概率论与数理统计-学习指导与练习册习题答案

合集下载

概率论与数理统计练习册答案(1-4)全解

概率论与数理统计练习册答案(1-4)全解

概率论与数理统计练习册答案(1-4单元)第一单元 A 卷1解(1)有两种可能性30 30 10,50 10 10 P=2112525331035712024C CC CC ?==(2)用对立事件做 P=111532310314C C CC创-=2解: 由题意产品的合格率为96%合格产品中的一等品率为75%则出厂产品的一等品率P=96%*75%=72%所以在该厂产品中任取一件是一等品的概率为72%。

3解: 乙选手输掉一分有两种情况:第一种是乙第一次回球就失误,所以P1=0.3;第二种是乙第二次回球才失误,所以P2=0.7*0.6*0.5=0.21; 因此乙选手输掉一分的概率P=P1+P2=0.51。

4. 解: P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) =1/4+1/4+1/4-1/6-1/6=5/12则A 、B 、C 全不发生的概率为1-P(AUBUC)=1-5/12=7/12。

5解:令事件B 为被射中事件A 1表示甲射中乙没中 事件A 2表示乙射中甲没中 事件A 3表示俩人都中 则P (13()A A B+)=13()()()P A B P A B P B +=1133112233()()()()()()()()()()P B A P A P B A P A P B A P A P B A P A P B A P A ? ?? =0.60.60.50.40.50.60.5?? =0.757.解:设A i 为第一次抽到的新球个数。

B 为3只球为新球。

P (A 0)=0396315C C C ,P (A 1)=1296315C CCP (A 2)=2196315C C C ´,P (A 3)=3096315C C C ´P (0A B )=31539CC,P (1A B )=31538CCP (2A B )=31537CC,P (3A B )=31536CCP (B )=P (0A B )´P (A 0)+P (1A B )´P (A 1)+P (2AB )´P (A 2)+P (3AB )´P (A 3)=0.089四.1.证明重要公式:P(A-B)=P(A)P - (AB);(或P(AB)=P(A) -P(AB));2.设P(A)=0.7,P(A -B)=0.3,求P(AB ) 解:1.证明:因为A=A B ÈAB所以P (AB )= P (AB AB È)= P (AB )+P (AB )P - (AB ÇAB)又因为ABÇAB=Æ所以P (A )= P (AB )+P (AB )所以P (AB )= P (A )- P (AB )即P (A -B )=P (A )-P (AB ) 2.由1可得,P (AB )= P (A )-P (A -B )=0.4 所以P(AB )=1-P(AB)=0.6(画图可帮助解题)五.解:设事件A 为取到白球球分放在箱子中一共有四种情况:I. 一只箱子中没球,另一只箱子中4个球:P (A )=1/2*2/4=1/4 II. 一只箱子中1只白球,另一只箱子中其他三只球:P (A )=1/2+1/2*1/3=7/12III. 一只箱子中一只黑球,另一只箱子中其他三只球:P (A )=1/2*2/3=1/3IV.一只箱子中2只白球,另一只箱子中两只黑球:P (A )=1/2B 卷三、计算题1、① P=C 110C 4924/C 206=0.52 先从10双中取1双,再从剩下的9双中取4双,最后从4双中取每双中的一只② P=1-C 61026/C 620=0.653 考虑对立面,即没有两只能够配成对,先从10双中取6双,再从6双取每双的一只2解:由P(B|A )=)()(A P A B P =1.0)(A B P =0.4得()A B P =0.04,又由)(A B P =P(B)-P(AB)=0.75-P(AB)=0.04 故 P (AB )=0.713、解:记“甲获胜”为事件A,“乙获胜”为事件B 由题意得P(A)=23211151515()()()()...()()6666666n n -++++ P(B)= 223315151515()()()()()()...()()66666666n n++++两式相比得()5()6P A P B =故65(),()1111P A P B ==4解:若采用第一种 设A 为“不产出废品”P(A )=97%⨯96%⨯95%=0.88464若采用第二种 设B 为“不产出废品” P(B)=93%⨯93%=0.8649P(A)>P(B) 应采用第一种 5 P (A 0)=121211221122()()nnn n m n m nm n m n ?++++121212121112211221122()()()P m n nm m n n m A m n m nm n m nm n m n +=??++++++ 1212211221122()()()P m m m m A m n m nm n m n =?++++ )|(0A B P =0)|(1A B P =211)|(2=A B P P(B)=)(0A P )|(0A B P +)|()()|()(2211A A A A B P P B P P +=121221112222()()m m m n m n m n m n ++++6.解:设1A 表示取出的一只元件为正品,2A 表示取出的为次品。

概率论与数理统计练习册答案

概率论与数理统计练习册答案

概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

第一章 事件与概率1.写出下列随机试验的样本空间。

(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。

(2)同时掷三颗骰子,记录三颗骰子点数之和。

(3)生产产品直到有10件正品为止,记录生产产品的总件数。

(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

(5)在单位正方形内任意取一点,记录它的坐标。

(6)实测某种型号灯泡的寿命。

解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。

(2)}18,,4,3{ =Ω。

(3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。

(5)=Ω{(x,y)| 0<x<1,0<y<1}。

(6)=Ω{ t | t ≥ 0}。

2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。

(1)A 发生,B 与C 不发生。

(2)A 与B 都发生,而C 不发生。

(3)A ,B ,C 中至少有一个发生。

(4)A ,B ,C 都发生。

(5)A ,B ,C 都不发生。

(6)A ,B ,C 中不多于一个发生。

(7)A ,B ,C 至少有一个不发生。

(8)A ,B ,C 中至少有两个发生。

解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。

(1)B B A B A =(2)AB B A =(3)AB B A B =⊂则若,(4)若A B B A ⊂⊂则,(5)C B A C B A = (6)若Φ=AB 且A C ⊂,则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

重庆理工大学概率论与数理统计_学习指导与练习册习题答案

1 / 24习题一一.填空题一.填空题1.ABC 2、50× 3、20× 4、60× 二.单项选择题二.单项选择题 1、B 2、C 3、C 4、A 5、B 三.计算题三.计算题 1.(1)略)略 (2)A 、321A A AB 、321A A A ÈÈC 、321321321A A A A A A A A A ÈÈD 、321321321321A A A A A A A A A A A A ÈÈÈ 2.解.解)()()()(AB P B P A P B A P -+=È=85812141=-+83)()()()(=-=-=AB P B P AB B P B A P87)(1)(=-=AB P AB P21)()()])([(=-È=ÈAB P B A P AB B A P3.解:最多只有一位陈姓候选人当选的概率为531462422=-C C C 4.)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=ÈÈ=855.解:(1)n Nn A P !)(=(2)nn NNn C B P !)(=、 (3)nmn m n N N C C P --=)1()(习题二一.填空题一.填空题1.0.8 2、50× 3、32 4、735、43 二.单项选择题二.单项选择题 1、D 2、B 3、D 4、B 三.计算题三.计算题1. 解:设i A :分别表示甲、乙、丙厂的产品(i =1,2,3) B :顾客买到正品:顾客买到正品)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P +=83.065.05185.0529.052=´+´+´ 8334)()/()()/(222==B P A B P A P B A P2.解:设iA :表示第i 箱产品(i =1,2)i B :第i 次取到一等品(i =1,2) (1))/()()(1111A B P A P B P =)/()(212A B P A P +=4.0301821501021=´+´ (2)同理4.0)(2=B P(3))/()()(121121A B B P A P B B P =)/()(2212A B B P A P +=19423.02917301821499501021=´´+´´ 4856.04.019423.0)()()/(12112===B P B B P B B P (4)4856.04.019423.0)()()/(212121===B P B B P B B P 3. 解:设i A :表示第i 次电话接通(i =1,2,3)101)(1=A P 10191109)(21=´=A A P1018198109)(321=´´=A A A P所以拨号不超过三次接通电话的概率为3.0101101101=++如已知最后一位是奇数,则如已知最后一位是奇数,则51)(1=A P 514154)(21=´=A A P51314354)(321=´´=A A A P 所以拨号不超过三次接通电话的概率为60515151=++ 4.解:)()()(1)(1)(C P B P A P C B A P C B A P -=ÈÈ-=ÈÈ=6.04332541=-5.解:设21,B B 分别表示发出信号“A ”及“B ” 21,A A 分别表示收到信号“A ”及“B ”)/()()(1111B A P B P A P =)/()(212A A P B P +=30019701.031)02.01(32=+- 197196)()/()()()()/(111111111===A P B A P B P A P B A P A B P第一章 复习题一.填空题一.填空题1.0.3,0.5 2、0.2 3、2120 4、153,1535、158,32,31 6.4)1(1p --二.单项选择题二.单项选择题1、B2、B3、 D4、D5、A 三.计算题三.计算题1. 解:设i A :i 个人击中飞机(i =0,1,2,3) 则09.0)(0=A P 36.0)(1=A P 41.0)(2=A P 14.0)(3=A PB :飞机被击落:飞机被击落)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(00A B P A P +=458.0009.0114.06.041.02.036.0=´+´+´+´ 2.解:设i A : i 局甲胜(i =0,1,2,3)(1)甲胜有下面几种情况:)甲胜有下面几种情况: 打三局,概率36.0打四局,概率12136.06.04.0××C打五局,概率122246.06.04.0××CP (甲胜)=36.0+11221136.06.04.0××C +1122222246.06.04.0××C =0.68256 (2)93606.06.0*4.0*6.06.0*4.0*6.06.0)()()()()/(2222321321212121=++===A A P A A A P A A P A AA P A A A P3.解:设A :知道答案:知道答案 B :填对:填对)/()()(A B P A P B P =475.0417.013.0)/()(=´+´=+A B P A P197475.0417.0)()/()()()()/(=´===B P A B P A P B P B A P B A P 4.解:设iA :分别表示乘火车、轮船、汽车、飞机(i =1,2,3,4)B :迟到:迟到)/()()(11A B P A P B P =)/()(22A B P A P +)/()(33A B P A P ++)/()(44A B P A P +=203052121101315141103=´+´+´+´2120341103)()/()()()()/(11111=´===B P A B P A P B P B A P B A P同理94)/(2=B A P 181)/(3=B A P5.解:A :甲袋中取红球;B :乙袋中取红球:乙袋中取红球)()()()()()()(B P A P B P A P B A P AB P B A AB P +=+=È =40211610106166104=´+´习题三 第二章 随机变量及其分布一、填空题一、填空题1、19272、23、134、0.85、010.212()0.52313x x F x x x <ìï£<ï=í£<ïï³î6、113~0.40.40.2X -éùêúëû二、单项选择题二、单项选择题1、B2、A3、B4、B 三、计算题三、计算题1、解:由已知~(15,0.2)X B ,其分布律为:1515()0.20.8(0,1,2,...,15)kk kP X k C k -===至少有两人的概率:(2)1(2)1(0)(1)0.833P X P X P X P X ³=-<=-=-==多于13人的概率:(13)(14)(15)P X P X P X >==+==02、解、解 设击中的概率为p ,则X 的分布率为的分布率为 X123456k p p (p p )1- (p p 2)1- (p p 3)1- (p p 4)1- (p p 5)1-+(6)1p -3、解:X 的分布律为:的分布律为:X34 5 k p0.10.30.6X 的分布函数为:0,30.1,34()0.4,451,5x x F x x x <ìï£<ï=í£<ïï³î4、解:由已知,X 的密度函数为:1,33()60,x f x ì-££ï=íïî其它此二次方程的22(4)44(2)16(2)x x x x D =-××+=--(1)当0D ³时,有实根,即2(2)021x x x x --³Þ³£-或 所以{}{21}{2}{1}P P X X P X P X =³£-=³+£-方程有实根或3123111662dx dx --=+=òò(2)当0D =时,有重根,即2(2)021x x x x --=Þ==-或所以{}{21}{2}{1}0P P X X P X P X ===-==+=-=方程有重根或 (3)当0D <时,无实根,1{}1{}2P P =-=方程有实根无实根 5、解:设X 为元件寿命,Y 为寿命不超过150小时的元件寿命。

概率论与数理统计习题册详细答案

概率论与数理统计习题册详细答案

《概率论与数理统计》练习册(2010年版)参考答案第一章 概率论的基本概念第一节 一、选择题.1、D ;2、A ;3、C ;4、D ;5、B . 二、解答题.1、(1)、C B A D ++=;(2)、C B A E =;(3)、C B A C B A C B A F ++=;(4)、=G C B A C B A C B A C B A +++.第二节 一、填空题.1、0.3;2、5.0;3、1p -;4、0.3;5、0.6;6、32;7、2113;8、158;9、2517;10、0.25. 二、选择题.1、B ;2、D ;3、B ;4、A . 三、解答题.1、307)(,157)(21==A P A P .2、21)(51025231533123822=++=C C C C C C C C P . 3、1133123831234=+C C C C .第三节 一、填空题.1、0.7;2、73;3、2;4、12053,5320. 二、选择题.1、B ;2、A ;3、C ;4、D . 三、解答题.1、令A 表示取出的球是白球,i B 表示从第i 个箱子中取球)2,1(=i ,则21}{}{,204}|{,108}|{2121====B P B P B A P B A P ,故21}{=A P . 2、设A 表示取到的是次品,i B 表示取到的零件是由甲(=i 1)、乙(=i 2)、丙(=i 3)机床提供的, 则由已知条件得18.05.01.03.03.02.02.0}{=⨯+⨯+⨯=A P (1)82.0}{=A P ;(2)5.0}|{2=A B P .3、记事件A =“小孩说谎”,B =“小孩可信”,设()0.8P B =,()0.1P A B =,()0.5P A B =.由贝叶斯公式,小孩第一次说谎之后,()0.444P B A =;第二次说谎之后,()0.138P B A =. 第四节 一、填空题.1、23;2、0.5;3、0.8704;4、1(1)n p --,1(1)(1)n n p np p --+-;5、4353或;6、0.75. 二、选择题.1、A ;2、C ;3、D ;4、B ;5、A ;6、C . 三、解答题.1、令i A 表示第i 个灯泡可使用1000个小时以上,则2.0)(=i A P ,3,2,1=i ,104.02.0)2.01(2.0)(2133321321321321=⋅-+=+++C A A A A A A A A A A A A P .2、432222)1)(21(1r r r r r r +-=-+--.3、设事件A 表示“飞机被击落”,i B 表示“飞机被i 个人击中”),3,2,1,0(=i ,1C 表示“甲击中”,2C 表示“乙击中”,3C 表示“丙击中”.则由概率加法公式、乘法公式和事件的独立性得09.0)()(3210==C C C P B P ,14.0)(,41.0)(,36.0)(321===B P B P B P .由题意有,1)|(,6.0)|(,2.0)|(,0)|(3210====B A P B A P B A P B A P 由全概率公式得458.0)(=A P .4、记i A 表示甲第i 次掷6点,i B 表示乙第i 次掷6点,1,2,i =⋅⋅⋅.记B A ,分别表示甲、乙取胜,则15()(),()(),(1,2,)66i i i i P A P B P A P B i =====⋅⋅⋅,且111211223A A A B A A B A B A =+++⋅⋅⋅,由独立性和加法公式,有116)(=A P ,从而115)(1)(=-=A P B P .第二章 随机变量第一节 一、填空题. 1、2516. 二、选择题. 1、A ;2、C . 三、解答题.1、(1)不是分布函数,因为2)(lim 1=+∞→x F x .(2)不是分布函数,因为)(2x F 在),2(ππ是单调减少的. (3)是分布函数,符合分布函数的三条性质.2、由题意知2132,1=-=+a b a ,所以61=a ,65=b .于是61}1{=-=X P ,21}2{,1}1{====X P X P .3、由1)(lim =+∞→x F x 得1=A ;由于)(x F 是连续函数,111lim20=+→x x ,故0=B ,从而0=C .4、X 的取值i 只有1,0两个值,以j ω记掷骰子出现j 点(1,2,,6j =⋅⋅⋅)事件,所以21}{)0(,61)(531=⋃⋃===ωωωωP X P P j ,21)1(==X P ,故⎪⎩⎪⎨⎧=1210)(x F , 1100≥<≤<x x x第二节一、填空题.1、14;2、12;3、2;4、⎪⎪⎩⎪⎪⎨⎧=,1,5.0,2.0,0)(x F .3,32,21,1≥<≤<≤<x x x x ;5、2719.二、选择题.1、C ;2、D . 三、解答题.分布函数为⎪⎪⎩⎪⎪⎨⎧=1918891550)(x F .2,21,10,0≥<≤<≤<x x x x 36}2{}1{}2521{==+==≤<X P X P X P .2、41}1{,42}0{,41}1{=====-=X P X P X P . 3、设所需抽取次数为随机变量X .(1)设k A 表示第k 次取得正品()4,3,2,1=k ,m B 表示第m 次取得次品()3,2,1=m .则,107)(}1{1===A P X P ,307)(}2{21===A B P X P 1201}4{,1207}3{====X P X P .所以同理可得:(3)X 的概率分布为:第三节 一、填空题.1、141;2、0>;3、4;4、1,12;5、1,0211,02xx e x e x -⎧<⎪⎪⎨⎪-≤⎪⎩;6、0.2. 二、选择题.1、B ;2、C ;3、A ;4、D .三、解答题.1、设电子元件的使用寿命为X ,i A 表示第i 个电子元件能使用200小时.则312006006001}200{)(-∞+-==>=⎰e dx e X P A P xi ,eA A A P a 11}{1321-=-=.2、(1)由0)(,1)(=-∞=+∞F F 得π1,21==B A . (2)21)1()1(}11{=--=<<-F F X P . (3))1(1)()(2x x F x f +='=π.3、(1)ππ1,11)(112===-=⎰⎰-+∞∞-A A dx xA dx x f ;(2)3111}21|{|21212=-=<⎰-dx xX P π;(3)⎪⎩⎪⎨⎧+==⎰∞-1arcsin 1210)()(x dx x f x F x,.1,11,1≥<≤--<x x x4、设1A 表示电压不超过200V ,2A 表示电压在200V ~240V 之间,3A 表示电压超过240V ,B 表示电子元件损坏,则,212.0)8.0(1)25220200(}200{)(1=Φ-=-Φ=≤=X P A P 576.0)8.0()8.0(}240200{)(2=-Φ-Φ=≤<=X P A P ,}240{)(3>=X P A P =212.0)8.0(1=Φ-,,2.0)|(,001.0)|(,1.0)|(321===A B P A B P A B P (1)1()0.0642;P P B ==(2)220.5760.001(|)0.0090.0642PP A B ⨯==≈.5、若)(x f 为概率密度,则必有,0)(≥x f 故02>++c bx ax 。

概率论与数理统计学习指导参考答案-常州大学

概率论与数理统计学习指导参考答案-常州大学

概率论与数理统计学习指导参考答案-常州大学同步练习参考答案练习 1-11. (1)是;(2)是;(3)是.练习1-21. (1)123456{,,,,,}S e e e e e e =, 其中ie =‘出现i 点’1,2,,6i =L ,246{,,}A e e e =;(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =;(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)};{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =;(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;1.2. 5.0,,q p +,p ).(1q p +-6 .0.6, 0.1. 7.0.3,0.6.8. 1.p - 9.,1.p q r p r +-+- 10.0.1,0.1.练习1-41. 0.054.2. (1 )0.662; (2) 0.0354.3.(1) 112;(2)1.20 4.(1)365;365rrP (2) 41.965. 0.01107.6.1.12607.7147,,1515308.2!.(2)!nn n ⋅9.797.9A10. 491.10⎛⎫- ⎪⎝⎭11.3.1012.(1) 0.41; (2) 0.00061;(3) 0.0073.13. 0.0602.练习1-51. 3.52. 0.121.3. 0.25.4. (1)1;3(2) 1.25. 0.2.练习1-6 1.2.32.76.3. 0.6148.4.(1) 0.862; (2)0.058; (3)0.8286.5.(1) 1;1n k-+(2) 1.n6.0.645.7.0.64.8.(1) 0.0125; (2) 0.24: 0.64: 0.12 或6:16:3.9.(1)5;12(2)24.7510.(1) 0.10034; (2) 0.0038.11.(C).练习1-71.0.5,0.5.2.证明略.3. 0.902.4. (1) 0.5; (2) 0.4.5.(1)0.84;(2)6.6. (1)0.0168;(2) 0.1557; (3) 0.8587.7.(1) 0.3087;(2)0.371.8.(1)0.9;(2)0.887.9. 0.542.练习2-1, 2-2 1.X的分布列为2.{}2.3125,100.32.c P X X=<≠=3.分布列为{}1112P X -<≤=,{}5116P X -≤<=.4.(1)12a =; (2)2023(31)a =⋅-; (3)14a =.5.1927. 6. 0.9972. 7. 0120.80.80.80.810.04740!1!2!e -⎛⎫-++≈ ⎪⎝⎭. 8. 2λ=,{}42240.09024!P X e -==≈.练习2-31. 6k =, 0, 0.784. 2.2a π=3.12c =, 11e-. 4. 0.578125.5. 100a =, {}21503P X >=, 3280.296327P ⎛⎫=== ⎪⎝⎭.6. 45.7. 0.268. 8.0.60.5488e -≈.练习2-41. A.2. B.3. C.4. (1) 0.2; (2) {}0.5P X >={}050.5P X <≤=;(3)0, 1,0.5, 11,()0.7, 12,1 2.x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ 分布函数()F x 的图像略.5. 0.5.6.,0,2()1,0.2x xe x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩7.220, 0,, 01,2()21, 12,21,2.x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩8. (1) 1A =; (2)11124P x ⎧⎫-<<=⎨⎬⎩⎭,18239P x ⎧⎫<<=⎨⎬⎩⎭;(3)2,01,()0,.x x f x ≤<⎧=⎨⎩其他9. (1)11,2A B π==; (2)1122P x ⎧⎫≤=⎨⎬⎩⎭; (3)22()14f x x =+.10. 0.682.练习2-51. (1) 31Y X =+的分布列为(2)2Y X =的分布列为2. (1) 3A =; (2)23(1),11,()80,Y y y f y ⎧--≤≤⎪=⎨⎪⎩其他; (3)01,()0,Y y f y ≤≤=⎪⎩其他.3. (1)()21ln 2,0,()0,0;y Y y f y y -⎧>=≤⎩(2)14,1,()0,1;y Y y f y y -->=≤⎩(3) 22,0,()0,0.yY y f y y ->=≤⎩练习4-14.2435;32;31. 5.0;2. 6.3;2.7.121;31;31-. 8.18.4.练习4-24.8;0.2. 5.2;41. 6 7.4.练习4-38. (1) 21221)(x ex f -=π22221)(y ey f -=πp =0 (2) 不独立.9.18110. (1)(2)1515(3)12. (Ⅰ)n 11-; (Ⅱ)n1-; (Ⅲ)2113.⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y),cov(Y X =32 )4,21(-F练习5-14.221d t xt--⎰; 0.5.5.≤94.6.0.983 8. 7. 0.997 7. 8. 0.952 5.练习6-34. 0.829 3.5. (1) 0.2628;(2) 0.2923;(3) 0.5785. 6. 0;n 31. 7.0.6744. 8.220,()00y n Y y f y y σ-⎧>=⎪⎪<⎩.9.λ;n λ;λ. 10. (1) 0.99;(2)4152σ.11. 35.12.(1)1n n -;(2)1n-.练习7-11.A .2.矩估计值:ˆx θ=,极大似然估计值:ˆx θ=. 3.矩估计量:ˆln X θ=,极大似然估计量:12ˆmin{,,,}nX X X θ=L . 4.矩估计值:ˆ0.67θ=,极大似然估计值:9ˆ13θ=.5.1X X -;1ln nii nX=∑;12min{,,,}nX X X L .6.ˆ3X θ=. 7.(1)2ˆXλ=;(2)2ˆXλ=.8.(1)ˆx x cθ=+,ˆX X cθ=+;(2)1ˆln ln nii nx n cθ==-∑,1ˆln ln nii nXn cθ==-∑.9.(1) ˆX μ=,ˆθ=(2)12ˆmin{,,,}n X X X μ=L ,ˆˆX θμ=-. 10.(1)ˆ2X θ=,(2)2ˆ().5D nθθ=练习7-21.D . 2.2. 3.2σ4.A5.215ˆ()9D μσ=,225ˆ()8D μσ=,231ˆ()2D μσ= 6.1n X +7.112n a n n =+,212nb n n=+ 8.(1)1ˆ22X θ=-;(2) 不是无偏估计量,因为22(4)E X θ≠.练习7-31.C . 2.C .3.(992.16, 1007.84). 4.(2818.54, 3295.46). 5.22224()u n Lασ≥.6. (1) (68.11, 85.089);(2) (190.33, 702.01). 7.(1)(5.608,6.392);(2)(5.558,6.442).8.(4.098,9.108). 9.(-0.002,0.006). 10.(0.45,2.79).练习8-11. A2. 第一类错误(弃真错误);第二类错误(取伪错误). 3.ˆXT =,t 分布,自由度1n -.4. C5. 可以认为包装机不正常工作. 6. 接受.7. 厂家的声称属实. 8. 可以认为无系统误差. 9. 可以.10.认为电池的寿命不比该公司宣称的短. 11.可以认为其平均电阻有明显的提高. 12.拒绝.13.可以认为无显著差异.练习8-21.222(1)ˆn S χσ-=;221/2/2(0,(1)][(1),)n n ααχχ---+∞U .2.D3.不正常.4.与通常无显著差异.5.不能.6.可以认为溶液水分含量不合格.练习8-31.(1) 接受0H;(2) 接受0H.2.无显著差异.3.接受.4.接受.5.认为X Y和的方差无明显差异.6.未达到公布的疗效.7.接受H0.。

《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案  第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一
一.填空题
1. 2、 3、 4、
二.单项选择题
1、B 2、C 3、C 4、A 5、B
三.计算题
1.(1)略
(2)A、 B、
C、 D、
2.解 =
3.解:最多只有一位陈姓候选人当选的概率为
4.
=
5.解:(1)
(2) 、
(3)
习题二
一.填空题
1.0.8 2、 3、 4、 5、
二.单项选择题
1、D 2、B 3、D 4、B
Байду номын сангаас(3)
3、解:(1)联合分布律:
Y X
0
1
2
0
1
0
2
0
0
(2) 时X的条件分布律:
0
1
2
4、解:
Y
5
P
5、解:由已知: ,所以

上式两端对y求导,得:
所以: ,进而可以得到:
第二章复习题
一、填空题
1、 2、 3、
4、 , ,
5、
二、单项选择题
1、A 2、B 3、C 4、B
三、计算题
1、
0
1
2
2、解:(1)
1
2

k



(2)
3、(1)解:由联合密度,可求边缘密度:
, ;
因为 ,所以X与Y相互独立
(2)解:由联合密度,可求边缘密度:
, ;
因为 ,所以X与Y不独立
4、解:(1)由联合分布函数得边缘分布函数:

可见 ,所以X、Y独立
(2)要求:
5、解:(1) , ,解得k= 12
(2)
习题五随机变量的数字特征
4
5 0.0228
二DDAC

10.3721 0.7143
2
3 ,
4 0
习题八
一、1、42 2、
3、0.025 4、
二、C B D D A
三、1、0.1314
2、(1)0.0057,(2)0.1
3、0.05
习题九
一、1、
2、
4、
二、1、D 2、C 3、C 4、A 5、A 6、D
三、1、最大似然估计值: ,是无偏估计
又由 的右连续性,有 ,即 ,可以解得:
8、解:解:


(2)
习题四第二章随机变量及其分布
一、填空题
1、 2、
3、 4、 , 5、
二、单项选择题
1、A 2、D
三、计算题
1、解:(1) , ,解得A= 4
(2)
(3)
(4)
2、解:(1) ;
(2)边缘分布律:
X
0
1
2
Y
0
1
P
0.3
0.5
0.2
P
0.5
0.5
一.1、 , 2、 3、 ,
二.单项选择题
1、C 2、B
三.计算题
1、 =
2、解(1)
(2)
3.解
X
-1
0
1
2
P
0.2
0.3
0.3
0.2
所以
4.解
5.
6. , ,
7.证明略
习题六随机变量的数字特征
一.填空题
1、 ;2、 ;
二.单项选择题
1、A 2、A 3、B
三.计算题
1、解(1)
0
1
0
0.1
0.8
0.9
所以拨号不超过三次接通电话的概率为
4.解:
=
5.解:设 分别表示发出信号“A”及“B”
分别表示收到信号“A”及“B”
=
第一章复习题
一.填空题
1.0.3,0.5 2、0.2 3、 4、 , 5、 , ,
6.
二.单项选择题
1、B 2、B 3、D 4、D 5、A
三.计算题
1.解:设 :i个人击中飞机( =0,1,2,3)
=
习题三第二章随机变量及其分布
一、填空题
1、 2、2 3、 4、0.8 5、 6、
二、单项选择题
1、B 2、A 3、B 4、B
三、计算题
1、解:由已知 ,其分布律为:
至少有两人的概率:
多于13人的概率: 0
2、解设击中的概率为p,则X的分布率为
X
1
2
3
4
5
6




( +(
3、解:X的分布律为:
X
3
三.计算题
1.解:设 :分别表示甲、乙、丙厂的产品( =1,2,3)
B:顾客买到正品
=
2.解:设 :表示第 箱产品( =1,2)
:第 次取到一等品( =1,2)
(1) =
(2)同理
(3)
=
(4)
3.解:设 :表示第i次电话接通( =1,2,3)
所以拨号不超过三次接通电话的概率为
如已知最后一位是奇数,则

所以
2、解:由已知: ,
可得:
同理: ,而
所以:
3、解:由已知边缘密度为: ,
所以 ,
而 ,所以 ,
4、解:
5、解:设每毫升血液中白细胞数为X,则由已知: ,
要估计 :
由切比雪夫不等式,可得
即每毫升含白细胞数在5200~9400之间的概率大概为 。
习题七第四章
一、填空题
1、0
2、N(0,5)
3、0.3413
5、(1) , ,拒绝域 ,
而 ,于是接受
(2) ; ,拒绝域 ,
而 ,于是接受
统计部分复习题
一、1、0.82 2、25
3、 ,
4、 ,接受
二、BADA
三、1、98箱
2、
3、(1)拒绝;(2)接受
4、(1)拒绝;(2)接受
1
0.1
0
0.1
0.2
0.8
(2) ,
所以,
2.解:由于
故 ,
3.解
4.
第三章复习题
一、填空题
1、 或 , , ;2、 ,2.8,24.84,11.04;3、97;
4、5;5、18.4;6、25.6;
二、1、A 2、A3、B
Y
100
-200
P
三、1、解:设一台设备的净获利为Y,则其分布律为:
可以计算:
4
5
0.3
0.6
X的分布函数为:
4、解:由已知,X的密度函数为:
此二次方程的
(1)当 时,有实根,即
所以
(2)当 时,有重根,即
所以
(3)当 时,无实根,
5、解:设X为元件寿命,Y为寿命不超过150小时的元件寿命。由已知:
6、解:由 ,有: ,即
又由 ,有 ,即
联立求解,得:
7、解: ,由 ,有:
,即
2、矩估计量 ,最大似然估计量
3、(1)(0.0829,0.0839)
(2)
4、(1524.47,1565.53)
习题十
一、1、 2、
3、 , 分布,
二、B B A
三、1、 双侧检验的临界值:
答:接受
2、 , ,拒绝
3、 , ,拒绝域 ,接受 电子管正常
4、(1) , , ,接受 ;
(2) ; ,拒绝域 ,拒绝 ,包装机不正常

B:飞机被击落
+
=
2.解:设 :i局甲胜( =0,1,2,3)
(1)甲胜有下面几种情况:
打三局,概率
打四局,概率
打五局,概率
P(甲胜)= + + =0 68256
(2)
3.解:设A:知道答案B:填对
4.解:设 :分别表示乘火车、轮船、汽车、飞机( =1,2,3,4)
B:迟到
+
=
同理
5.解:A:甲袋中取红球;B:乙袋中取红球
相关文档
最新文档