720 t沥青的任务.已知每辆卡车每天往返的次数为A型卡车16次,B型卡车12次.每辆卡车每天往返的成本费为A型车240元,B型车378元.根据张明同学的调查写出实习报告,并回答每天派出A型车与B型车各多少辆运输队所花的成本最低?解:设每天出动A型车x辆、B型车y辆,运输队所花的成本为z元,则且x,y为整数,z=240x+378y.以上约束条件可简化成作出可行域如图:在可行域内的整点中,点(8,0)使z=240x+378y取最小值.最小值是z=240×8+378×0=1920.实习报告2002年5月6日答:每天派出A型车8辆,B型车不派,运输队所花的成本最低.【学后反思】把调查的数据列成表格有利于写出约束条件(不等式组).在画可行域时,画图准确是十分重要的.。

线性规划习题及答案

线性规划习题及答案

线性规划习题及答案线性规划是运筹学中的一个重要分支,它主要用于解决资源分配问题,以达到最大化或最小化目标函数。

下面是一个线性规划的习题及答案:习题:某工厂生产两种产品A和B,每种产品都需要使用机器时间和劳动力。

产品A每件需要3小时的机器时间和2小时的劳动力,产品B每件需要2小时的机器时间和3小时的劳动力。

工厂每天有24小时的机器时间和18小时的劳动力。

设生产产品A的数量为x,生产产品B的数量为y。

1. 建立目标函数和约束条件。

2. 求解线性规划问题,找出最优生产计划。

答案:1. 目标函数:设目标是最大化利润,产品A的利润为40元/件,产品B的利润为30元/件。

因此,目标函数为:\[ \text{Maximize } P = 40x + 30y \]2. 约束条件:- 机器时间约束:\[ 3x + 2y \leq 24 \]- 劳动力时间约束:\[ 2x + 3y \leq 18 \]- 非负约束:\[ x \geq 0, y \geq 0 \]3. 图解法求解:- 首先在坐标系中画出约束条件所形成的可行域。

- 可行域的顶点坐标为:(0,0), (0,6), (4,2), (8,0)。

- 将这些点代入目标函数计算利润:- P(0,0) = 40*0 + 30*0 = 0- P(0,6) = 40*0 + 30*6 = 180- P(4,2) = 40*4 + 30*2 = 200- P(8,0) = 40*8 + 30*0 = 3204. 最优解:- 通过比较各点的利润,发现当生产8件产品A和0件产品B时,利润最大,为320元。

5. 结论:- 工厂应该生产8件产品A和0件产品B,以实现最大利润320元。

注意:本题答案仅为示例,实际解题时需要根据具体题目条件进行分析和计算。

线性规划练习题

线性规划练习题

线性规划练习题线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

通过线性规划,我们可以在有限的资源条件下,实现最优的决策和资源分配。

下面让我们一起来看看一些线性规划练习题。

例题 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需要 A原料 3 千克,B 原料 2 千克;生产乙产品 1 件需要 A 原料 2 千克,B原料 4 千克。

现有 A 原料 120 千克,B 原料 100 千克。

甲产品每件利润为 20 元,乙产品每件利润为 30 元。

问工厂应如何安排生产,才能使利润最大?首先,设生产甲产品 x 件,生产乙产品 y 件。

根据题目条件,可以列出以下不等式组:3x +2y ≤ 120 (A 原料限制)2x +4y ≤ 100 (B 原料限制)x ≥ 0 ,y ≥ 0 (产品数量非负)目标函数为:Z = 20x + 30y (总利润)接下来,我们通过画图来找到可行域。

将不等式组转化为等式方程,画出直线,然后根据不等式确定可行域的范围。

然后,在可行域内找到目标函数的最优解。

通常可以通过顶点法,计算可行域顶点处的目标函数值,比较得出最大值。

经过计算,当 x = 20,y = 20 时,利润最大,最大利润为 1000 元。

例题 2:某运输公司有 A、B 两种型号的货车,A 型货车每辆可载货 5 吨,B 型货车每辆可载货 8 吨。

现要运输 100 吨货物,且 A 型货车的数量不少于 B 型货车数量的 2 倍。

已知 A 型货车每辆运费 500 元,B 型货车每辆运费 800 元。

问如何安排车辆,能使运费最少?设安排 A 型货车 x 辆,B 型货车 y 辆。

则有:5x + 8y = 100 (货物总量)x ≥ 2y (车辆数量限制)x ≥ 0 ,y ≥ 0 (车辆数量非负)目标函数为:C = 500x + 800y (总运费)同样地,通过画图找到可行域,再计算顶点处的运费,找到最小值。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

习题范例解决实际问题的线性规划

习题范例解决实际问题的线性规划

习题范例解决实际问题的线性规划线性规划是一种用于求解实际问题的数学模型,它通过建立一个数学方程系统来描述问题,并利用线性规划的方法求解最优解。

本文将通过提供一个习题范例,来介绍如何使用线性规划解决实际问题。

假设一个工厂生产A、B两种产品,每个产品的单位利润分别为10元和15元。

工厂有两个车间,车间1每天可生产A产品100个,B产品50个;车间2每天可生产A产品80个,B产品120个。

现在工厂需要确定每个车间应该生产多少个A产品和B产品,以最大化总利润。

为了解决这个问题,我们需要确定以下几个要素:决策变量、目标函数和约束条件。

首先,我们设定决策变量。

假设车间1每天生产的A产品数量为x1,B产品数量为y1;车间2每天生产的A产品数量为x2,B产品数量为y2。

其次,我们需要建立目标函数。

目标函数是我们要最大化或最小化的目标。

在这个问题中,我们的目标是最大化总利润。

由于A产品的单位利润为10元,B产品的单位利润为15元,所以总利润可以表示为10x1 + 15y1 + 10x2 + 15y2。

最后,我们需要确定约束条件。

约束条件是问题的限制条件。

根据题目中给出的信息,我们可以得到以下约束条件:车间1每天生产的A产品数量不能超过100个:x1 ≤ 100车间1每天生产的B产品数量不能超过50个:y1 ≤ 50车间2每天生产的A产品数量不能超过80个:x2 ≤ 80车间2每天生产的B产品数量不能超过120个:y2 ≤ 120我们还需要添加非负约束条件,即决策变量的值必须为非负数:x1 ≥ 0, y1 ≥ 0, x2 ≥ 0, y2 ≥ 0综上所述,我们得到了一个线性规划模型,可以表示为:最大化目标函数:10x1 + 15y1 + 10x2 + 15y2约束条件:x1 ≤ 100y1 ≤ 50x2 ≤ 80y2 ≤ 120x1, y1, x2, y2 ≥ 0我们使用线性规划的方法来求解这个模型。

一般来说,可以使用各种数学软件或在线工具来求解线性规划模型。

线性规划经典例题

线性规划经典例题

线性规划经典例题1. 问题描述假设我们有一个农场,种植两种作物:小麦和大豆。

农场有一定的土地和资源限制,我们需要确定如何分配这些资源,以最大化农场的利润。

我们知道每亩小麦的利润为1000元,每亩大豆的利润为2000元。

同时,我们还知道种植每亩小麦需要2个单位的肥料和3个单位的水,而种植每亩大豆需要4个单位的肥料和2个单位的水。

农场总共有100个单位的肥料和90个单位的水可用。

我们需要确定种植多少亩小麦和多少亩大豆,以最大化利润。

2. 数学建模为了解决这个问题,我们可以使用线性规划来建立数学模型。

假设我们种植x 亩小麦和y亩大豆,则我们的目标是最大化利润,即最大化目标函数Z = 1000x + 2000y。

同时,我们需要满足资源限制,即种植小麦和大豆所需的肥料和水不能超过总量。

因此,我们有以下约束条件:2x + 4y ≤ 100(肥料限制)3x + 2y ≤ 90(水限制)x ≥ 0,y ≥ 0(非负性约束)3. 求解方法我们可以使用线性规划的求解方法来找到最优解。

常见的方法有图形法、单纯形法和内点法等。

在这个例题中,我们使用单纯形法求解。

4. 求解过程首先,我们将约束条件转化为标准形式。

将不等式约束转化为等式,并引入松弛变量,得到以下等式约束:2x + 4y + s1 = 1003x + 2y + s2 = 90其中,s1和s2为松弛变量。

接下来,我们构建初始单纯形表格:基变量 | x | y | s1 | s2 | b |--------------------------------------s1 | 2 | 4 | 1 | 0 | 100 |s2 | 3 | 2 | 0 | 1 | 90 |--------------------------------------Z | -1000| -2000| 0 | 0 | 0 |其中,Z表示目标函数的系数,初始解为0。

我们选择最负的目标函数系数对应的列作为进入变量,即选择-2000对应的y列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学
教学内容:研究性课题与实习作业:线性规划的实际应用
【自学导引】
1
.线性规划问题的数学模型是已知(这里“≤”也可以是“≥”或“=”号),其中a ij (i =1,2,…,n ,j =1,2,…,m ),b i (i =1,2,…,m )都是常量,x j (j =1,2,…,m )是非负变量,求z =c 1x 1+c 2x 2+…+c m x m 的最大值或最小值,这里c j (j =1,2,…,m )是常量.
2.线性规划常见的具体问题有物质调运问题、产品安排问题、下料问题.
【思考导学】
1.应用线性规划解决实际问题的一般步骤是什么?
答:一般步骤是①设出变量,列出线性约束条件和线性目标函数;②利用图解法求出最
优解,进而求得目标函数的最大(或最小)值.
2.线性规划的理论和方法主要在哪两类问题中得到应用?
答:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.
【典例剖析】
[例1] 已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西
车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?
解:设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +
1.5(200-x )+0.8y +1.6(260-y )(万元)
即z =716-0.5x -0.8y .
x、y应满足
作出上面的不等式组所表示的平面区域,如图7—22.
设直线x+y=280与y=260的交点为M,则M(20,260).
把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小.
∵点M的坐标为(20,260),
∴甲煤矿生产的煤向东车站运20万吨,向西车站运180万吨,乙煤矿生产的煤全部运往东车站时,总运费最少.
[例2]制造甲、乙两种烟花,甲种烟花每枚含A药品3g、B药品4g、C药品4g,乙种烟花每枚含A药品2g、B药品11g、C药品6g.已知每天原料的使用限额为A药品120g、B药品400g、C药品240g.甲烟花每枚可获利2美元,乙种烟花每枚可获利1美元,问每天应生产甲、乙两种烟花各多少枚才能获利最大.
解:设每天生产甲种烟花x枚,乙种烟花y枚,获利为z元,则
作出可行域,如图7—23所示.
目标函数为:z=2x+y.
作直线l:2x+y=0,将直线l向右上方平移至l1的位置时,直线经过可行域上的点A
且与原点的距离最大.此时z=2x+y取最大值.解方程组得答:每天生产甲种烟花24枚、乙种烟花24枚,能使利润总额达到最大.
点评:把实际问题抽象为线性规划问题是解线性规划应用问题的关键.即根据实际问题找出约束条件和目标函数是解应用问题的关键.
例1可用图示法找约束条件和目标函数,如
例2可用列表去找,如:
【随堂训练】
1.图中阴影部分的点满足不等式组,在这些点中,使目标函数k=6x+8y取得最大值的点的坐标是_____.
解析:当x∈[0,1]时,x+y≤5,
即y≤5-x,
代入k=6x+8y
得:k≤40-2x,
当x=0,y=5时,k最大为40.
当x∈[1,3]时,2x+y≤6,
即y≤6-2x代入k=6x+8y得:k≤48-10x,
当x=1,y=4时,k最大为38.
综上所述,使k取得最大值的坐标为(0,5).
答案:(0,5)
2.某厂生产A与B两种产品,每公斤的产值分别为600元与400元.又知每生产1公斤A产品需要电力2千瓦、煤4吨;而生产1公斤B产品需要电力3千瓦、煤2吨.但该厂的电力供应不得超过100千瓦,煤最多只有120吨.问如何安排生产计划以取得最大产值?
解:设生产A、B两种产品分别为x公斤、y公斤,总产值z元,则
z=600x+400y.
作出不等式组表示的平面区域
由得
取点M(20,20)
作直线3x+2y=0的平行线l1,当l1经过点M时,z的值最大,最大值为20000元.
答:安排生产A产品20公斤、B产品20公斤能取得最大产值.
3.某工厂有甲、乙两种产品,计划每天各生产不少于15 t.已知生产甲产品1t需煤5t、电力4千瓦、劳力3个;生产乙产品1t需煤6t、电力5千瓦、劳力10个;甲产品每1t利润7万元,乙产品每1t利润12万元,但每天用煤不超过300t,电力不超过200千瓦,劳力只有300个,问每天各生产甲、乙两种产品多少,能使利润总额达到最大?
解:设每天生产甲、乙两种产品各x t、y t,利润总额为z万元,
则z=7x+12y.
且作出不等式组的可行域.

即P(20,24).当直线l:7x+12y=0向上平移到过P点,即生产甲、乙两种产品各20 t、24 t时,利润总额最大为428万元.
【强化训练】
1.某工厂生产甲、乙两种产品,已知生产甲种产品1 t需耗A种矿石8 t、B种矿石8 t、煤5 t;生产乙种产品1 t需耗A种矿石4t、B种矿石8 t、煤10 t.每1t甲种产品的利润是500元,每1 t乙种产品的利润是400元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过320 t、B种矿石不超过400 t、煤不超过450 t.甲、乙两种产品应各生产多少能使利润总额达到最大?
解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,
那么
作出以上不等式组所表示的平面区域,即可行域.
令z=500x+400y作直线l:5x+4y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时,z=500x+400y取最大值.
解方程组
得M的坐标为(30,20).
答:应生产甲产品30 t、乙产品20 t,能使利润总额最大.
2.某人需要补充维生素,现有甲、乙两种维生素胶囊,这两种胶囊都含有维生素A、C、D、E和最新发现的Z.甲种胶囊每粒含有维生素A、C、D、E、Z分别是1 mg、1 mg、4 m g、4 mg、5 mg;乙种胶囊每粒含有维生素A、C、D、E、Z分别是3 mg、2 mg、1 mg、3 mg、2 mg.如果此人每天摄入维生素A至多19 mg,维生素C至多13 mg,维生素D 至多24 mg,维生素E至少12 mg,那么他每天应服用两种胶囊各多少粒才能满足维生素的需要量,并能得到最大量的维生素Z.
解:设该人每天服用甲种胶囊x粒,乙种胶囊y粒,则z=5x+2y.作出以上不等式组所表示的平面区域,即可行域.作直线l:5x+2y=0,把直线向右上方平移,直线经过可行域上的点M时,与原点距离最大,
此时z=5x+2y取得最大值,解方程组得M点坐标为(5,4)此时z=5×5+2×4=33(mg).
答:每天应服用5粒甲种胶囊,4粒乙种胶囊满足维生素的需要量,且能得到最大量的维生素Z为33mg.
3.张明同学到某汽车运输队调查,得知此运输队有8辆载重量为6 t的A型卡车与6辆载重量为10 t的B型卡车,有10名驾驶员.此车队承包了每天至少搬运720 t沥青的任务.已知每辆卡车每天往返的次数为A型卡车16次,B型卡车12次.每辆卡车每天往返的成本费为A型车240元,B型车378元.根据张明同学的调查写出实习报告,并回答每天派出A型车与B型车各多少辆运输队所花的成本最低?
解:设每天出动A型车x辆、B型车y辆,运输队所花的成本为z元,则
且x,y为整数,z=240x+378y.
以上约束条件可简化成
作出可行域如图:
在可行域内的整点中,点(8,0)使z=240x+378y取最小值.
最小值是z=240×8+378×0=1920.
实习报告2002年5月6日
答:每天派出A型车8辆,B型车不派,运输队所花的成本最低.
【学后反思】
把调查的数据列成表格有利于写出约束条件(不等式组).在画可行域时,画图准确是十分重要的.。

相关文档
最新文档