北京大学量子力学2000年考研真题硕士研究生入学考试试题
量子力学考研真题

一. (类似1999年第一题)质量为m 的粒子,在一维无限深势阱中()⎩⎨⎧><∞≤≤=a x x a x x V ,0 ,0,0 中运动,若0=t 时,粒子处于()()()()x x x x 3212131210,ϕϕϕψ+-=状态上,其中,()x n ϕ为粒子的第n 个本征态。
(1) 求0=t时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率解:非对称一维无限深势阱中粒子的本征解为()xa n a x n n maE n n πϕπsin 2,3,2,1 ,22222===(1) 首先,将()0,x ψ归一化。
由12131212222=⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛c可知,归一化常数为1312=c于是,归一化后的波函数为()()()()x x x x 3211331341360,ϕϕϕψ++-=能量的取值几率为()()()133;134 ;136321===E W E W E W 能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t时的波函数为()()()()⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=t E x t E x t E x t x 332211i e x p 133i exp 134i exp 136, ϕϕϕψ(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
三. 设厄米特算符Hˆ的本征矢为n,{n 构成正交归一完备系,定义一个算符()n m n m U ϕϕ=,ˆ(1) 计算对易子()[]n m U H,ˆ,ˆ;(2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3)计算迹(){}n m U ,ˆT r ;(4) 若算符Aˆ的矩阵元为n m mnA A ϕϕˆ=,证明()n m UA A nm m n ,ˆˆ,∑=(){}q p U A A pq ,ˆˆTr +=解:(1)对于任意一个态矢ψ,有()[]()()()()()()ψψψψϕϕψϕϕψψψn m U E E n m U E n m U E H H H n m U n m U Hn m U Hn m n m n m n m ,ˆ,ˆ,ˆˆˆˆ,ˆ,ˆˆ,ˆ,ˆ-=-=-=-=故()[]()()n m U E E n m U Hn m,ˆ,ˆ,ˆ-=(2)()()()p m Uq p U n m U nq p q n m,ˆ,ˆ,ˆδϕϕϕϕ==+(3)算符的迹为(){}()mnm n k n k m kkkk n m U n m U δϕϕϕϕϕϕϕϕ====∑∑,ˆ,ˆT r(4)算符()n m UA A A A nm mnnn m nm m m mm ,ˆˆˆˆ,,∑∑∑===ϕϕϕϕϕϕ而()(){}q p U Aq p U A A A A A k kk kkp q k qk kk p q p pq ,ˆˆT r ,ˆˆˆˆˆ++=====∑∑∑ϕϕϕϕϕϕϕϕϕϕϕ五. (见2001年第五题)两个质量皆为μ的非全同粒子处于线谐振子位中,若其角频率都是ω,加上微扰项21 ˆx x W λ-=(21,x x 分别为第一个粒子与第二个粒子的坐标)后,试用微扰论求体系基态能量至二级修正、第二激发态能量至一级修正。
几所高校量子力学硕士试题

高校量子力学研究生招生试题汇总一.复旦大学1999硕士入学量子力学试题二.天津大学1999硕士入学量子力学试题(1)三.北京大学2000年研究生入学考试试题考试科目:量子力学 考试时间:2000.1.23下午 招生专业:物理系各专业 研究方向:各研究方向 试题: 一.(20分)质量为m 的粒子,在位势V x x V '+=)()(αδ 0<a00{V V ='00><x x 00>V中运动,a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项)a. 给出|α>和|β>态的守恒量完全集;b. 若0ˆˆ)(≠⋅αβr sr f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅= 求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2211βαβα,其中,2iα是第i 个粒子自旋向上的几率,2iβ是第i 个粒子自旋向下的几率。
a. 求哈密顿量)(ˆ21210xy y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数)b. t=0时,体系处于态121==βα,012==βα,求t 时刻发现体系在态021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量)五.(10分)考虑一维谐振子,其哈密顿量)21(ˆ+=+a a h H ϖ,而0],[],[==++a a a a ,1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为)(n n a N n +=试求归一化因子n N ; c. 若外加一微扰,aa a ga H ++='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
北京大学物理化学(含结构化学)历年考研试题共9套!

北京大学1992年研究生入学考试试题考试科目:物理化学(含结构化学) 考试时间:2月16日上午招生专业:研究方向:指导教师:试题:单独考试者不答带“*"号的题答案一律写在答案纸上,在试题纸上答题无效基本常数:Planck常数h=6。
626×10-34JSBoltzmann常数k=1。
381×10-23JK—1Avagadro常数NA=6。
022×10—23mol-1Faraday常数F=9.648×104Cmol—1物理化学部分(共七题,60分)一.(10分)甲苯在正常沸点383K的摩尔气化焓, 。
设甲苯蒸气为理想气体。
(1)求正常沸点下,1mol液体甲苯可逆气化吸的热量Q及对外作的功W。
(2)求正常沸点下,甲苯的,,,。
(3)设甲苯的为常数,请估算甲苯在300K的蒸气压.(4) 将1mol,383K,101.325kPa的液体甲苯,在等温下向真空蒸发,完全变为同温同压下的气体。
请求甲苯的熵变,环境的熵变,并判据该过程是否可逆。
用Gibbs自由能减少原理能否判断该过程的方向性?请说明理由。
二.(8分)(A)对于纯物质均相流体(1)请证明(2)在273.15K-277.15K之间,将液体水绝热可逆压缩,水的温度是升高还是降低?请阐述理由。
(B)物质B与水在任何浓度下都可形成液体混合物。
在298K下,实验测得与χB=0。
100液体混合物达平衡气相中水的分压为2。
92kPa,同温下纯水的蒸气压为17.0kPa。
(1)写出上述液体混合物与气相平衡的所有平衡条件。
(2) 写出液体混合物中水的化学势等温式,并具体指明水的标准状态。
(3)求上述液体混合物中水的活度系数。
要指明计算的依据.三.(8分)FeO和MnO的正常熔点分别为1643K及2058K.在1703K,含有30%和60%MnO(质量%,下同)的两种固溶体及含有15%MnO的熔液平衡共存.在1473K时,有两个固溶体平衡共存,分别含26%及64%的MnO。
北京大学2000入学考试试题. 量子力学

北京大学2000年研究生入学考试试题考试科目:量子力学考试时间:2000.1.23下午 招生专业:物理系各专业研究方向:各研究方向指导老师 试题:一.(20分)质量为m 的粒子,在位势V x x V '+=)()(αδ0<a00{V V =' 0><x x 00>V中运动,a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项) a. 给出|α>和|β>态的守恒量完全集;b.若0ˆˆ)(≠⋅αβr sr f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅=求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2211βαβα,其中,2i α是第i 个粒子自旋向上的几率,2i β是第i 个粒子自旋向下的几率。
a. 求哈密顿量)(ˆ21210xy y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数) b. t=0时,体系处于态121==βα,012==βα,求t 时刻发现体系在态021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量) 五.(10分)考虑一维谐振子,其哈密顿量)21(ˆ+=+a a h H ϖ,而0],[],[==++a a a a ,1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为0)(n n a N n +=试求归一化因子n N ;c. 若外加一微扰,aa a ga H ++='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
吉林大学研究生入学考试量子力学(含答案)2000

展开系数
cp
x x dx
* p 2
expikx exp ikx A * dx p x 2 i A exp2ikx 2 exp 2ikx dx * p x 4 A * 2 k x 2 0 x 2 k x dx p x 2 4
所以,有
0 0 满足的本征方程为 设H
1 0 0
0 1 0
0 c1 c1 0 c2 E c2 c 1 c3 3
ˆ 是对角矩阵,所以,它的本征值就是其对角元,即 由于 H
0 1 1 0 0 0
0 0 1
0 1 1 b 0 0 0
0 1 0 b 0 0 1
0 0 1
0 1 0
0 1 0
1 ˆH ˆ b 0 B 0
吉
林 大
学
2000 年招收硕士研究生入学考试试题(含答案) 考试科目:量子力学
质量为 m 的粒子作一维自由运动,如果粒子处于
一.
x A sin 2 kx 的状态
上,求其动量
ˆ 的取值几率分布及平均值。 ˆ 与动能 T p
d ˆ i ; p dx ˆ2 p ˆ T 2m
解:作一维自由运动粒子的动量与动能算符分别为
E1 E 2 E 3
ˆ 不能惟一确定 其中, E 2 E3 ,能量具有二度简并。由于简并的存在,仅由算符 H
E 2 , E3 的波函数。为了能留下较深刻的印象,让我们来仔细地做这件事。
当 E1
北京大学602量子力学考研参考书、历年真题、复试分数线

二、录取和调剂:
1、考生能否录取,以考生的总成绩名次为准。复试成绩不及格的考生不能录取。各学
院(系、所、中心)拟录取名单经批准后公布。 2、我校未录取考生,达到国家分数线并符合调剂规定的,按教育部要求进行调剂。
专注中国名校保(考)研考博辅导权威
三、2015 北京大学 602 量子力学考研参考书 数学分析(一、二、三册)方企勤等北京大学出版社 配套习题集
有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和 通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约 简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真
专注中国名校保(考)研考博辅导权威
有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的 许多随机事件的例子,严格说来实为决定性的。
在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体 系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其 变量的物理量出现的几率密度。 二、北京大学 602 量子力学考研复试分数线
90
90
管理学 (12)
50 50
90
90
艺术学 (13)
50 50
90
总分 360 370 345 360
345
345 320 320 350 350
备注
北大-新加坡国 立大学汉语言 文字学双硕士 班为 340。
(2)、联考: 考试科目
专业学位 应用统计 025200 金融硕士 025100 税务硕士 025300
90
50 50
90
(整理)北京大学量子力学期末试题

量子力学习题(三年级用)北京大学物理学院二O O三年第一章 绪论1、计算下列情况的Broglie de -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子()克2410671-⋅=μ.n;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-⋅=μ.a;(3)飞行速度为100米/秒,质量为40克的子弹。
2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?3、利用Broglie de -关系,及园形轨道为各波长的整数倍,给出氢原子能量可能值。
第二章 波函数与波动力学1、设()()为常数a Ae x x a 2221-=ϕ(1)求归一化常数 (2).?p ?,x x ==2、求ikr ikr e re r -=ϕ=ϕ1121和的几率流密度。
3、若(),Be e A kx kx -+=ϕ求其几率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、一维运动的粒子处于()⎩⎨⎧<>=ϕλ-000x x Axe x x的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。
5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证0=υ⨯∇其中ρ=υ/j6、一维自由运动粒子,在0=t时,波函数为()()x ,x δ=ϕ0求:?)t ,x (=ϕ2第三章 一维定态问题1、粒子处于位场()000000〉⎩⎨⎧≥〈=V x V x V中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=0000x a x x V )x ( 中运动。
(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ϕ态,证明:,/a x2=().n a x x ⎪⎭⎫ ⎝⎛π-=-222261123、若在x 轴的有限区域,有一位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“入射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁无限高位垒中粒子的束缚态能级和波函数()⎪⎩⎪⎨⎧>≤≤<∞=ax V a x x V X 0000 5、求粒子在下列位场中运动的能级()⎪⎩⎪⎨⎧>μω≤∞=021022x x x V X6、粒子以动能E 入射,受到双δ势垒作用()[])a x ()x (V V x -δ+δ=0求反射几率和透射几率,以及发生完全透射的条件。
(NEW)北京大学物理学院量子力学历年考研真题汇编

第1部分 北京大学量子力学考研真题 2000年北京大学量子力学考研真题 2001年北京大学量子力学考研真题 2003年北京大学量子力学考研真题 2004年北京大学量子力学考研真题
第2部分 其他院校量子力学考研真题 2017年华南理工大学630量子力学考 研真题 2017年南京航空航天大学618量子力
3.两个自旋ห้องสมุดไป่ตู้1/2的全同粒子在一维无限深势阱中,试求两粒子处于基 态的总自旋波函数。
∧
∧∧
∧
∧∧
4.σ±=σx±iσy,求σ±2,(σ+σ-)2。
∧
∧
∧
∧∧
∧∧
∧∧
5.L±=Lx±iLy,求[Lα,L±],[L+,L-],[L2,L±]。
6.在中心力场中,基态的轨道角动量为何值?并做简要解释。
三、(共65分)
学考研真题
第1部分 北京大学量子力学考研真题 2000年北京大学量子力学考研真题
2001年北京大学量子力学考研真题
2003年北京大学量子力学考研真题
2004年北京大学量子力学考研真题
一、(共45分)
1.解释态迭加原理,全同性原理和态的统计解释。
2.写出非简并微扰论的一级、二级能量修正公式。
第2部分 其他院校量子力学考研真题 2017年华南理工大学630量子力学考研真题
2017年南京航空航天大学618量子力学考研真题
4.(11分)已知
且有|x|→∞时,有V(x)→0,试求势能V(x)的具体表达式。
5.(11分)已知5个自旋为1,质量为m的全同粒子处于一个平面上的 半径为R的一个圆周,并且这5个粒子组成五边形,5个粒子绕通过圆心 的轴线转动而构成动体系。
(1)写出上述体系的哈密顿量,并讨论基守恒量有哪些?