中考数学整式与分式试题及答案
2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。
简单来说,分母中含有字母的式子叫做分式。
1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。
即BA中,0≠B 。
2. 分式值为0的条件:分式的分子为0,分母不为0。
即BA中,0=A ,0≠B 。
2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。
分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:3.(2011•咸宁)解方程5.(2011•海)解方程:7.(2011•台州)解方程:9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:..8.(2011•随州)解方程:..6.(2011•潼南县)解分式方程:..4.(2011•乌鲁木齐)解方程:=+1..2.(2011•孝感)解关于的方程:.[键入文字]11.(2011•攀枝花)解方程:13.(2011•茂名)解分式方程:15.(2011•菏泽)解方程:17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.20.(2010•遵义)解方程:[键入笔墨].12.(2011•宁夏)解方程:..14.(2011•昆明)解方程:.16.(2011•大连)解方程:.(2)解分式方程:=+1.21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:24.(2010•恩施州)解方程:26.(2009•聊城)解方程:28.(2009•南平)解方程:30.(2007•孝感)解分式方程:+.23.(2010•西宁)解分式方程:25.(2009•乌鲁木齐)解方程:=127.(2009•南昌)解方程:29.(2008•昆明)解方程:.[键入笔墨]答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检修:当y=时,y(y﹣1)=×(﹣1)=﹣≠,∴y=是原方程的解,∴原方程的解为y=.点评:此题考察相识分式方程,(1)解分式方程的根本头脑是“转化头脑”,把分式方程转化为整式方程求解.(2)解分式方程肯定留意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
中考数学《整式与分式》(3)

第3课时 分式一级训练1.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( ) A .x ≠1 B .x ≠2 C .x ≠1,且x ≠2 D .以上结果都不对2.(2012年安徽)化简x 2x -1+x 1-x的结果是( ) A .x +1 B .x -1 C .-x D .x3.在括号内填入适当的代数式,使下列等式成立:(1)2ab =( )2xa 2b 2; (2)a 3-ab 2(a -b )2=a ( )a -b. 4.(2011年北京)若分式x -8x的值为0,则x 的值等于________. 5.约分:56x 3yz 448x 5y 2z =________;x 2-9x 2-2x -3=________. 6.已知a -b a +b =15,则a b =________. 7.当x =_______时,分式x 2-2x -3x -3的值为零. 8.(2012年广东湛江)计算:1x -1-x x 2-1.9.(2012年广东肇庆)先化简,再求值:⎝⎛⎭⎫1+1x -1÷x x 2-1,其中x =-4.10.(2011年湖南邵阳)已知1x -1=1,求2x -1+x -1的值.11.(2012年广东珠海)先化简,再求值:⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1),其中x = 2.12.(2011年广东肇庆)先化简,再求值:a 2-4a -3·⎝⎛⎭⎫1-1a -2,其中a =-3.二级训练13.(2012年浙江义乌)下列计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 14.(2010年广东清远)先化简,再求值:x 2+y 2x -y +2xy y -x,其中x =3+2,y =3- 2.15.(2010年福建晋江)先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-1x ,其中x =2-2.16.(2011年湖南常德)先化简,再求值:⎝ ⎛⎭⎪⎫1x +1+x 2-2x +1x 2-1÷x -1x +1,其中x =2.三级训练17.已知x 2-3x -1=0,求x 2+1x 2的值.18.先化简,再求值:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.第3课时 分式【分层训练】1.C 2.D 3.(1)4xab (2)a +b 4.85.7z 36x 2y x +3x +16.327.-1 8.解:x +1(x +1)(x -1)-x (x -1)(x +1)=1x 2-1.9.解:原式=x -1+1x -1·(x -1)(x +1)x =x +1. 当x =-4时,原式=-3.10.解:∵1x -1=1,∴x -1=1. 故原式=2+1=3. 11.2212.-1 13.A 14.解:原式=x 2+y 2-2xy x -y =(x -y )2x -y=x -y . 当x =3+2,y =3-2时,原式=2 2.15.解法一:原式=⎣⎢⎡⎦⎥⎤3x (x +1)(x -1)(x +1)-x (x -1)(x -1)(x +1)·x 2-1x=3x 2+3x -x 2+x (x -1)(x +1)·x 2-1x =2x 2+4x (x -1)(x +1)·x 2-1x=2x (x +2)(x -1)(x +1)·(x +1)(x -1)x =2(x +2).当x =2-2时,原式=2(2-2+2)=2 2.解法二:原式=3x x -1·x 2-1x -x x +1·x 2-1x=3x x -1·(x -1)(x +1)x -x x +1·(x -1)(x +1)x =3(x +1)-(x -1)=3x +3-x +1=2x +4. 当x =2-2时,原式=2(2-2)+4=2 2.16.解:原式=⎣⎢⎡⎦⎥⎤1x +1+(x -1)2(x +1)(x -1)·x +1x -1=x x +1·x +1x -1=x x -1. 当x =2时,原式=2.17.解:由x 2-3x -1=0,知x ≠0,两边同除以x ,得x -1x=3. x 2+1x 2=⎝⎛⎭⎫x -1x 2+2=32+2=11. 18.解:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1 =(x -1)(x +1)-x (x -2)x (x +1)÷2x 2-x x 2+2x +1=2x -1x (x +1)×(x +1)2x (2x -1)=x +1x 2. 当x 2-x -1=0,即x 2=x +1时,原式=1.。
中考数学整式与分式试题及答案

§ 1.4整式与分式★课标视点把握课程标准,做到有的放矢1. 了解整数指数幕的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)2. 了解整式的概念,会用简单的整式的加、减运算;会进行简单的整式的乘法运算(其 中多项式相乘仅指一次式相乘)。
3. 会推导乘法公式:(a+b )(a-b )=a 2-b 2;(a+b ) 2=a 2+2ab+b 2, 了解公式的几何背景。
4. 会用提取公因式法、 公式法(直接用公式不超过二次) 进行因式分解(指数是正整数)5.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减 乘、除运算。
★热点探视 把握考试脉搏,做到心中有数1.把记作+ C. D.(2009丽水市)2.计算:a 2 • a 3的结果是()A. a 9B . a 8C6.aD . a 9 10 1112.(2009泉州市)3.下列运算正确的是A. B的面积,可以验证的一个公式是=3 G 工■ = T ■陀=一彳D*工产1山疔2009泰州).6.已知oa #602的半径分别为2和4,圆心距OiO a =6,M 这两圆的位置关系是()入屯%叩戈传b 北驶 C ■要了解我市“阳山水蜜桃欄的甜度和含水量 D 要了解你校数学教师的年龄状况&下列事件中,属于必然事杵的是 A. 明天我市下雨氐我走出校门’着到的第一辆料车的牌照的末位数字是傭数C.抛--枚硬币,正面朝上第10题■ ■- ' . ' - : ;•'' '■ .■-'(2009 ' ■'9二、精心选~选(本大题共有S 小题,每小题3分,共24分”在每小题给出的四个选顼中,只有一项是正确的,请把正确选项前的字母代号 填在题后的括号内.只耍你掌握概念,认真思考,相信你一定会选对 的!)12 T ■5" 得分 A.-A 6评已知复核人有意8.计算的结果为(. (2 —当x !时,式子io.,如下图是由边长为--a 和:;b 的两个正方形组成,通过用不同的方法,计算下图中阴影部分;案例导学题型归纳引路,做到各个击破【题型一】整式的概念及整式的乘法运算【例1】1.(1)下列计算正确的是()八z、2009 2009 ^,小、3小3 小2_2 2 3A.(-x) =xB.(2x) =6x +3x =5x *x =x(2) 下列运算正确的是( )A. B.C D.(3) 挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式一一阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形•利用它们之间的面积关系,可以得到:ab1+a2b2=A . a 1(b 1 —b2)+(a 计a2)b1B . a 2(b 2—b"+(a 1+a2)b2C. a 1(b 1—b2)+(a 1+a2)b 2D. a 2(b 1—b2)+(a 1+a2)b 1(4) 现规定一种运算:,其中、为实数,则等于A. B. C. D.2 •计算3. 计算:(a2+ 3) (a—2)—a (a2—2a—2)【解】1.故应选(B) (a2+ 3) (a—2)— a (a2—2a—2)=a3—2a2+ 3a —6—a3+ 2a2+ 2a=5a— 6【导学】题设规定了一种新的运算“ * ”要求考生按照“ *”的运算法则解决与之有关的计算问题:【题型二】乘法公式【例2] 1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证( )A.B.C.D.【解】【导学】1.代数式的几何解释或创设实际背景时把握情景或背景应该合理为原则,如“如果一个苹果4元,那么4表示个苹果的价钱”这样的解释欠妥.【题型三】因式分解【例3】1.下列各式由左边到右边的变形中,是分解因式的为:A.,C.2. 在日常生活中如取款、上网等都需要密码•有一种用“因式分解”法产生的密码,方便记忆•原理是:如对于多项式,因式分解的结果是,若取x=9, y=9时,则各个因式的值是:(x —y)=0 , (x+y)=18 , (x2+y2)=162,于是就可以把“ 018162”作为一个六位数的密码•对于多项式,取x=10, y=10时,用上述方法产生的密码是:(写出一个即可)•在实数范围内分解因式:ab2—2a=(2)若,ab= 4,则= ________________(3)如果,那么代数式的值为................. ()A、6 B 、8 C 、一6 D 、一8 ⑶若•求的值是()A. E. C. D.【导学】1.观察规律知;2. 折叠时动手操作即可.【题型四】分式运算【例4】1 •计算的结果是A. B. C. D. (2009 威海)…卄a 32.已矢知右= ,b 5a亠b则¥的值是()833A. B. C.2D553.化简的结果是, ()A. B. C. D.4. 下列分式的运算中,其中结果正确的是:A . B. , C. , D.5. 先化简后求值:其中x= 26 •计算:解:2. T===1.所以,在右边代数式有意义的条件下,不论x为何值,y的值不变。
中考数学《整式》《分式》考点分析及专题训练

中考数学《整式》《分式》考点分析及专题训练整式1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
②幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
③积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
④单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
⑤单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
⑥多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
中考数学专题复习:整式与分式测试题

2019-2020年中考数学专题复习:整式与分式测试题一、选择题(本大题共6题,每题4分,满分24分)1..化简(-x 2)3的结果是 …………………………………………( )(A)x 5 ; (B) x 6 ; (C) -x 5 ; (D) - x 6 .2. 下列计算中,正确的是……………………………………… ( )(A) ; (B);(C); (D) .3.化简:(a +1)2-(a -1)2=……………………………………… ( )(A )2; (B )4; C )4a; (D )2a 2+2.4.计算()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+-+313191331x x x x 的结果是………………( ) (A); (B); (C )0; (D).5.若把分式中的x 和y 都扩大3倍,那么分式的值………( )(A)扩大3倍;(B)不变; (C )缩小3倍; (D)缩小6倍.6. 计算:结果为…………………………………( )(A);1; (B)-1;; (C ); (D).二、填空题(本大题共12题,每题4分,满分48分)7.当x =2,代数式的值为________________.8.分解因式: .9.a 3÷a ·=___________________10.计算(a +2b )(a —b )= _______ .11. (a -b )2+ ____ =(a +b ) 212.分解因式: x 2-xy -2y 2= .13.当x 时,分式值为0;x 时,这个分式值无意义.14.若是同类项,则m +n =____________.15.计算:= _______________________.16.化简: __________________ .17. (16x 2y 3z +8x 3y 2z )÷8x 2y 2=_______________________.18.5号公路全长s 千米,骑车t 小时可跑完全程,若要跑完全程的时间减少40分钟,则每小时应多走___________千米.三、解答题(本大题共7题,满分78分)19. (本题满分10分) (5x -3y -2xy )-(6x +5y -2xy ),其中,解:20. (本题满分10分)先化简再求值:,其中解:21. (本题满分10分)(1)因式分解:2x -1+y 2-x 2 ; (2)因式分解:.22. (本题满分12分) (1)先化简112111122++-⋅--+x x x x x ,再求出x =时的值.(2))232(212++-÷-++x x x x x ,其中23. (本题满分12分)(1)已知(a +b )2=15,ab =2,求①a 2+b 2;②(a -b )2的值.(2)已知:222,053nm m n m m n m m n m ---++=-求的值.24.(1) (本题满分12分)已知方程,求①; ②.(2)已知x y y x xy y x +=-=+求,25,5的值.25. (本题满分12分)若,求[12(a +b )3(b -a )]3÷[4(a +b )2(a -b )]2的值.24073 5E09 帉; 122818 5922 夢,32110 7D6E 絮27114 69EA 槪23096 5A38 娸B25859 6503 攃#35151 894F 襏。
中考数学专题复习试卷---整式与分式(北师大版、附答案)

罗湖中学中考数学专题复习试卷---整式与分式(北师大版、附答案) 一、选择题1. 计算422()a a ÷的结果是( )A.2aB. 5a C .6a D. 7a2. 下列运算中正确的是( )A .325a a a =B .1025a a a ÷=C .2242a a a += D .22(3)9a a +=+3. 下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4. 把代数式269mx mx m -+分解因式,下列结果中正确的是( )A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x -5. “4·14”青海省玉树县7.1级大地震,牵动了全国人民的心,社会各界踊跃捐款捐物,4月20日央视赈灾晚会共募得善款21.75亿元.把21.75亿元用科学计数法表示为( ). A .2.175×108 元 B .2.175×107 元 C .2.175×109 元 D .2.175×106 元6. 要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤37. 下列各式计算正确的是( ).A .m 2 · m 3 = m 6B .33431163116=⋅= C .53232333=+=+ D .a aa a a --=-⋅--=--111)1(11)1(2(a <1)8. 截止2010年4月20日23时35分,央视“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2 175 000 000元,用科学记数法表示捐款数应为( )A .102.17510⨯元 B. 92.17510⨯元 C. 821.7510⨯元 D.7217.510⨯元9. 下列等式成立的是( ).(A )26a a =3() (B )223a a a -=- (C )632a a a ÷= (D )2(4)(4)4a a a +-=-10. 计算111xx x ---结果是( ). (A )0 (B )1 (C )-1 (D )x二、填空题11. 计算:2216481628a a a a a --÷+++=_______________.12. 若a+3b=0,则22222(1)24b a ab b a b a b ++-÷=+- .13. 分解因式:2363x x ++=_____________.14. 中央电视台组织慈善晚会,共为玉树灾区募捐善款人民币约2 175 000 000元,把这个数用科学记数法表示为 .15. 因式分解:x 3y -xy = .16. 化简:2111x x x x x+++=--_________. 三、计算题17. 先化简,再求值:21(1)11aa a +÷--,其中3a =-.18. 先化简,再求值:(6)()(2)a a b a b a +⋅-+-,其中a = 1.5,b = -2.19. 已知:222()()2()4x y x y y x y y⎡⎤+--+-÷=⎣⎦,求224142x x y x y--+的值.20. 先化简,再求值:2111(2)11x x x ⎛⎫-÷+- ⎪+-⎝⎭,其中x =21.已知:22a b =+=a bb a-的值.22. 化简:2311.24a a a +⎛⎫+÷ ⎪--⎝⎭23. 先化简,再求值:22111a a +-+,其中3a =24. 先化简:)3231(21943322-+⋅-÷+x x x x ;若结果等于32,求出相应x 的值.25. 已知()1012cos 451201013a b c d π-⎛⎫==+=-= ⎪⎝⎭,°,,(1)请化简这四个数;(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.一、选择题第1题答案.C第2题答案.A第3题答案.B第4题答案.D第5题答案.B第6题答案. D第7题答案. D第8题答案.B第9题答案.A第10题答案. C二、填空题第11题答案. 2-第12题答案.第13题答案.23(1)x+第14题答案.9 2.17510⨯第15题答案.xy(x-1)(x + 1)第16题答案.1x+三、计算题第17题答案.解:原式21(1)(1)a aa a a-=⨯+-……2分1aa=+.……4分当3a=-时,原式33312-==-+.……6分(未化简直接代入求值,答案正确给2分)第18题答案.原式2222a b ab a=-+-22b ab=-+当 1.5a=,2b=时,原式222 1.52462=-+⨯⨯=-+=第19题答案.解:222[()()2()]4x y x y y x y y+--+-÷=22222(222)4x y x xy y xy y y+-+-+-÷2 5=2(42)4xy y y -÷ =12x y -2分 11.2x y ∴-=3分2241414242(2)(2)2(2)(2)x x x x yx y x y x y x y x y x y x y -+∴-=-=-++-++- 21(2)(2)2x y x y x y x y+==+--5分11.1222x y ==⎛⎫- ⎪⎝⎭ 6分第20题答案.解:原式=()()()11211x x x x x +-+-+· (3分)=2(1)(2)2x x x x -+-=- (2分)当x =224-=(2分)第21题答案.解:2241a b a b a b ab =+=∴+=-==,3分而()()22a b a b a b a b b a ab ab+---== 6分()()a b a b a b b a ab +-∴-===第22题答案.解:原式=2231224a a a a a -+⎛⎫+÷ ⎪---⎝⎭=21124a a a a ++÷-- =()()11222a a a a a ++÷-+- =()()22121a a a a a +-+⨯-+= 2.a + 8分第23题答案.解:2212111(1)(1)(1)(1)a a a a a a a -+=+-++-+- (11)(1)(1)1a a a a +==+-- ·········································································当3a =时,原式1111312a ===--. ····················································第24题答案.原式=)32332213)32)(32(32-+-⋅⋅-+⋅+x x x x x x =32x ;由32x =32,可,解得 x =±2.第25题答案.解:(1)11()33n -==,2cos 451212b =+=⨯+°1=+,0(2010π)c =- 1=,11d =-=4分 (2)a c ,为有理数,b d ,为无理数,5分311)a c bd ∴+-=+-6分=4(21)3--= 7分。
2022中考真题分类6——分式(参考答案)

2022中考真题分类——分式(参考答案)一、分式概念1.(2022·湖南怀化)代数式25x ,1π,224x +,x 2−23,1x ,12x x ++中,属于分式的有( ) A .2个B .3个C .4个D .5个2.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________.3.(2022·内蒙古包头)1x在实数范围内有意义,则x 的取值范围是___________.【答案】1x ≥−且0x ≠【分析】根据二次根式与分式有意义的条件求解即可.【详解】解:由题意得:x +1≥0,且x ≠0,解得:1x ≥−且0x ≠,故答案为:1x ≥−且0x ≠.【点睛】本题考查二次根式与分式有意义的条件,熟练掌握二次根式有意义的条件:被开方数为非负数;分式有意义的条件:分母不等于零是解题的关键.4.(2022·湖南娄底)函数y =的自变量x 的取值范围是_______. 10,10x x 即x 解得: 1.x >故答案为:1x >二、分式计算(选填题)5.(2022·四川眉山)化简422a a +−+的结果是( ) A .1B .22a a +C .224a a −D .2a a +6.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( )A .fv f v −B .f v fv −C .fv v f −D .v f fv−7.(2022·湖北襄阳)化简分式:ma mb a b a b +++=_____.8.(2022·辽宁沈阳)化简:21111x x x −⎛⎫−⋅= ⎪+⎝⎭______. 【答案】1x −##1x −+9.(2022·江苏苏州)化简2222x xx x−−−的结果是______.10.(2022·四川自贡)化简:223423244a aa aa a−−⋅+−+++=____________.11.(2022·广西玉林)若x是非负整数,则表示22242(2)x xx x−−++的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②12.(2022·山东济南)若m-n=2,则代数式222m n mm m n−⋅+的值是()A.-2B.2C.-4D.413.(2022·湖南郴州)若23a bb−=,则ab=________.【详解】解:23 a bb−=b,,14.(2022·河北)若x和y互为倒数,则112x yy x⎛⎫⎛⎫+−⎪⎪⎝⎭⎝⎭的值是()A.1B.2C.3D.415.(2022·四川成都)已知2272a a −=,则代数式2211a a a a a−−⎛⎫−÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变16.(2022·四川南充)已知a >b >0,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .17.(2022·山东菏泽)若22150a a−−=,则代数式2442a aaa a−⎛⎫−⋅⎪−⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2−2a=15,整体代入即可.18.(2022·湖北鄂州)若实数a 、b 分别满足a 2−4a +3=0,b 2−4b +3=0,且a ≠b ,则11a b+的值为 _____.19.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =____________.20.(2022·四川达州)0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______. 【详解】解:a 111a S =+2221S a =+…,1001001S a =+100S ++=1故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab=,找出的规律是本题的关键.21.(2022·湖北随州)已知m是整数,则根据==可知m有最小值3721⨯=.设n于1的整数,则n的最小值为______,最大值为______.22.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n个数记为na,且满足21112n n na a a+++=.则4a=________,2022a=________.,三、分式计算(解答题)23.(2022·内蒙古·)先化简,再求值:2344111x x x x x −+⎛⎫−−÷ ⎪−−⎝⎭,其中3x =.24.(2022·辽宁阜新)先化简,再求值:2691122a a a a a −+⎛⎫÷− ⎪−−,其中4a =.25.(2022·山东东营)先化简,再求值:221122y x y x y x xy y⎛⎫−÷⎪−+++⎝⎭,其中3,2x y ==. )()22x y y+ )()22x y y+ 时,原式=+−x x 26.(2022·辽宁朝阳)先化简,简求值:22234+4243x x x x x x x x −÷−−+++,其中212x −⎛⎫= ⎪⎝⎭. 2222332x x x x x x x x2233x x x x x 33x x x x =2142x −⎛⎫== ⎪⎭,27.(2022·辽宁丹东)先化简,再求值:224+−x x ÷24x x −−1x ,其中x =sin 45°.28.(2022·山东枣庄)先化简,再求值:(2x x −−1)÷22444x x x −−+,其中x =−4. 22)(2)(2)(x x x −−+222x x −+ 22x =−4时,原式=242−+=−1.【点睛】本题主要考查了分式的混合运算,熟练地掌握分式的运算法则将分式进行约分化简是解题的关键29.(2022·内蒙古鄂尔多斯)先化简,再求值:(22969a a a −−++1)÷226a a −,其中a =4sin 30°−(π−3)0.30.(2022·四川绵阳)先化简,再求值:3x y x y x yx x y x y⎛⎫−−+−÷⎪−−⎝⎭,其中1x=,100y=31.(2022·辽宁大连)计算2224214424x x x x x x x−+÷−−+−. 22222122x x x x x x x 211.x xx 【点睛】本题考查的是分式的混合运算,掌握键.32.(2022·广东深圳)先化简,再求值:2222441,x x x x x x −−+⎛⎫−÷ ⎪−⎝⎭其中 4.x =33.(2022·山东聊城)先化简,再求值:44422a a a a a a −−⎛⎫÷−− ⎪−⎝⎭,其中112sin 452a −⎛⎫=︒+ ⎪⎝⎭.34.(2022·湖南郴州)先化简,再求值:22a b a b a b ⎛⎫÷+ ⎪−+−⎝⎭,其中1a ,1b =.35.(2022·辽宁锦州·)先化简,再求值:2211211x x x x ⎛⎫÷−+ ⎪−++−⎝⎭,其中|1x =+.x 36.(2022·黑龙江)先化简,再求值:22221111a a a a a ⎛⎫−−−÷ ⎪−+⎝⎭,其中2cos301a =︒+.37.(2022·贵州毕节)先化简,再求值:2241442a a a a −⎛⎫÷− ⎪+++,其中2a =.38.(2022·湖北荆州)先化简,再求值:222212a b a b a b a ab b ⎛⎫−÷ ⎪−+−+⎝⎭,其中113a −⎛⎫= ⎪⎝⎭,()02022b =−.39.(2022·湖南湘潭)先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =. 【答案】x +2,4【分析】先运用分式除法法则和乘法法则计算,再合并同类项.40.(2022·新疆)先化简,再求值:22931121112a aa a a a a⎛⎫−−÷−⋅⎪−+−−+⎝⎭,其中2a=.41.(2022·四川达州)化简求值:222112111a a aa a a a⎛⎫−+÷+⎪−+−−⎝⎭,其中31a.31a 时,原式=【点睛】本题考查了分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.42.(2022·山东滨州)先化简,再求值:344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,其中10(1tan 45π2)a −=︒+−。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.4整式与分式★课标视点把握课程标准, 做到有的放矢1.了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。
2.了解整式的概念,会用简单的整式的加、减运算;会进行简单的整式的乘法运算(其中多项式相乘仅指一次式相乘)。
3.会推导乘法公式:(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景。
4.会用提取公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
5.了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减乘、除运算。
★热点探视把握考试脉搏, 做到心中有数1.把记作+ C. D. (2009丽水市)2.计算:a2·a3的结果是( )A.a9 B.a8 C.a6 D.a5. (2009泉州市)3.下列运算正确的是A. B.C. D.(2009长沙市) 4.下列运算正确的是( ).A. 6a+2a=8a2 B. a2÷a2=0C. a-(a-3)=-3 ·a2=a5. 因式分解4—4a+a2,正确的是( ).A.4(1-a)+a2 B.(2-a)2 C. (2-a)(2-a) D. (2+a)2(2009 玉林) 6.已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. 6B. 2 m-8C. 2 mD. -2 m (2009厦门)7.(2009 扬州)8.计算的结果为().(A)1 (B)x+1 (C)(D)(2009 武汉)9.若代数式的值是零,则=;若代数式的值是零,则 ; 当x时,式子有意义. (2009 镇江)10.如下图是由边长为a和b的两个正方形组成,通过用不同的方法,计算下图中阴影部分的面积,可以验证的一个公式是 .( 2009泰州)aba-b b第10题案例导学题型归纳引路, 做到各个击破【题型一】整式的概念及整式的乘法运算【例1】1.(1) 下列计算正确的是( )A.(-x)2009=x2009B.(2x)3=6x3 +3x2=5x2÷x2=x3(2)下列运算正确的是()A. B.C D.(3)挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式——阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形.利用它们之间的面积关系,可以得到:a1b1+a2b2=A . a1(b1-b2)+(a1+a2)b1B . a2(b2-b1)+(a1+a2)b2C. a1(b1-b2)+(a1+a2)b2D. a2(b1-b2)+(a1+a2)b1(4)现规定一种运算:,其中、为实数,则等于A. B. C. D.2.计算3.计算:(a2+3)(a-2)-a(a2-2a-2)【解】1.故应选(B)(a2+3)(a-2)-a(a2-2a-2)=a3-2a2+3a-6-a3+2a2+2a=5a-6【导学】题设规定了一种新的运算“*”,要求考生按照“*”的运算法则解决与之有关的计算问题:【题型二】乘法公式【例2】1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.【解】【导学】1. 代数式的几何解释或创设实际背景时把握情景或背景应该合理为原则,如“如果一个苹果4元,那么4表示个苹果的价钱”这样的解释欠妥.【题型三】因式分解【例3】1.下列各式由左边到右边的变形中,是分解因式的为:A.,B.C. .2.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).在实数范围内分解因式:ab2-2a=_________.(2)若,ab=4,则=.(3)如果,那么代数式的值为…………………………()A、6B、8C、—6D、—8(3)若.求的值是()A.B.C.D.【导学】1.观察规律知;2. 折叠时动手操作即可.【题型四】分式运算【例4】1.计算的结果是A. B. C. D. (2009 威海)2.已知若ab=35,则a+bb的值是( )A.85B.35C.32D.583. 化简的结果是()A. B. C. D.4.下列分式的运算中,其中结果正确的是:A . B., C.,D.5.先化简后求值:其中x=26.计算:解:2.∵====1.所以,在右边代数式有意义的条件下,不论x为何值,y的值不变。
解:【导学】本题用到“消元法”.注意没有必要分步运算.★智闯三关发挥聪明睿智,关公怎比我强核心知识----基础关1.下列运算正确的是A. B. C. D.2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为,则这个数用科学记数法表示是()A. B. C. D.3.利用因式分解符合简便计算:57×99+44×99-99正确的是A.99×(57+44)=99×101=9999 ×(57+44-1)=99×100=9900×(57+44+1)=99×102=10098 ×(57+44-99)=99×2=1984. 下列各式中运算不正确的是()A. B.C. D.5.化简x-y-(x+y)的最后结果是( )C.-2y-2y6.分解因式a-ab2的结果是( )(1+b)(1-b) (1+b)2(1-b)2 D.(1-b)(1+b)7.把多项式分解因式,结果是( )A. B.C. D.8.已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. 6B. 2 m-8C. 2 mD. -2 m9.在有理数范围内,下列各多项式能用公式法进行因式分解的是 C A.a2-6a B.a2-ab + b2C. D.10.若使分式的值为0,则的取值为()A.1或B.或1C.D.或11.计算:2(x+1)-x= .12.因式分解:3-= .13.多项式是一个完全平方式,则M等于(填一个即可)。
14.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为____.15.如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于的恒等式。
核心能力-----技能关16. 已知,求A+B;ab a b17. ,其中,.18.化简:19.先化简,再求值:()÷,其中x=2009解:原式=·==.核心精神---创新关20.已知两个分式:A=,B=,其中x≠±2.下面有三个结论:①A=B;②A、B互为倒数;③A、B互为相反数.请问哪个正确为什么21.有这样一道题:“计算:的值,其中.”甲同学把“”错抄成“”,但他的计算结果也是正确的.你说这是怎么回事解:∵ ===0与的取值无关.∴错抄成不影响结果.22.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:面积;⑵你能否由公式①推导出公式②请试试.【解】23.阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个 .(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2) 如图8②,若△ABC为直角三角形,且∠C=90°,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC是锐角三角形,且BC>AC>AB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.解:(1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.(2) 此时共有2个友好矩形,如图的BCAD、ABEF.易知,矩形BCAD、ABEF的面积都等于△ABC面积的2倍,∴△ABC的“友好矩形”的面积相等. (3) 此时共有3个友好矩形,如图的BCDE、CAFG及ABHK,其中的矩形ABHK的周长最小 .证明如下:易知,这三个矩形的面积相等,令其为S. 设矩形BCDE、CAFG及ABHK的周长分别为L1,L2,L3,△ABC的边长BC=a,CA=b,AB=c,则L1=+2a,L2=+2b,L3=+2c .∴L1- L2=(+2a)-(+2b)=2(a-b),而ab>S,a>b,∴L1- L2>0,即L1> L2 .同理可得,L2> L3 .∴L3最小,即矩形ABHK的周长最小.24.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为元(1),试用k、n和b表示(不必证明);(3)比较和的大小(k=1,2 ,……,),并解释此结果.(2009 扬州)【解】第二所学校的奖金为;第三所学校的奖金为由此可以推断:.∵>0,∴,说明排序靠前的奖金多于后者.或者按下列比较说明:∵,∴.即奖金分配原则从排序高到低逐渐按的比例递减,符合奖优实际.。