人教版高中数学选修2-1第二、三章教案汇编吉林版

合集下载

人教版高中数学选修23全部教案

人教版高中数学选修23全部教案

人教版高中数学选修23全部教案《人教版高中数学选修23全部教案》概述本文内容为人教版高中数学选修23全部教案的解读与总结。

选修23是高中数学课程中的一部分,主要涉及微积分的应用和进一步的函数理论。

第一章绪论本章主要介绍了微积分的基本概念和思想,包括函数、极限、导数和微分等内容。

通过对这些基本概念的学习,可以为后续章节提供必要的基础。

第二章函数的应用该章节主要介绍了函数的一些重要应用,包括函数的最大值和最小值、函数的方程与不等式、函数图象的平移与反射等内容。

通过解决一些实际问题,加深对函数的理解并提高解决问题的能力。

第三章导数的应用本章主要介绍了导数的重要应用,包括导数与函数的增减性、函数的极值与最值、函数的凹凸性与拐点等内容。

这些应用可以帮助学生更好地理解函数的性质和变化规律,并在实际问题中应用导数进行分析和解决。

第四章定积分的应用该章节主要介绍了定积分的应用,包括定积分与面积、定积分与弧长、定积分与体积等内容。

通过学习这些应用,学生可以更加深入地理解定积分的概念和性质,并在实际问题中进行应用。

第五章无穷级数的应用本章主要介绍了无穷级数的应用,包括函数的幂级数展开、函数的泰勒级数展开和无穷级数在物理问题中的应用等内容。

通过学习这些应用,可以加深对无穷级数的理解,并且掌握无穷级数在实际问题中的运用能力。

第六章多元函数微分学的应用该章节主要介绍了多元函数微分学在实际问题中的应用,包括二元函数的极值与条件极值、多元函数的极值与条件极值、拉格朗日乘数法等内容。

通过学习这些应用,可以培养学生运用多元函数微分学解决实际问题的能力。

第七章微分方程的应用本章主要介绍了微分方程在实际问题中的应用,包括可分离变量微分方程、齐次线性微分方程、一阶线性微分方程等内容。

通过学习这些应用,可以培养学生分析和解决实际问题的能力。

第八章空间解析几何与立体几何的应用该章节主要介绍了空间解析几何与立体几何在实际问题中的应用,包括空间中的点、向量、平面等的坐标表示、曲线与曲面的方程、立体几何中的体积与表面积等内容。

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。

吉林省东北师范大学附属中学2014-2015学年高中数学人教A版选修2-1课时教案:2-1.1.3.1-2简单的逻辑联结词

吉林省东北师范大学附属中学2014-2015学年高中数学人教A版选修2-1课时教案:2-1.1.3.1-2简单的逻辑联结词

(一)教学目标1.知识与技能目标:(1)掌握逻辑联结词“或、且”的含义(2)正确应用逻辑联结词“或、且”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。

难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。

在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。

下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,…表示命题。

(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。

(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。

学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。

人教版【高中数学】选修2-1第三章空间向量的基本定理讲义(可打印修改)

人教版【高中数学】选修2-1第三章空间向量的基本定理讲义(可打印修改)

案例(二)——精析精练课堂合作研究重点难点突破知识点一 共线向量定理(1)定理内容:对空间两个向量,的充要条件是存在唯一的实数,()0,≠b b a b a //x 使。

此定理可以分解为以下两个命题;①若,则存在唯一实数,使xb a =()0//≠b b a x 。

②存在实数,使,则。

xb a =x ()0≠=b xb a b a // (2)在定理中为什么要规定呢?当时,若,则,也存在实数0≠b 0=b 0=a b a //使;但若,我们知道零向量和任一非零向量共线,但不存在实数,使x xb a =0≠a x ,因此在定理中规定了。

若将定理写成,则应规定。

xb a =0≠b xa b b a =⇔//0≠a 说明:①在功中,对于确定的和,功表示空间与平行或共线且长xb a =x b xb a =b度为的所有向量;②利用共线向量定理可以证明两线平行,xb 或三点共线。

知识点二 共面向量定理(1)共面向量已知向量,作,如果的基线平行于平面,记作a a OA =OA a (右图),通常我们把平行于同一平面的向量,叫做共面向量。

α//a 说明:①是指的基线在平面内或平行平面。

②共面向量是指这些向量的α//a a αα基线平行或在同一平面内,共面向量的基线可能相交、平行或异面。

我们已知,对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定共面了。

例如,在下图中的长方体,向量、、,无论怎样平移都不能使它们在AB AC AD 同一平面内。

(2)共面向量定理共面向量定理:如果两个向量、不共线,则向量与向量a b c、共面的充要条件是,存在唯一的一对实数,使。

a b y x ,yb xa c +=说明:①在证明充要条件问题时,要证明两个方面即充分性和必要性。

②共面向量的充要条件给出了平面的向量表示,说明任意一个平面可以由两个不共线的平面向量表示出来,它既是判断三个向量是否共面的依据,又是已知共面条件的另一种形式,可以借此已知共面条件化为向量式,以便我们的向量运算。

人教版高中数学选修2-1优秀全套教案

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案第一章常用逻辑用语日期:1.1.1命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

教学时间(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程

完整word版,高中数学选修2-1全套教案(K12教育文档)

完整word版,高中数学选修2-1全套教案(K12教育文档)

完整word版,高中数学选修2-1全套教案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(完整word版,高中数学选修2-1全套教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为完整word版,高中数学选修2-1全套教案(word版可编辑修改)的全部内容。

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学选修2-1教案汇编目录2.2.1椭圆及其标准方程教案 (1)2.2.2椭圆第二定义教案 (4)2.2.3椭圆的简单几何性质教案 (11)2.2.4 椭圆中焦点三角形的性质及应用教案 (14)2.3.3双曲线的简单几何性质教案 (25)2.4.1抛物线及标准方程教案 (29)2.4.2 抛物线的几何性质教案 (32)3.2空间向量及其运算(2)教案 (34)3.2空间向量及其运算(2)教案 (39)3.3空间向量的数量积(1)教案 (42)3.4空间向量的数量积(2)教案 (45)2.2.1椭圆及其标准方程教案◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标 (1)预习与引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.(2)新课讲授过程(i )由上述探究过程容易得到椭圆的定义.〖板书〗把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.(ii )椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理. 设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义.类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>.(iii )例题讲解与引申例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解.另解:设椭圆的标准方程为()222210x y a b a b +=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591444a a bb a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩. 例2 如图,在圆224x y +=上任取一点P ,过点P 作x轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程.引申:设定点()6,2A ,P 是椭圆221259x y +=上动点,求线段AP 中点M 的轨迹方程.解法剖析:①(代入法求伴随轨迹)设(),M x y ,()11,P x y ;②(点与伴随点的关系)∵M 为线段AP 的中点,∴112622x x y y =-⎧⎨=-⎩;③(代入已知轨迹求出伴随轨迹),∵22111259x y +=,∴点M 的轨迹方程为()()223112594x y --+=;④伴随轨迹表示的范围. 例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程. 分析:若设点(),M x y ,则直线AM ,BM 的斜率就可以用含,x y 的式子表示,由于直线AM ,BM 的斜率之积是49-,因此,可以求出,x y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点(),M x y ,则()55AM y k x x =≠-+,()55BM y k x x =≠-; 代入点M 的集合有4559y y x x ⨯=-+-,化简即可得点M 的轨迹方程.引申:如图,设△ABC 的两个顶点(),0A a -,(),0B a ,顶点C 在移动,且AC BC k k k ⨯=,且0k <,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当k 值在变化时,线段AB的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.◆ 情感、态度与价值观目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量b =数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质.2.2.2椭圆第二定义教案学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.教学目标知识目标:椭圆第二定义、准线方程;能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义;3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。

教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学过程: 学生探究过程:复习回顾1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为322,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4227±=y ). 2.短轴长为8,离心率为53的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ∆的周长为 20 . 引入课题【习题4(教材P50例6)】椭圆的方程为1162522=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离2.6 .② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗?解:22)34(||y MF +-=且116254202=+y 代入消去20y 得51325169||==MF【推广】你能否将椭圆12222=+by a x 上任一点),(y x M 到焦点)0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?解:⎪⎩⎪⎨⎧=++-=1)(||222222b y ax y c x MF 代入消去2y 得2222222)(2||a x a cx ab bc cx x MF -=-++-=||||||22ca x e c a x a c a x a c -=-=-= 问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点M 到右焦点)0,(c F 的距离与它到定直线ca x 2=的距离的比等于离心率a c问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)动点M 到定点)0,(c F 的距离与它到定直线ca x 2=的距离的比等于常数)(c a a c>的点的轨迹是椭圆.【引出课题】椭圆的第二定义当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F -'的准线方程是c a x 2-=.对于椭圆12222=+bx a y 的准线方程是c a y 2±=.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.由椭圆的第二定义e dMF =∴||可得:右焦半径公式为ex a c a x e ed MF -=-==||||2右;左焦半径公式为ex a ca x e ed MF +=--==|)(|||2左典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;解:由题意可知右焦点)0,(c F 右准线c a x 2=;左焦点)0,(c F -和左准线ca x 2-=变式:求椭圆81922=+y x 方程的准线方程;解:椭圆可化为标准方程为:198122=+x y ,故其准线方程为42272±=±=c a y 小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆1162522=+y x 上的点M 到左准线的距离是5.2,求M 到左焦点的距离为. 变式:求M 到右焦点的距离为.解:记椭圆的左右焦点分别为21,F F 到左右准线的距离分别为21,d d 由椭圆的第二定义可知:e d MF =||53||11===a c e d MF 5.15.253||11=⨯==∴ed MF 5.1||1=∴MF又由椭的第一定义可知:5.8||102||||221=∴==+MF a MF MF 另解:点M 到左准线的距离是2.5,所以点M 到右准线的距离为685253505.222=-=-c a 5.868553||||2222=⨯==∴=ed MF e d MF小结:椭圆第二定义的应用和第一定义的应用例1、 点P 与定点A (2,0)的距离和它到定直线8=x 的距离的比是1:2,求点P 的轨迹;解法一:设),(y x P 为所求轨迹上的任一点,则21|8|)2(22=-+-x y x 由化简得1121622=+y x ,故所的轨迹是椭圆。

相关文档
最新文档