小学奥数题型与解题思路全解1~60讲,奥数辅导必备手册

合集下载

小学奥数各年级经典题解题技巧大全——对应法,超全面讲解!

小学奥数各年级经典题解题技巧大全——对应法,超全面讲解!

小学奥数各年级经典题解题技巧大全——对应法,超全面讲解!对应法解应用题时要找出题中数量间的对应关系。

如解平均数应用题需找出“总数量”所对应的“总份数”;解倍数应用题需找出具体数量和倍数的对应关系;解分数应用题需找出数量与分率的对应关系。

因此,找出题中“对应”的数量关系,是解答应用题的基本方法之一。

用对应的观点,发现应用题数量之间的对应关系,通过对应数量求未知数的解题方法,称为对应法。

解答复杂的分数应用题,关键就在于找出具体数量与分率的对应关系。

(一)解平均数应用题在应用题里,已知几个不相等的已知数及份数,要求出总平均的数值,称为求平均数应用题。

解平均数应用题,要找准总数量与总份数的对应关系,然后再按照公式例1:同学们参加麦收劳动。

第一天收麦16亩,第二天上午收麦8亩,下午收麦12亩。

平均每天收麦多少亩?(适于三年级程度)解:本题的总份数是2天(注意:总份数不是3天),2天所对应的总数量是(16+8+12)亩。

所以,平均每天收麦亩数是:(16+8+12)÷2=36÷2=18(亩)答略。

例2:服装厂一、二月份共生产13356套服装,三月份生产12030套服装。

第一季度平均每月生产多少套服装?(适于三年级程度)解:本题的总份数是3个月(注意:不是2个月),与3相对应的总数是(13356+12030)套。

例2 服装厂一、二月份共生产13356套服装,三月份生产12030套服装。

第一季度平均每月生产多少套服装?(适于三年级程度)所以,平均每个月生产服装的套数是:(13356+12030)÷3=25386÷3=8462(套)答略。

例3:某乡有两块稻谷实验田。

第一块8亩,平均亩产稻谷550千克;第二块6亩,共产稻谷2880千克。

这两块试验田平均亩产稻谷多少千克?(适于四年级程度)解:求平均亩产量,总份数就是总亩数(8+6)亩,和总份数对应的总数量就是总产量(550×8+2880)千克。

小学数学奥数解题技巧大全60讲 (1)

小学数学奥数解题技巧大全60讲 (1)

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

奥数题型与解题思路41~60讲-优质版

奥数题型与解题思路41~60讲-优质版

41、简单方程的解法【一元一次方程解法】求方程的解(或根)的过程,叫做解方程。

解一元一次方程的一般步骤(或解法)是:去分母,去括号,移项,合并同类项,两边同除以未知数x的系数。

解去分母,两边同乘以6,得3(x-9)-2(11-x)=12去括号,得3x-27-22+2x=12移项,得3x+2x=12+27+22合并同类项,得5x=61【分式方程解法】分母中含未知数的方程是“分式方程”。

解分式方程的一般步骤(或方法)是:(1)方程两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根,是原方程的增根,必须舍去。

解方程两边都乘以x(x-2),约去分母,得5(x-2)=7x解这个整式方程,得x=-5,检验:当x=-5时,x(x-2)=(-5)(-5-2)=35≠0,所以,-5是原方程的根。

解方程两边都乘以(x+2)(x-2),即都乘以(x2-4),约去分母,得(x-2)2-16=(x+2)2解这个整式方程,得x=-2。

检验:当x=-2时,(x+2)(x-2)=0,所以,-2是增根,原方程无解。

42、加法运算定律【加法交换律】两个数相加,交换加数的位置,它们的和不变。

这叫做“加法的交换定律”,简称“加法交换律”。

加法交换律用字母表达,可以是a+b=b+a。

例如:864+1,236=1,236+864=2,100【加法结合律】三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。

这叫做“加法的结合定律”,简称“加法结合律”。

加法结合律用字母表达,可以是(a+b)+c=a+(b+c)。

例如:(48928+2735)+7265=48928+(2735+7265)=48928+10000= 5892843、几何图形旋转【长方形(或正方形)旋转】将一个长方形(或正方形)绕其一边旋转一周,得到的几何体是“圆柱”。

奥数题型与解题思路41~60讲-精华版

奥数题型与解题思路41~60讲-精华版

41、简单方程的解法【一元一次方程解法】求方程的解(或根)的过程,叫做解方程。

解一元一次方程的一般步骤(或解法)是:去分母,去括号,移项,合并同类项,两边同除以未知数x的系数。

解去分母,两边同乘以6,得3(x-9)-2(11-x)=12去括号,得3x-27-22+2x=12移项,得3x+2x=12+27+22合并同类项,得5x=61【分式方程解法】分母中含未知数的方程是“分式方程”。

解分式方程的一般步骤(或方法)是:(1)方程两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根,是原方程的增根,必须舍去。

解方程两边都乘以x(x-2),约去分母,得5(x-2)=7x解这个整式方程,得x=-5,检验:当x=-5时,x(x-2)=(-5)(-5-2)=35≠0,所以,-5是原方程的根。

解方程两边都乘以(x+2)(x-2),即都乘以(x2-4),约去分母,得(x-2)2-16=(x+2)2解这个整式方程,得x=-2。

检验:当x=-2时,(x+2)(x-2)=0,所以,-2是增根,原方程无解。

42、加法运算定律【加法交换律】两个数相加,交换加数的位置,它们的和不变。

这叫做“加法的交换定律”,简称“加法交换律”。

加法交换律用字母表达,可以是a+b=b+a。

例如:864+1,236=1,236+864=2,100【加法结合律】三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。

这叫做“加法的结合定律”,简称“加法结合律”。

加法结合律用字母表达,可以是(a+b)+c=a+(b+c)。

例如:(48928+2735)+7265=48928+(2735+7265)=48928+10000= 5892843、几何图形旋转【长方形(或正方形)旋转】将一个长方形(或正方形)绕其一边旋转一周,得到的几何体是“圆柱”。

小学数学奥数35个专题题型分类及解题技巧

小学数学奥数35个专题题型分类及解题技巧

小学奥数辅导35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学四年级奥数培训教材(精讲版)

小学四年级奥数培训教材(精讲版)

第一讲简单推理例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?2、3包巧克力的重量等于两袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,一只小猪的重量等于几只鸭的重量?例2:一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量,一头象的重量等于几头小猪的重量?1、一只西瓜的重量等于两个菠萝的重量,一个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量,一只西瓜的重量等于几个橘子的重量?2、一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等。

已知一头牛每天吃青草18千克,一只兔子和一只羊一天一共吃青草多少千克?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问两只小猪的重量等于几条鱼的重量?例3:根据下面两个算式,求○和□各代表多少?○+○+○=18○+□=101、根据下面两个算式,求○和□各代表多少?○+○+○+○=32□-○=202、根据下面两个算式,求○和□各代表多少?○+○+○=15○+○+□+□+□=403、根据下面两个算式,求○和□各代表多少?□-○=8例4:根据下面两个算式,求○和□各代表多少?△-○=2○+○+△+△+△=561、根据下面两个算式,求○和□各代表多少?□-○=8○+○+□+□=202、根据下面两个算式,求○和□各代表多少?△+△+△+○+○=78△+△+○+○+○=723、根据下面两个算式,求○和□各代表多少?△+△+△-□-□=12□+□+□-△-△=2第二讲应用题例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱各装多少件玩具?1、百货商店运来300双球鞋分别装在两个木箱和6个纸箱里。

小学奥数解题方法完整版

幻灯片1小学奥数解题方法完整版幻灯片2解题方法1--分?类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。

幻灯片3可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。

一共有线段4+3+2+1=10(条)。

幻灯片4还可以把图中的线段按它们所包含基本线段的条数来分类。

(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。

幻灯片5有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。

如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。

设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。

幻灯片61、11 一种2、11 2、10 二种3、11 3、10 3、9 三种4、11 4、10 4、9 4、8 四种5、11 5、10 5、9 5、8 5、7 五种6、11 6、10 6、9 6、8 6、7 6、6 六种7、11 7、10 7、9 7、8 7、7 五种8、11 8、10 8、9 8、8 四种9、11 9、10 9、9 三种10、11 10、10 二种11、11 一种1+2+3+4+5+6+5+4+3+2+1=36种幻灯片7解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。

(完整版)小学数学奥数35个专题题型分类及解题技巧

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

小学生奥数精讲教材目次汇总(1-6年级)


越小,乘机越大;差越大,乘积越小。
乘法原理:m1*m2*…*mn
如果2个正整数的乘积一定,则这2个正整数的
差越小,和越小;差域大,和越大。
把1个正整数分拆成N个正整数之和,则乘积
越大,正整数应都是2或3,且2最多不超过2
第20讲 幻方
第20讲 奇数与偶数
每行、每列、每条对角线上的3个正整数的和
均相等
第17讲 利用图形解题
第18讲 巧解应用题 第19讲 火柴棒游戏
第20讲 数学趣题
三年级
第1讲 速算与巧算 加法的简便运算: A+B=B+A (A+B)+C=A+(B+C) 减法的简便运算: A-B-C=A-(B+C) A-B+C=A-(B-C)
四年级
第1讲 速算与巧算 分解或合并、利用特殊数、添括号或取括号、 带符号搬家
第12讲 数阵图 重叠数1个,数阵图的填法是唯一的; 重叠数2个,填法可能是不唯一的; 第13讲 长方形的面积
第14讲 数谜问题 重叠问题
第15讲 定义新运算
第15讲 图形的拼切与面积计算 利用面积大小的逐推、利用图形的对称性、旋 转分割
第16讲 混合运算与应用题
第16讲 巧算24点
同级运算,从左到右依次计算
第2讲 平均数 平均数:使几个不相等的数变成相等的数 平均数=总数/份数
第2讲 和倍问题 和/(倍数+1)=较小数 较小数*倍数=较大数 和-较小数=较大数
第3讲 简单数列求和
第3讲 差倍关系
等差数列:当一列数的规律是相邻2项的差是 2个量的差/2个量的倍数差,求1倍数
一个固定的数
固定的差:d;和:S;项数:n

小学奥数21类难题汇总附解题思路

小学奥数21类难题汇总,附解题思路题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱——0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。

所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。

【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。

【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。

问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。

【例】甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解:直接套用公式——甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)题型四:和倍问题【含义】已知两个数的和及“大数是小数的几倍(或小数是大数的几分之几)”,求这两个数各是多少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、最值问题【最小值问题】例1 外宾由甲地经乙地、丙地去丁地参观。

甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。

为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。

现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。

(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。

他们将上面的线段分为了2个2500米,2个4000米,2个2000米。

现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。

由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。

例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。

若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。

我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。

这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。

故,O点即为三只蚂蚁会面之处。

【最大值问题】例1 有三条线段a、b、c,并且a<b<c。

判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。

其问题实质上是把这个定值拆成两个数,求这两个数为何值时,乘积最大。

由等周长的长方形面积最大原理可知,(a+b)×c这组数的值最接近。

故图(3)的面积最大。

例2 某商店有一天,估计将进货单价为90元的某商品按100元售出后,能卖出500个。

已知这种商品每个涨价1元,其销售量就减少10个。

为了使这一天能赚得更多利润,售价应定为每个______元。

(台北市数学竞赛试题)讲析:因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品按单价90元进货,共进了600个。

现把600个商品按每份10个,可分成60份。

因每个涨价1元,销量就减少1份(即10个);相反,每个减价1元,销量就增加1份。

所以,每个涨价的钱数与销售的份数之和是不变的(为60),根据等周长长方形面积最大原理可知,当把60分为两个30时,即每个涨价30元,卖出30份,此时有最大的利润。

因此,每个售价应定为90+30=120(元)时,这一天能获得最大利润。

2、最值规律【积最大的规律】(1)多个数的和一定(为一个不变的常数),当这几个数均相等时,它们的积最大。

用字母表示,就是如果a1+a2+…+a n=b(b为一常数),那么,当a1=a2=…=a n时,a1×a2×…×a n有最大值。

例如,a1+a2=10,…………→…………;1+9=10→1×9=9;2+8=10→2×8=16;3+7=10→3×7=21;4+6=10→4×6=24;4.5+5.5=10→4.5×5.5=24.75;5+5=10→5×5=25;5.5+4.5=10→5.5×4.5=24.75;…………→…………;9+1=10→9×1=9;…………→…………由上可见,当a1、a2两数的差越小时,它们的积就越大;只有当它们的差为0,即a1=a2时,它们的积就会变得最大。

三个或三个以上的数也是一样的。

由于篇幅所限,在此不一一举例。

由“积最大规律”,可以推出以下的结论:结论1 所有周长相等的n边形,以正n边形(各角相等,各边也相等的n 边形)的面积为最大。

例如,当n=4时,周长相等的所有四边形中,以正方形的面积为最大。

例题:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它的面积为最大?解设长为a厘米,宽为b厘米,依题意得(a+b)×2=24即 a+b=12由积最大规律,得a=b=6(厘米)时,面积最大为6×6=36(平方厘米)。

(注:正方形是特殊的矩形,即特殊的长方形。

)结论2 在三度(长、宽、高)的和一定的长方体中,以正方体的体积为最大。

例题:用12米长的铁丝焊接成一个长方体,长、宽、高如何分配,它的体积才会最大?解设长方体的长为a米,宽为b米,高为c米,依题意得(a+b+c)×4=12即a+b+c=3由积最大规律,得a=b=c=1(米)时,长方体体积为最大。

最大体积为1×1×1=1(立方米)。

(2)将给定的自然数N,分拆成若干个(不定)的自然数的和,只有当这些自然数全是2或3,并且2至多为两个时,这些自然数的积最大。

例如,将自然数8拆成若干个自然数的和,要使这些自然数的乘积为最大。

怎么办呢?我们可将各种拆法详述如下:分拆成8个数,则只能是8个“1”,其积为1。

分拆成7个数,则只能是6个“1”,1个“2”,其积为2。

分拆成6个数,可得两组数:(1,1,1,1,1,3);(1,1,1,1,2,2)。

它们的积分别是3和4。

分拆成5个数,可得三组数:(1,1,1,1,4);(1,1,1,2,3);(1,1,2,2,2)。

它们的积分别为4,6,8。

分拆成4个数,可得5组数:(1,1,1,5);(1,1,2,4);(1,1,3,3);(1,2,2,3);(2,2,2,2)。

它们的积分别为5,8,9,12,16。

分拆成3个数,可得5组数:(1,1,6);(1,2,5);(1,3,4);(2,2,4);(2,3,3)。

它们的积分别为6,10,12,16,18。

分拆成2个数,可得4组数:(1,7);(2,6);(3,5);(4,4)。

它们的积分别为7,12,15,16。

分拆成一个数,就是这个8。

从上面可以看出,积最大的是18=3×3×2。

可见,它符合上面所述规律。

用同样的方法,将6、7、14、25分拆成若干个自然数的和,可发现6=3+3时,其积3×3=9为最大;7=3+2+2时,其积3×2×2=12为最大;14=3+3+3+3+2时,其积3×3×3×3×2=162为最大;由这些例子可知,上面所述的规律是正确的。

【和最小的规律】几个数的积一定,当这几个数相等时,它们的和相等。

用字母表达,就是如果a1×a2×…×a n=c(c为常数),那么,当a1=a2=…=an时,a1+a2+…+a n有最小值。

例如,a1×a2=9,…………→…………1×9=9→1+9=10;3×3=9→3+3=6;…………→…………由上述各式可见,当两数差越小时,它们的和也就越小;当两数差为0时,它们的和为最小。

例题:用铁丝围成一个面积为16平方分米的长方形,如何下料,材料最省?解设长方形长为a分米,宽为b分米,依题意得a×b=16。

要使材料最省,则长方形周长应最小,即a+b要最小。

根据“和最小规律”,取a=b=4(分米)时,即用16分米长的铁丝围成一个正方形,所用的材料为最省。

推论由“和最小规律”可以推出:在所有面积相等的封闭图形中,以圆的周长为最小。

例如,面积均为4平方分米的正方形和圆,正方形的周长为8分米;而的周长小于正方形的周长。

【面积变化规律】在周长一定的正多边形中,边数越多,面积越大。

为0.433×6=2.598(平方分米)。

方形的面积。

推论由这一面积变化规律,可以推出下面的结论:在周长一定的所有封闭图形中,以圆的面积为最大。

例如,周长为4分米的正方形面积为1平方分米;而周长为4分米的圆,于和它周长相等的正方形面积。

【体积变化规律】在表面积一定的正多面体(各面为正n边形,各面角和各二面角相等的多面体)中,面数越多,体积越大。

例如,表面积为8平方厘米的正四面体S—ABC(如图1.30),它每一个面均为正三角形,每个三角形面积为2平方厘米,它的体积约是1.1697立方厘米。

而表面积为8平方厘米长约为1.1546厘米,体积约为1.539立方厘米。

显然,正方体体积大于正四面体体积。

推论由这一体积变化规律,可推出如下结论:在表面积相等的所有封闭体中,以球的体积为最大。

例如,表面积为8平方厘米的正四面体,体积约为1.1697立方米;表面积为8平方厘米的正六面体(正方体),体积约为1.539立方厘米;而表面积是8平方厘米的球,体积却约有2.128立方厘米。

可见上面的结论是正确的。

【排序不等式】对于两个有序数组:a1≤a2≤…≤a n及b1≤b2≤…≤b n,则a1b1+a2b2+……+a n b抇n(同序)T≥a1b抇1+a2b抇2+……+a n b抇n(乱序)≥a1bn+a2b n-1+……+a>n b1(倒序)(其中b抇1、b抇2、……、b抇n为b1、b2、……、b n的任意一种排列(顺序、倒序排列在外),当且仅当a1=a2=…=a n,或b1=b2=…=b n时,式中等号成立。

)由这一不等式可知,同序积之和为最大,倒序积之和为最小。

例题:设有10个人各拿一只水桶,同时到一个水龙头下接水。

水龙头注满第一、第二、……九、十个人的桶,分别需要1、2、3、……、9、10分钟。

问:如何安排这10个人的排队顺序,可使每个人所费时间的总和尽可能少?这个总费时至少是多少分钟?解设每人水桶注满时间的一个有序数组为:1,2,3,……,9,10。

打水时,等候的人数为第二个有序数组,等候时间最长的人数排前,这样组成1,2,3,……,9,10。

根据排序不等式,最小积的和为倒序,即1×10+2×9+3×8+4×7+5×6+6×5+7×4+8×3+9×2+10×1=(1×10+2×9+3×8+4×7+5×6)×2=(10+18+24+28+30)×2=220(分钟)其排队顺序应为:根据注满一桶水所需时间的多少,按从少到多的排法。

3、最优方案与最佳策略【最优方案】例1 某工厂每天要生产甲、乙两种产品,按工艺规定,每件甲产品需分别在A、B、C、D四台不同设备上加工2、1、4、0小时;每件乙产品需分别在A、B、C、D四台不同设备上加工2、2、0、4小时。

相关文档
最新文档