复积分的各种计算方法与应用

合集下载

复变函数积分计算

复变函数积分计算

复变函数积分计算方法总结1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分:()CCCf z dz udx vdy i udy vdx =-++⎰⎰⎰若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则:()[()]()Cf z dz f z t z t dt βα'=⎰⎰2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则:()0Cf z dz =⎰由闭路变形原理可得重要积分:100, 012, 0()n C n dz i n z z π+≠⎧=⎨=-⎩⎰ 可以把各种简单闭路变为圆周进行积分。

3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:00()2()f z dz if z z z πΓ=-⎰高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式:()010()2()()!n n f z i dz f z z z n π+Γ=-⎰ 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。

4、 用洛朗级数展开式的-1次项系数计算积分00101()()() (r<) 2()n n n n C n f z f z c z z z z R c dz iz z π∞+=-∞=--<=-∑⎰,其中:其中C 为环域内任意围绕0z 的正向简单闭路。

当1n =-时,-1次项的系数为11()2Cc f z dz iπ-=⎰,因此1()2Cf z dz ic π-=⎰5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2Cs f z z f z dz iπ=⎰,即洛朗级数展开式中-1次项的系数。

复积分的各种计算方法及应用

复积分的各种计算方法及应用

复积分的各种计算方法及应用复积分(double integral)是微积分中的一个重要概念,它可以用来计算在平面上的二维区域上面的函数的整体性质,比如面积、质心、质量等。

本文将介绍复积分的各种计算方法及其应用。

一、复积分的定义与性质复积分是对二元函数在一个二维区域上的积分,可以表示为:∬f(x,y)dA其中f(x,y)是定义在区域D上的函数,dA表示微元面积。

复积分可以用极限的思想进行定义,即将区域D划分成无数小块,计算每个小块的函数值与面积的乘积,再将所有小块的结果求和,即可得到复积分的近似值。

当划分的小块越来越小,求和的结果就逐渐逼近复积分的真实值。

复积分具有以下性质:1. 线性性质:对于两个函数f(x, y)和g(x, y),以及常数a、b,有∬(af(x, y) + bg(x, y))dA = a∬f(x, y)dA + b∬g(x, y)dA。

2.区域可加性:如果区域D可以划分成有限个不相交的子区域Di,那么有∬f(x,y)dA=∑∬f(x,y)dA。

3. 改变变量的性质:如果用变量变换将区域D变为区域D',那么有∬f(x, y)dA = ∬f(g(u, v), h(u, v)),J,dudv,其中J是变换的雅可比矩阵的行列式。

二、计算复积分的方法计算复积分的方法主要有以下几种:1.直角坐标法:通过在直角坐标系中进行积分,将复积分转化为两个一元函数的累次积分。

具体步骤是:先按照x或y的范围将区域D划分成若干个小区域;然后在每个小区域上,将函数f(x,y)中的另一个变量固定,将其视为常数,进行一元积分;最后将所有小区域上的积分结果相加。

2.极坐标法:对于具有极坐标对称性或区域边界为圆、椭圆、直线的情况,可以使用极坐标系进行积分。

具体步骤是:将x和y用r和θ表示,并将函数f(x,y)转化为g(r,θ),然后在极坐标系下进行积分。

需要注意的是,在进行变量变换时,面积元的变化要用雅可比行列式来表示。

复积分的计算方法及其应用

复积分的计算方法及其应用

摘要在复变函数的理论中,复积分是研究解析函数的重要工具.解析函数中的许多重要性质都要利用复变函数积分来证明.柯西积分定理在复积分的计算理论中处于关键地位,柯西积分公式、柯西积分定理及其推论、柯西高阶导数公式和留数定理对复积分的计算起到很大的作用.本文首先阐述复积分的相关概念,在此基础上介绍复积分的几种基本求法,如:用参数方程法、牛顿—莱布尼兹公式、柯西积分定理、柯西积分公式、复周线柯西积分定理、解析函数的高阶导数公式、留数定理.针对每一种计算方法给出相应的例子.对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.关键词:复积分;解析函数;柯西积分定理;柯西积分公式;留数定理ABSTRACTIn complex function theory, complex integration is an important tool of analytic function.Analytic function of many important properties are using the complex function integral to prove.Cauchy integral theorem in the calculation of complex integration theory in a key position,Cauchy integral formulas, Cauchy integral theorem and its corollary, Cauchy higher derivatives formula and residue theorem of integral to the complex calculation has played a significant role. This paper first describes the complex integration of related concepts introduced on this basis, the complex integration of several basic method for finding such as : parametric equations , Newton - Leibniz formula , Cauchy's integral theorem, Cauchy integral formula , complex contour Cauchy integral theorem, the formula of the higher order derivatives of analytic functions , residue theorem to give the corresponding examples for each type of calculation.The calculation method of complex integral to make a summary of the system, from which generalizes the complex functions for solving integral method and the skill.Key words:Complex integral; Analytic function; Cauchy integral theorem; Cauchy integral formula; the residue theorem目录摘要................................................................................... . (I)ABSTRACT............................................................................. .............................................I I 1前言................................................................................... (1)2 预备知识................................................................................... .. (2)3复变函数积分的计算方法................................................................................... . (6)法................................................................................... (6)3.2用牛顿—莱布尼兹公式计算复积分 (8)3.3 用柯西积分定理计算复积分 (10)3.4 用柯西积分公式计算复积分 (12)3.5 用复周线柯西积分定理计算复积分 (14)3.6用解析函数的高阶导数公式计算复积分 (16)3.7用留数定理计算复积分................................................................................... . (20)结论................................................................................... (24)参考文献................................................................................... .....................................2 5致谢................................................................................... .. (26)1前 言2006年3月淮南师范学院的崔东玲研究的《复积分的计算方法》,他通过变量代换、柯西积分公式、柯西积分定理、留数定理从中揭示诸多方法的内在联系.在研究复积分的计算方法这一方面取得了许多进展,证明了复变函数积分的计算方法.复变函数积分的计算方法灵活多样,而目前对复变函数积分的计算方法作出较系统的归纳却很少见.本文将利用复变函数积分基本原理,利用几种复积分的基本求法,针对每一种计算方法给出例子,并通过柯西积分定理、柯西积分公式、柯西高阶导数公式等来计算复积分,从中揭示诸多方法的内在联系,对复积分的计算方法作出较系统的归纳总结,从中概括出求复变函数积分的解题方法和技巧.2预备知识定义2.1[]1 设l 为复平面上以0z 为起点,而以z 为终点的光滑曲线(()y y x =有连续导数),在l 上取一系列分点011,,,,n n z z z z z -=把l 分为n 段,在每一小段1k k z z -上任取一点k ξ作和数()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑,1k k k z z z -∆=-当n →∞,且每一小段的长度趋于零时,若lim n n S →∞存在,则称()f z 沿l 可积,lim n n S →∞称为()f z 沿l 的路径积分.l 为积分路径,记为()lf z dz ⎰(若l 为围线(闭的曲线),则记为()lf z dz ⎰).()()1lim lim nnk k ln n k f z dz Sf z ξ→∞→∞===∆∑⎰ (()f z 在l 上取值,即z 在l 上变化).定理 2.1 若函数()()(),,f z u x y iv x y =+沿曲线C 连续,则()f z 沿C 可积,且().CCCf z dz udx vdy i vdx udy =-++⎰⎰⎰(1.1)复变函数积分的基本性质 设函数()(),f z g z 沿曲线C 连续,则有下列性质: (1) ()(),CCaf z dz a f z dz a =⎰⎰是复常数:(2) ()()()()=C C C f z g z dz f z dz g z dz ++⎡⎤⎣⎦⎰⎰⎰; (3) ()()()12,+CC C f z dz f z dz f z dz =⎰⎰⎰其中C 由曲线1C 和2C 衔接而成;图2.1(4) ()();CCf z dz f z dz -=-⎰⎰(5) ()()().CCCf z dz f z dz f z ds ≤=⎰⎰⎰这里dz 表示弧长的微分,即定义2.2 如果函数()w f z =在区域D 内可微,则称()f z 为区域D 内的解析函数,或称()f z 在区域D 内解析.定理2.2 函数()f z 在区域G 内解析的充要条件是: (1) ()f z 在G 内连续;()2 对任一周线C ,只要C 及其内部全部含于G ,就有()0C f z dz =⎰.定义2.3 若函数()f z 在0z 不解析,但在0z 的任一邻域内总有()f z 的解析点,则称0z 为函数()f z 的奇点.定义2.4 如果函数()f z 在点a 的某一去心邻域{}:0K a z a R -<-<(即除去圆心a 的某圆)内解析,点a 是()f z 的奇点,则称a 为()f z 的一个孤立奇点.定义2.5 设a 为函数()f z 的孤立奇点.(1) 如果()f z 在点a 的主要部分为零,则称a 为()f z 的可去奇点. (2) 如果()f z 在点a 的主要部分为有限多项,设为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠) 则称a 为()f z 的m 阶极点.一阶极点也称为单极点.(3) 如果()f z 在点a 的主要部分有无限多项,则称a 为()f z 的本质奇点. 定理2.3 如果a 为函数()f z 的孤立奇点,则下列三条是等价的.它们中的任何一条都是可去奇点的特征.(1) ()f z 在点a 的主要部分为零; (2) lim ()()z af z b →=≠∞;(3) ()f z 在点a 的某去心邻域内有界.定理2.4 如果函数()f z 以点a 为孤立奇点,则下列三条是等价的.它们中的任何一条都是m 阶极点的特征.(1) ()f z 在点a 的主要部分为()()()111m mmm c c c z az a z a -----++⋅⋅⋅+---(0m c -≠); (2) ()f z 在点a 的某去心邻域内能表成()()()mz f z z a λ=-,其中()z λ在点a 邻域内解析,且()0z λ≠;(3) 1()()g z f z =以点a 为m 阶零点(可去奇点要当作解析点看,只要令()0g a =).注 第(3)条表明:()f z 以点a 为m 阶极点⇔()1f z 以点a 为m 阶零点. 定理2.5 函数()f z 的孤立奇点a 为极点的充要条件是lim ()z af z →=∞. 定理2.6 函数()f z 的孤立奇点a 为本质奇点的充要条件是:lim ()(有理数)z a b f z →⎧≠⎨∞⎩,即lim ()z a f z →不存在. 定理2.7 若z a =为函数 ()f z 之一本质奇点,且在点a 的充分小去心邻域内不为零,则z a =亦必为()1f z 的本质奇点. 定理2.8 如果函数()f z 在单连通域B 内处处解析,那么积分dz z f C⎰)(与连结起点与终点的路线C 无关.定理2.9 如果函数()f z 在单连通域B 内处处解析,那么函数 ζζd f F zz ⎰=0)(z )(必为B 内一个解析函数,并且()()F z f z '=.定义2.6 如果函数)(z f z =')(ϕ,那么称)(z ϕ为)(z f 在区域内的原函数. 注 原函数之间的关系:)(z f 的任何两个原函数相差一个常数.定义2.7 称)(z f 的原函数的一般表达式C z F +)((C 为任意常数)为)(z f 的不定积分,记作()()f z dz F z C =+⎰.定义2.8 考虑1n +条周线01,,,n C C C ⋅⋅⋅,其中12,,,n C C C ⋅⋅⋅中的每一条都在其余各条的内部,而它们又全都在0C 的内部.在0C 内部的同时又在12,,,n C C C ⋅⋅⋅外部的点集构成一个有界的1n +连通区域D ,以012,,,,n C C C C ⋅⋅⋅为它的边界.在这种情况下,我们称区域D 的边界是一条复周线012n C C C C C ---=+++⋅⋅⋅+,它包括取正方向的0C ,以及取负方向的12,,,n C C C ⋅⋅⋅.换句话说,假如观察者沿复周线C 的正方向绕行时,区域D 的点总在它的左手边.定义2.9 如果函数()f z 在点a 是解析的,周线C 全在点a 的某邻域内,并包围点a ,则根据柯西积分定理得()0.Cf z dz =⎰注 如果a 为()f z 的一个孤立奇点,且周线C 全在a 的某个去心邻域内,并包 围点a ,则积分()Cf z dz ⎰的值,一般来说,不再为零.设函数()f z 以有限点a 为孤立奇点,即()f z 在点a 的某个去心邻域0z a R <-<内解析,则称积分()12f z d z iπΓ⎰ (:,0)z a R ρρΓ-=<<为()f z 在点a 的留数(residue ),记为Res ()f z .3复变函数积分的计算方法3.1用参数方程法设有光滑曲线C :()()()z z t x t i t ==+(t αβ≤≤), 这就表示()z t '在],αβ⎡⎣上连续且有不为零的导数,()()().z t x t iy t '''=+又设()f z 沿C 连续.令 由 (式1.1) 得 即()()(),C f z dz f z t z t dt βα'=⎡⎤⎣⎦⎰⎰ (1.2) 或()()(){}()(){}Re Im =+Cf z dz f z t z t dt i f z t z t dt ββαα''⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰ (1.3) 公式(1.2)、(1.3)是从积分路径的参数方程着手,称为参数方程法. (1.2)、(1.3)称为复积分的变量代换公式.注 (1) 一个重要的常用积分: (这里C 是以a 为圆心,ρ为半径的圆周)(2) 如果C 是由12,,,n C C C 等光滑曲线依次相互连接所组成的按段光滑曲线,则(3)在今后讨论的积分中,总假定被积函数是连续的, 曲线C 是按段光滑的. 例3.1[2]计算d Cz z ⎰,其中C 为:圆周3z =.解 积分路径的参数方程为3(02)πi z e θθ=≤≤,3i dz ie d θθ=2033πi Cz dz ie d θθ=⋅⎰⎰(因为3z =)0=.例3.2 计算积分()2Cx y ix dz -+⎰,积分路径C 是连接由0到1i +的直线段. 解 C 的参数方程是()()()1,,,01,1z i t x t y t t dz i dt =+==≤≤=+ 由参数方程法得:13i-=-. 注 通过上面的例子,我们知道在计算沿光滑曲线的复变函数积分的时候,可利用曲线的参数方程把复积分化为定积分,这是计算复积分的基本方法.凡是在定积分和线积分中使用的技巧,在这里都可以照常使用.在解题的时候要注意曲线用参数方程来表示时,正方向是参数增大的方向.参数的取值应与起点和终点相对应;在分段光滑曲线时,要注意各段曲线的起点与终点所对应的参数值的准确性.3.2 用牛顿—莱布尼兹公式计算复积分牛顿-莱布尼兹公式[3] 如果函数)(z f 在单连通域内处处解析,()G z 为)(z f 的一个原函数,那么)()()(01z 10z G z G dz z f z -=⎰,这里01,z z 为B 内的两点.例3.3 求20cos iz z dz π⎰的值.解 222001cos cos 2iiz z dz z dz ππ=⎰⎰21sin 2π=-.注 此题先使用了微积分学中的“凑微分”法,然后运用牛顿-莱布尼兹公式进行求解.例3.4 求0cos iz zdz ⎰的值.解 ()0cos sin i iz zdz zd z =⎰⎰11e -=-.注 此题先使用了微积分中的“分部积分法”,然后运用牛顿-莱布尼兹公式进行求解.例 3.5 求()2281Czz dz ++⎰的值,其中C 是连接0到2a π的摆线:()()sin ,1cos .x a y a θθθ=-=-解 因为函数2281z z ++在复平面内处处解析,所以积分与路线无关,由牛顿—莱布尼兹公式得:3322161623a a a πππ=++. 注 利用这种方法将复变函数积分转化成定积分来计算,方法虽然很好,但是要求非常苛刻,函数必须在单连通域内解析,而很多函数都不具备这一性质,所以在应用时需注意.3.3用柯西积分定理计算复积分柯西积分定理[4] 如果函数()f z 在单连通区域B 内处处解析,那么函数()f z 沿B 内的任何一条周线C 的积分为零. 即:()0Cf z dz =⎰.注 (1) 定理中的C 可以不是简单曲线.(2) 如果曲线C 是区域B 的边界,函数在()f z 在B 内C 上解析,即在闭区域B BC =+上解析,那么()0Cf z dz =⎰。

复积分计算公式

复积分计算公式

复积分计算公式复积分是指采用被称为“分部和”的计算方法,在一定的范围上将函数的形式表达式的复合式的求解过程,称为复积分。

这一公式经常被应用于物理、数学和工程学等多种领域。

二、复积分的具体形式复积分的具体形式可以表示为:∫∫[f(x,y)dxdy=∫xf(x,y)dy-∫yf(x,y)dx]其中,x为积分的上限,y为积分的下限,f(x,y)为函数形式表达式。

三、复积分的运用复积分在物理学和数学中有广泛的应用,主要用于求解双变量函数的积分,尤其是在解决复杂的物理问题时十分有用。

例如,在电力学中,可以使用复积分来解决求解局部电荷的问题;在热力学中,则可以用复积分来计算局部温度的问题;在量子力学中,可以使用复积分计算某个变量的概率分布;在几何学中,也可以使用复积分计算弯曲曲线的数值分析等。

四、复积分的计算1、把函数f(x,y)先按照一条变量的函数的方式进行积分,即:∫f(x,y)dx=g(x,y)2、然后再把第一步求得的结果g(x,y)坐标轴上另一个变量y 进行积分,即:∫g(x,y)dy=h(x,y)3、最后,将原函数f(x,y)按照另一个变量y先求积分,再求另一个变量x的积分,即:∫∫f(x,y)dxdy=h(x,y)五、复积分的扩展复积分的形式可以扩展到多变量的情况下,即:∫∫∫[f(x1, x2, x3...,xn)dx1 dx2 dx3...dxn]=∫x1f(x1, x2, x3,...,xn)dx2dx3...dxn-∫x2f(x1, x2,x3,...,xn)d x1dx3...dxn+∫x3f(x1, x2,x3,...,xn)dx1dx2...dxn...以上即为复积分计算公式的完整内容,本文介绍了复积分的定义、具体形式、运用及计算以及复积分的扩展,希望以上内容对读者有所帮助。

复变函数的积分总结

复变函数的积分总结

复变函数的积分总结引言复变函数积分是复分析的重要内容之一。

与实变函数不同的是,复变函数在积分时需要同时考虑实部和虚部,因此在处理复变函数的积分时需要注意一些特殊的性质和方法。

本文将对复变函数的积分进行总结,包括复积分的定义、性质和常见的积分方法。

复积分的定义复积分是对复变函数沿着曲线或者面积进行积分的操作。

复积分可以分为线积分和面积积分两种形式。

线积分对于复变函数f(z),其在线段L上的线积分定义为:$$ \\int_L f(z)dz = \\int_a^b f(z(t))z'(t)dt $$其中z(t)是L上参数化曲线的方程,$t \\in [a, b]$。

线积分的结果是一个复数。

面积积分对于复变函数f(z),其在有界连续曲线围成的区域D上的面积积分定义为:$$ \\int_D f(z)dz = \\iint_D f(z) dxdy $$其中z=x+iy,dxdy是区域D上的面积微元。

复积分的性质复积分具有一些重要的性质,它们在计算复积分时非常有用。

线积分的基本性质•线积分与路径无关:如果L1和L2是起点和终点相同的两条路径,且f(z)在路径间连续,则 $\\int_{L_1} f(z)dz = \\int_{L_2} f(z)dz$。

•线积分的线性性质:对于任意的复数c1和c2,以及复变函数f(z)和g(z),有 $\\int_L (c_1f(z) + c_2g(z))dz = c_1\\int_L f(z)dz + c_2\\int_L g(z)dz$。

•同路径积分相等:如果L是起点为z1终点为z2的路径,且f(z)在L 上连续且有原函数F(z),则 $\\int_L f(z)dz = F(z_2) - F(z_1)$。

面积积分的基本性质•面积积分与区域无关:如果D1和D2是相同的区域,且f(z)在区域D上连续,则 $\\int_{D_1} f(z)dz = \\int_{D_2} f(z)dz$。

计算复积分的几种方法

计算复积分的几种方法

计算复积分的几种方法
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。

2、换元法:包括整体换元,部分换元等等。

3、分部积分法:利用两个相加函数的微分公式,将所建议的分数转变为另外较为简
单的函数的分数。

4、有理函数积分法:有理函数是指由两个多项式函数的商所表示的函数,由多项式
的除法可知,假分式总能化为一个多项式与一个真分式之和。

分数公式法
直接利用积分公式求出不定积分。

换元积分法
换元积分法可分为第一类换元法与第二类换元法。

一、第一类换元法(即为兎微分法)
通过凑微分,最后依托于某个积分公式。

进而求得原不定积分。

二、备注:第二类换元法的转换式必须对称,并且在适当区间上就是单调的。

第二类换元法经常用于消去被积函数中的根式。

当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

常用的换元手段有两种:
1、根式赋值法,
2、三角代换法。

在实际应用领域中,赋值法最常用的就是链式法则,而往往用此替代前面所说的换元。

链式法则就是一种最有效率的微分方法,自然也就是最有效率的分数方法。

分部积分法
分部积分法的实质就是:将所求分数化成两个分数之差,分数难者先分数,实际上就
是两次分数。

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假
分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和,可见问题转化为
计算真分式的积分。

可以证明,任何真分式总能水解为部分分式之和。

复积分的计算方法

复积分的计算方法

复积分的计算方法复积分是一种重要的数学计算方法,可用来计算一类复杂函数在某种参数下的积分结果。

它具有可预测性和准确性,在工程科学、物理科学和数学分析中都有广泛的应用。

本文简要介绍复积分的定义、形式及计算方法,以供读者参考。

一、定义复积分,即二重积分,是一种求解不定积分的数学方法,通过多次使用积分函数来计算。

它通常用于计算较复杂的函数的积分,用于解决许多常见的计算问题,如求曲面积、求体积、解微分方程等。

二、形式复积分的形式可以用一元二次多项式表示,通常有两种形式:(1)横向积分:∫∫f(x,y)dxdy;(2)纵向积分:∫∫f(x,y)dydx。

其中,符号“∫∫”表示复积分;f(x,y)表示被积函数;dx和dy分别表示其中的一阶导数,x和y为变量,表示函数的参数。

三、计算方法(1)计算步骤复积分的计算简单来说就是多次使用积分计算函数,而分解积分就是把某一复杂的函数两两分解成若干个简单函数,再依次计算每个函数的积分。

具体计算步骤如下:(a)确定函数形式:首先,要确定被积函数f(x,y)的函数形式;(b)定义积分范围:其次,要确定积分的范围,即x的上下限和y的上下限,用来求解复积分;(c)分解积分:把某一复杂的函数两两分解成若干个简单函数,再依次计算每个函数的积分;(d)计算结果:最后,把每个函数的积分相加,即可得到复积分的结果。

(2)常用计算公式有些复杂函数形式较为简单,可以应用一些已有的计算公式来计算复积分。

例如,当被积函数为一元二次多项式时,可以使用如下公式计算复积分:∫∫ax2+bxy+cy2+dydx = (1/3)abc(x3 - x1) + (1/2)abcd(x2 - x1) + (1/2)acd(y2 - y1) + (1/2)bcd(y2 + y1x2 - y1x1) + ad(y12 - y11 - y22 + y21) + bd(y2x1 - y1x12 - y2x2 + y1x22) + cd(x12y1 - x1y1 - x22y2 + x2y2) + dc(x22 - x11 - x32 + x21) 注:其中a、b、c、d为定值,x1、x2、y1、y2为变量,表示积分的上下限。

复积分的各种计算方法与应用

复积分的各种计算方法与应用

复积分的各种计算方法与应用复积分(double integral)是积分学中的重要概念,它是对二重积分的一种扩展,用于计算在二维平面上一些区域上的函数值的总和。

在实际应用中,复积分涉及到物理、工程、经济等领域。

一、复积分的计算方法:1.面积法:复积分可以用来计算二维平面上的面积。

通过将函数视为高度,对函数进行积分可以得到平面上一些区域的面积。

2.矩形法:将复积分区域划分为若干个小矩形,在每个小矩形上计算函数值,并对所有小矩形的函数值求和,即可得到复积分的近似值。

3.累次积分法:复积分可以通过累次积分的方式计算。

先对一个变量进行积分,再对另一个变量进行积分,得到的结果即为复积分的值。

4.极坐标法:当复积分的计算区域具有旋转对称性时,可以使用极坐标系来简化计算。

先将复积分换算为极坐标系下的积分,再进行计算。

5.曲线坐标法:当复积分的计算区域具有弯曲特点时,可以使用曲线坐标系来简化计算。

将复积分换算为曲线坐标系下的积分,再进行计算。

二、复积分的应用:1.几何应用:复积分可以用来计算曲线与坐标轴之间的面积,或者计算曲线围成的封闭区域的面积。

例如:计算圆的面积、计算椭圆的面积等。

2.物理应用:复积分经常用于计算质量、力、能量等物理量。

例如:计算平面上的质心坐标、计算质点受到的力的合力、计算电场的电势能等。

3.经济应用:复积分可以用来计算经济学中的一些重要量,如总产出、消费量、利润等。

例如:计算一些城市的总GDP、计算一些行业的总销售额等。

4.概率应用:复积分可以用来计算概率密度函数。

例如:计算一些随机变量在一些区间内取值的概率、计算一些随机事件发生的概率等。

5.工程应用:复积分在工程领域也有广泛的应用。

例如:计算工程中一些曲线的长度、计算工程中一些区域的质量等。

综上所述,复积分是计算二维平面上函数值总和的一种方法,在几何、物理、经济、概率和工程等领域都有广泛的应用。

掌握复积分的计算方法和应用,对于解决实际问题具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 引言曹1.1研究背景及研究内容复变函数的积分理论是复变函数理论的重要组成部分,是研究解析函数的重要工具之一.但对于如何计算复变函数积分以及如何处理有关复变函数积分的问题,往往很难迅速找到解决问题的方法.因此,理解复变函数积分,并能够灵活运用复积分计算方法进行复积分计算就显得极其重要.复积分中的Cauchy 积分定理在理论上处于关键地位,由它派生出的Cauchy 积分公式、留数定理、辐角原理等都涉及到积分的计算问题.解析函数在孤立奇点的留数原本是一个积分,而实际计算却需要Laurent 展式.因而把积分与级数结合起来的留数定理使复积分理论甚至是复变函数理论达到高潮,且其用途十分广泛.因此,研究复变函数积分计算的各种方法有着非常重要的意义,本文以所列参考文献[3]中的复积分计算方法为基础,并通过查阅相关资料,借鉴了文献[4]-[7]的结果,总结复积分计算的各种方法,并通过应用[1],[2],[8],[9]中的相关知识和方法,对所列出的每种方法作典型例证和分析.1.2预备知识定义1.1[3] 复积分 设有向曲线C :()()βα≤≤=t t z z ,,以()αz a =为起点,()βz b =为终点,()z f 沿C 有定义.顺着C 从a 到b 的方向在C 上依次取分点:011,,,,n n a z z z z b -==.把曲线C 分成若干个弧段.在从1-k z 到k z ()n k ,..,2,1=的每一弧段上任取一点k ζ.作成和数()1nn k k k S f z ζ==∆∑,其中1k k k z z z -∆=-.当分点无限增多,而这些弧段长度的最大值趋于零时,如果和数n S 的极限存在且等于J ,则称()z f 沿C (从a 到b )可积,而称J 为()z f 沿C (从a 到b )的积分,并记以()cf z dz ⎰.C 称为积分路径. ()cf z dz ⎰表示沿C 的正方向的积分,()c f z dz -⎰表示沿C 的负方向的积分.定义1.2[3] 解析函数 如果函数()z f 在0z 点及()z f 的某个邻域内处处可导,那么称 ()z f 在0z 点解析,如果()z f 在区域D 内解析就称()z f 是D 内的一个解析函数.定义1.3[3] 孤立奇点 若函数()z f 在点的0z 邻域内除去点0z 外处处是解析的,即在去心圆域{}00()N z z z z δδ=-<内处处解析,则称点0z 是()z f 的一个孤立奇点.定义 1.4[3] 留数 函数()z f 在孤立奇点0z 的留数定义为()12c f z dz iπ⎰,记作()0Re ,s f z z ⎡⎤⎣⎦.第2章 复积分的各种计算方法2.1复积分计算的常见方法(1)参数方程法定理[3] 设光滑曲线:()()()()C z z t x t iy t t αβ==+≤≤,(()z t '在[,]αβ上连续,且()0z t '≠),又设()f z 沿C 连续,则()d [()]()d Cf z z f z t z t t βα'=⎰⎰.(α、β分别与起、终点对应)1.若曲线C 为直线段,先求出C 的参数方程C 为过12,z z 两点的直线段,1211:(),[0,1],C z z z z t t z =+-∈为始点,2z 为终点.例1 计算积分1Re d iz z -⎰,路径为直线段.解 设1(1)(1),[0,1]z i t t it t =-++=-+∈,则112101Re d (1)d 22iiz z t i t t t i -⎛⎫=-=-=- ⎪⎝⎭⎰⎰2.若曲线C 为圆周的一部分,例如C 是以a 为圆心,R 为半径的圆. 设:C z a R -=,即Re ,[0,2]i z a θθπ=+∈,(曲线的正方向为逆时针). 例2 计算积分d ,Cz z C ⎰为从1-到1的下半单位圆周.解 设,d d ,[,0]i i z e z ie θθθθπ==∈-,d (cos sin )d 2Cz z i i πθθθ-=+=⎰⎰.用Green 公式法也可计算复积分, Green 公式法是参数方程法的一种具体计算方法.例3 设C 为可求长的简单闭曲线,A 是C 所围区域的面积,求证:2czdz iA =⎰.证明 设z x iy =+,则ccczdz xdx ydy i xdy ydx =++-⎰⎰⎰由Green 公式,有:0cxdx ydy +=⎰2cxdy ydx A -=⎰得证.本题目用Green 公式解决了与区域面积有关的复积分问题. (2)用Newton-Leibnize 公式计算复积分在积分与路径无关的条件下(即被积函数()f z 在单连通区域内处处解析)也可直接按类似于实积分中的Newton-Leibnize 公式计算.例4 计算222(2)d i z z -+-+⎰.解 因为2()(2)f z z =+在复平面上处处解析,所以积分与路径无关.22222322221(2)d (44)d 2433ii i iz z z z z z z z -+-+-+---+=++=++=-⎰⎰.(3)用Cauchy 定理及其推论计算复积分Cauchy 积分定理[3] 设函数()f z 在复平面上的单连通区域D 内解析,C 为D 内任一条周线,则()d 0Cf z z =⎰.Cauchy 积分定理的等价定理[3]设函数()f z 在以周线C 为边界的闭域D D C =+上解析, 则()d 0Cf z z =⎰例5 计算2d ,22C zC z z ++⎰为单位圆周1z =.解 1z =是21()22f z z z =++的解析区域内的一闭曲线,由Cauchy 积分定理有2d 022C zz z =++⎰.注1 利用Cauchy 积分定理也有一定的局限性,主要是要求被积函数的解析区域是单连通的,计算起来较为方便.注2 此题可用参数方法,但计算要复杂得多,而用Cauchy 积分定理很简单. 另外,Cauchy 积分定理可推广到复周线的情形.定理[3] 设D 是由复周线012nC C C C C ---=++++ 所围成的有界1n +连通 区域,函数()f z 在D 内解析,在D D C =+上连续,则()0Cf z dz =⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰,或写成 ()()()010nC C C f z dz f z dz f z dz --++=⎰⎰⎰.这也是计算复积分的一个有力工具,即复函数沿区域外边界曲线的积分等于沿区域内边界积分的和.适用于积分曲线内部含被积函数奇点的情形.例6计算22d C zz z z -⎰的值,C 为包含圆周1z =的任何正向简单闭曲线.解 2211d d 1C C z z z z z z z ⎛⎫=+ ⎪--⎝⎭⎰⎰,分别以0,1z z ==为心做两个完全含于C 且互不相交的圆周12,C C ,则有12221111d d d 11CC C z z z z z z z z z z ⎛⎫⎛⎫=+++ ⎪ ⎪---⎝⎭⎝⎭⎰⎰⎰ 11221111d d d d 11C C C C z z z z z z z z =+++--⎰⎰⎰⎰ 20024i i i πππ=+++=.(4)用Cauchy 积分公式计算复积分Cauchy 积分公式[3] 设区域D 的边界是周线(或复周线),()C f z 在D 内解析,在D D C =+上连续,则有1()()d ()2C f f z z D i zζζπζ=∈-⎰.Cauchy 积分公式可以解决积分曲线内有被积函数的奇点的积分问题.例7 计算2d 1zCe z z +⎰,其中C 为圆周2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 且互不相交的圆周12,C C .则有1212222d d d d d 111z z z z zCC C C C e e e e e z i z i z z z z z z z z z iz i +-=+=++++-+⎰⎰⎰⎰⎰22()zzi i z iz ie e iie e z iz i πππ-==-=+=-+-.此题是Cauchy 积分公式与Cauchy 积分定理复周线情形的结合. (5)用解析函数的高阶导数公式计算复积分 Cauchy 积分公式解决的是形如()d ,()C f z D zζζζ∈-⎰的积分,那么形如()d ,()()n C f z D z ζζζ∈-⎰的积分怎样计算呢?利用解析函数的高阶导数公式()1!()()d ,()(1,2,)2()n n C n f f z z D n i z ζζπζ+=∈=-⎰可解决此问题.例8 计算22d ,(1)zC e z C z +⎰为2z =. 解 因被积函数的两个奇点是,i i -,分别以这两点为心做两个完全含于C 而且互不相交的圆周12,C C .12222222d (1)d d (1)(1)zC zzC C e z z e ez z z z +=+++⎰⎰⎰1222222222()()d d ()()22()()(1)()2z zC C z z z iz ii i e e z i z i z z z i z i e e i i z i z i i e ie πππ==--+-=+-+''⎡⎤⎡⎤=+⎢⎥⎢⎥+-⎣⎦⎣⎦=--⎰⎰注 Cauchy 积分公式与解析函数的高阶导数公式在计算复积分时的主要区别在于被积函数分母的次数是否为一次因式,二者在计算时都常与Cauchy 积分定理复周线情形相结合.(6)用留数定理计算复积分留数定理[3] 设函数()z f 在以C 为边界的区域D 内除12,,,n a a a 外解析,且连续到C ,则()()12Re k nCz a k f z dz i s f z π===∑⎰.例9 计算2252d (1)z z z z z =--⎰.解 252()(1)z f z z z -=-在圆周2z =内有一阶极点0z =,二阶极点1z =.20052Re ()2(1)z z z s f z z ==-==--,1152Re ()2z z z s f z z =='-⎛⎫== ⎪⎝⎭,由留数定理()221052d 2Re ()Re ()2(22)0(1)z z z z z i sf z s f z i z z ππ===-=+=-=-⎰. 留数计算方法的改进留数是复变函数中的一个重要的概念,一般的复变函数专著对函数在极点处的留数通常采用下面三个引理中叙述的计算方法进行计算,即引理1[3] 若a 为()f z 的m 阶极点,即()()()mz f z z a ϕ=-,其中()z ϕ在a 解析,且()0a ϕ≠,则()()1Re ()(1)!m z aa s f z m ϕ-==-.引理2[3]若()()()z f z z ϕψ=,其中(),()z z ϕψ在a 解析,()0a ϕ≠,()0,()0a a ψψ'=≠,则()Re ()()z aa s f z a ϕψ=='. 引理3[3] 设()f z 在扩充复平面上除12,,,,n a a a ∞外解析,,则()f z 在各点的留数总和为零,即1Re ()Re ()0k nz z a k s f z s f z =∞==+=∑.在实际运用中,发现以上三个引理所给公式应用范围有限,对有些留数的计算效果不佳.为了使计算简化、公式更为通用,下面通过三个定理给出三个改进的留数计算公式,并相应的给出算例.定理1[6] 设a 是()h z 的m 阶零点,也是()g z 的m 阶零点,则()()()g z f z h z =在a点的留数为111d Re ()lim ()()(1)!d m mm z a z a s f z z a f z m z --→=⎡⎤=-⎣⎦-. 证明 因为a 为()f z 的m n -阶极点,则()f z 在点a 的邻域内可展开为()1()1()1()101()()()()()m n m n m n m n f z C z a C z a C z a C C z a ----------=-+-++-++-+.则11()1()10()()()()()()m n n m m m n m n z a f z C z a C z a C z a C z a +-------=-+-++-+-+.两端求1m -阶导数,令z a →,则1111d lim ()()(1)!d m mm z a C z a f z m z---→⎡⎤=-⎣⎦-. 运用定理1只需判断()f z 分母零点的阶数,不必判断分子的零点阶数及()f z 极点的阶数,它简化了一些分式函数留数的计算.推论1[6] 设()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,则(1)1Re ()()(1)!n z as f z a n ϕ-==-. 例10 求225(1)()z e f z z -=在孤立奇点处的留数.解 因为0z =是5()h z z =的5阶零点,据推论1[6],有44522440001d 1d 28Re ()lim (())lim (1)4!d 4!d 3z z z z s f z z f z e z z →→==⋅=-=. 定理2[6] 设a 为()()()z f z z ϕψ=的一阶极点,且(),()z z ϕψ在a 解析,z a =为()z ϕ的m 阶零点,为()z ψ的1m +阶零点,则()(1)(1)()Re ()()m m z a m a s f z a ϕψ+=+=. 证明 由假设可得112112()()(),()()()m m m m m m m m z a z a a z a z b z a b z a ϕψ++++++=-+-+=-+-+.又a 为()f z 的一阶极点,则1101()()()f z C z a C C z a --=-++-+,即1101()()()()z z C z a C C z a ϕψ--⎡⎤=-++-+⎣⎦.比较系数得11mm a C b -+=,而()(1)1()(),!(1)!m m m m a a a b m m ϕϕ++==+,由此解得()1(1)(1)()()m m m a C a ϕψ-++=.例11 计算积分31sin d (1)z z z zz e =-⎰.解 被积函数在单位圆内只有0z =一个奇点,且0z =是3()(1)z z e ψ=-的三阶零点,是()sin z z z ϕ=的二阶零点,又23()2cos sin ,()32427z z z z z z z z e e e ϕψ'''''=-=-+-. 由定理2[6],得(2)(3)0(21)(0)Re ()1(0)z s f z ϕψ=+==-. 另外,对于多个奇点留数的和利用定理1、定理2相当麻烦,于是通过对引理3进行改进得到如下一种更简便的方法.定理3[6] 设()()()P z f z Q z =,其中110()(0)n n n n n P z a z a z a a --=+++≠,110()(0)m m m m m Q z b z b z b b --=+++≠,则有以下结论:(1)当2m n -≥时,Re ()0z s f z =∞=; (2)当1m n -=时,Re ()nz ma s f zb =∞=-; (3)当0m n -≤时,设()()()()P z R z Q z r z =+,其中(),()R z r z 为z 的多项式,且()r z 的次数小于m ,则()Re ()Re ()z z r z s f z sQ z =∞=∞=,化为1)或2). 此定理的结论是求有理函数()f z 在∞点留数的一个好方法,使用起来很方便.当分子次数比分母高时,可用综合除法转化为1)或2)的情形.例12 计算积分152244d (1)(2)z z I z z z ==++⎰. 解 被积函数在4z =内部有6个奇点,计算它们十分麻烦,利用留数定理[3] 及引理3[3]有2Re ()z I i s f z π=∞=-.再利用定理3[6],1,1m m a b ==,则Re ()1mz ma s f zb =∞=-=-,故2I i π=. 例13 求221d ()1n n n z z z I z n N z =-+=∈+⎰. 解 设被积函数()f z 的n 个极点为(1,2,)k z k n =,并且()f z 在2z =外部无极点,利用留数定理及引理3[3],12Re ()2Re ()k nz z z k I i s f z i s f z ππ==∞===-∑,而213()211n n nn n z z f z z z z -+==-+++,利用定理3[6]0,1;32Re 6,1.1nz n I i si n z ππ=∞>⎧=-=⎨=+⎩ 注 运用定理3[6]求有理函数()f z 在∞点的留数特别简洁,并且利用它求()f z 在孤立奇点的留数可以达到事半功倍的效果.(7)用级数法计算复积分连续性逐项积分定理[3]设()n f z 在曲线C 上连续(1,2,3,n =…),()1n n f z +∞=∑在C上一致收敛于()f z ,则()f z 在曲线C 上连续,并且沿C 可逐项积分:()()1n ccn f z dz f z dz +∞==∑⎰⎰.将函数展成Taylor 级数或Laurent 级数就解决了该类复积分的有关问题.例14 计算积分11,:2n c n z dz C z ∞=-⎛⎫= ⎪⎝⎭∑⎰.解 在12z <内,有:1111n n z z z ∞=-=+-∑所以 1112021n c c n z dz dz i i z z ππ∞=-⎛⎫⎛⎫=+=+= ⎪ ⎪-⎝⎭⎝⎭∑⎰⎰. 例15 设()f z 在圆环0z a R <-<内解析,且()()lim 0z az a f z →-=,证明:在圆环0z a R <-<内,有()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. 证明 因为()f z 在圆环0z a R <-<内解析,故有()()nn f z C z a =-∑0z a R <-<,于是()()()()()()21320112n nn nC C C z a fC z a C z a C z a C z a z a z a +-----=-+-++-+++++++---由()()lim 0z az a f z →-=,得120n C C C --====,则()0n n n f z C Z ∞==∑在z a R -<内解析,根据Cauchy 积分定理可得:()()12a r f f z dz i zηηπη-==-⎰ ()0r R <<. (8)用Laplace 变换法计算复积分定义[4] 设()f t 是定义在[)0,+∞上的实函数或复函数,如果含复变量p is σ=+(,s σ为实数)的积分()0pt f t e dt +∞-⎰在p 的某个区域内存在,则由此积分定义的复函数()()0pt F p f t e dt +∞-=⎰称为函数()f t 的Laplace 变换,简记为()()F p L f t =⎡⎤⎣⎦.计算该类复积分时,可先运用Laplace 变换的基本运算法则(线性关系、相似定理、位移定理、象函数微分法、本函数微分法、本函数积分法、延迟定理、卷积定理等),将该类复积分化为()F p 的形式,再参照Laplace 变换表,得出相应的复积分结果.例16 计算积分012pz e dz az ∞-⎰. 解 令 ()12f az az = 则 ()012pz L f az e dz az ∞-=⎡⎤⎣⎦⎰ 由相似定理有 ()1p L f az F a a ⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭由Laplace 变换表得p F a ⎛⎫= ⎪⎝⎭所以 0112pz p e dz F az a a ∞-⎛⎫== ⎪⎝⎭⎰.2.2各种方法的选择原则及其联系上一节给出了复积分的各种计算方法.那么,碰到有关复积分计算的题目时,我们到底应该如何选择具体的计算方法,简便而快捷地进行计算呢.这是本节所要探讨的主要问题.我们知道,复积分是由三部分构成的,即积分路径、被积函数以及积分微元。

相关文档
最新文档