整式乘法与因式分解和分式测试题

合集下载

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题一、选择题(每题2分,共10分)1. 计算下列表达式的值:\( (3x - 2)^2 \)。

A. \( 9x^2 - 12x + 4 \)B. \( 9x^2 - 6x + 4 \)C. \( 9x^2 - 6x + 1 \)D. \( 9x^2 + 6x + 4 \)2. 哪个表达式不能通过因式分解简化?A. \( x^2 - 9 \)B. \( x^2 + 4x + 4 \)C. \( x^2 - 4x + 4 \)D. \( x^2 - 4 \)3. 以下哪个表达式是完全平方公式?A. \( a^2 - 2ab + b^2 \)B. \( a^2 + 2ab + b^2 \)C. \( a^2 - 2ab - b^2 \)D. \( a^2 + 3ab + b^2 \)4. 计算 \( (2x + 3)(2x - 3) \) 的结果。

A. \( 4x^2 - 9 \)B. \( 4x^2 + 9 \)C. \( 4x^2 + 6x - 9 \)D. \( 4x^2 - 6x + 9 \)5. 以下哪个表达式是多项式的乘法?A. \( (x - 1)(x + 1) \)B. \( x^2 - 1 \)C. \( x^2 + 2x + 1 \)D. \( x^2 - 2x + 1 \)二、填空题(每题2分,共10分)6. 将 \( (x + a)(x + b) \) 展开,结果为 \( ______ \)。

7. 计算 \( (x - 2)(x + 3) \) 的结果,并进行因式分解,结果为\( ______ \)。

8. 将 \( (x - 1)^2 \) 展开,结果为 \( ______ \)。

9. 利用平方差公式,将 \( x^2 - 49 \) 因式分解,结果为\( ______ \)。

10. 将 \( (3x - 1)^2 \) 展开,结果为 \( ______ \)。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题整式的乘除和因式分解选择题:1.正确的运算是B.(ab)3=a3b3.2.因式分解的变形是B.m3-n3=(m-n)(m2+mn+n2)。

3.完全平方式是C.a2+ab+b2.4.可以用平方差公式分解因式的是A.a2+(-b)2.5.m的值为B.3.填空题:7.(-a5)4·(-a2)3 = a26,可以在实数范围内分解因式a2-6.8.当x=4时,(x-4)=0.9.(-2002)-2 = 1/xxxxxxx。

1.5×2003÷12=125.253x-3y=3(2/3)-3(1/3)=19x^2+mxy+16y^2是完全平方式,当m=12时,可化为(3x+4y)^29xy-6xy+12xy=15xy,公因式为3xyx-9=(x-3)(x+3)x-4x+4=(x-2)^2xy+xy+4=2xy+4正方形的面积为(3x+y)^2,展开后可得9x^2+6xy+y^2,由于正方形的面积为9,故有9x^2+6xy+y^2=9,解得y=-3x+1或y=1-3x13.(8ab-5ab)/4ab=3/414.(x+2y-3)(x-2y+3)=x^2-4y^2-2x+6y-915.[(x-2y)^2+(x-2y)(2y+x)-2x(2x-y)]/2x=(x-2y+y-x)/2=-y/216.2a(x-y)-3b(y-x)=5a(x-y)17.-xy-2xy+35y=33y-3xy18.2xy-8xy+8y=-6xy+8y19.a(x-y)-4b(x-y)=(a-4b)(x-y)20.(x-1)-(x-1)(x+5)=17解得x=-3或x=2,代入可得ab+ab=-4a或4a21.2x-5+3x+1>13(x-10),解得x>23/322.a+2+b^2-2b+1=22,化简得b^2-2b+ab=10-a,再加上ab+ab,得b^2+ab-2b+2ab+11-a=0,由于a和b为实数,故有b^2+ab-2b+2ab+11-a=(b+a-1)^2+10>=10,即ab+ab>=-123.长方形的周长为2(3a+b),面积为(3a+b)(2a+b),由于周长为125.25米,故有2(3a+b)=125.25,解得a=20.75-0.5b,代入面积公式可得(3a+b)(2a+b)=83.5(41.5-b),扩展开后可得-3b^2+81b-1396=0,解得b=28或b=16/3,代入a=20.75-0.5b可得a=7.5或a=10.2524.设x=√(3y+2),则有x^2-3x-2=0,解得x=3或x=-1,代入可得y=1或y=0,故方程的解为(3,1)或(-1,0)25.设a=√(x+2),b=√(y-1),则有a^2-2=x,b^2+1=y,代入不等式可得(a^2-2)(b^2+1)>2,化简得a^2b^2-a^2-2b^2+3>0,即(a^2-2)(b^2-2)>1,代入可得(x-2)(y-1)>1,故不等式的解为{(x,y)|x>2,y>1,xy>1}阴影部分将要进行绿化,并在中间修建一座雕像。

整式的乘法和因式分解经典练习题

整式的乘法和因式分解经典练习题

整式的乘法和因式分解经典练习题整式的乘法和因式分解一、选择题(共16小题)1.下列运算正确的是()A。

a+2a=3aB。

a3·a2=a5C。

(a4)2=a8D。

a4+a2=a62.若a+b=3,a2+b2=7,则ab等于()A。

2B。

1C。

-2D。

-13.计算(-a-b)2等于()A。

a2+b2B。

a2-b2C。

a2+2ab+b2D。

a2-2ab+b24.下列运算中正确的是()A。

(x4)2=x8B。

x+x=2xC。

x2·x3=x5D。

(-2x)2=4x25.(-am)5·an=A。

-a5+m+nB。

a5+m+nC。

a5m+nD。

-a5m+n6.若(x-3)(x+4)=x2+px+q,那么p、q的值是()A。

p=1,q=-12B。

p=-1,q=12C。

p=7,q=12D。

p=7,q=-127.(xn+1)2(x2)n-1=A。

x4nB。

x4n+3C。

x4n+1D。

x4n-18.下列各式中不能用平方差公式计算的是()A。

(x-y)(-x+y)B。

(-x+y)(-x-y)C。

(-x-y)(x-y)D。

(x+y)(-x+y)9.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A。

-3B。

-1C。

1D。

5二、填空题(共7小题)10.已知10m=3,10n=2,则102m-n=1000/10n-m,如果(a3)2·ax=a24,则x=1/a11.分解因式:x2-1=(x+1)(x-1)12.分解因式:3ax2-6axy+3ay2=3a(x-y)213.x2+kx+9是完全平方式,则k=-614.化简:(-2a2)3=-8a615.因式分解:y3-4x2y=y(y-2x)(y+2x)三、解答题16.(1) 分解因式:(a2+b2)2-4a2b2=(a+b)2(a-b)22) 化简求值:(x+3)-(x-1)(2x-2),其中x=-1.x+3)-(x-1)(2x-2)=x+3-(2x-2-x+1)=2,当x=-1时,(x+3)-(x-1)(2x-2)=217.已知。

整式的乘法与因式分解和分式测试题

整式的乘法与因式分解和分式测试题

胜利中学八年级数学(上)整式的乘法与因式分解和分式测试题时间:120分钟 满分:120分一、选择题(3x10=30)1.下列计算中正确的是( ).A .a 2+b 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 6 2.(x -a )(x 2+ax +a 2)的计算结果是( ).A .x 3+2ax 2-a 3B .x 3-a 3C .x 3+2a 2x -a 3D .x 3+2ax 2+2a 2-a 3 3.下面是某同学在一次测验中的计算摘录:①3x 3·(-2x 2)=-6x 5;②4a 3b÷(-2a 2b)=-2a ;③(a 3)2=a 5;④(-a)3÷(-a)=-a 2.其中正确的个数有( ).A .1个B .2个C .3个D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( ). A .x 2+3x -1 B .x 2+2x C .x 2-1D .x 2-3x +1 5.下列各式是完全平方式的是( ).A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -1 6.把多项式ax 2-ax -2a 分解因式,下列结果正确的是( ).A .a (x -2)(x +1)B .a (x +2)(x -1)C .a (x -1)2D .(ax -2)(ax +1)7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3B .3C .0D .1 8.若3x =15,3y =5,则3x -y 等于( ). A .5 B .3 C .15 D .109.下列计算正确的是( )A. ()()3242ab 4ab 2a b ⋅-=B. 534215a b c 15a b=3b c -÷C. ()()3233xy x y x y ⋅-=-D. ()()2323ab 3a b 9a b -⋅-=10.一个长方体的长、宽、高分别为3x -4,2x 和x ,则它的体积等于( )A. ()313x 42x=3x 4x 2-⋅-B. 21x 2x=x 2⋅ C. ()323x-42x x=6x 8x ⋅⋅- D. ()23x-42x=6x 8x ⋅-二、填空题(7x3=21)11.计算(-3x 2y )·(213xy )=__________;22()()33m n m n -+--=__________。

整式乘法与因式分解500题

整式乘法与因式分解500题

D. a6÷a2=a3
5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a3+a3=a6;③4m-4= ;④(xy2)3=x3y6,他做对的个数是( )
A. 0
B. 1
C.2
D. 3
6.下列计算中,结果正确的是( )
A. a2•a3=a6
B. (2a)•(3a)=6a
C.(a2)3=a6 D.a6÷a2=a3
17.下列运算丌正确的是( )
A. (a5)2=a10
B. 2a2•(-3a3)=-6a5
C. b•b3=b4
D. b5•b5=b25
18.下列计算正确的是( )
A. x2+2x2=3x4
B. a3•(-2a2)=-2a5
C. (-2x2)3=-6x6
D. 3a•(-b)2=-3ab2
19.下列计算正确的是( ) A. (2x3)•(3x)2=6x6
2×(22)3 中,结果等于 66 的是( )
A. ①②③
B. ②③④
C.②③
D. ③④
3.下列运算正确的是( )
A. 6a-5a=1
B. (a2)3=a5
C.3a2+2a3=5a5 D.2a2•3a3=6a5
4.下列运算中,正确的是( ) A.(a2)3=a5 B.2a•3a=6a2
C. 2a-a=2
14.下列计算中正确的是( )
A. a5-a2=a3
B. |a+b|=|a|+|b|
C. (-3a2)•2a3=-6a6
D.a2m=(-am)2(其中 m 为正整数)
15.下列计算正确的是( )
A. a2•a3=a6
B.(-2a)3=8a3 C.a+a4=a5

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

整式的乘法与因式分解分式的练习带答案

整式的乘法与因式分解分式的练习带答案

精品文档整式乘法与因式分解,分式的练习一.解答题(共20小题)2m3m2m2的值.),求(2x﹣(3)1.已知xx=2mm212332)的值.?3÷(,求(﹣mm2.已知3×9)×27m=3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣a﹣2b)4a(a﹣b)((1)22.)﹣2y)+(3xy﹣(4x﹣9y)(4xx(2)(2+3y)+9 4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1y.﹣2xy+(2)x5.分解因式:3223b;ba+75(1)3ab ﹣30a22.n6)4(m(3m+2n)﹣﹣(2)22)﹣x(7x+y﹣2y)+xy.(3)8(x2233.?x)﹣0.5xy)xy﹣(﹣62.计算:xy?(7.化简:3639+1)(x+x;+1)(1)(xx﹣1)(222222);+(xyy﹣)(xxy+xy+y)(2(x)﹣2222.y)﹣2x)(+2y)xy(x+4(32﹣(a﹣2b)(a+2b)a+2b)8.(9.把下列各式分解因式:33xyy)x﹣(1222x)162)(x﹣+4((3)x(y﹣z)﹣y(z﹣y)523)a+()(1)计算:(﹣a(﹣a)10.1011.8×0.125(2)计算:(﹣)11.因式分解:22﹣28mnmn1()4mn﹣2(m+1)﹣(m)(2m+1)精品文档.精品文档2y+12xy+9y(3)4x222﹣6)﹣15+2(x(4)(x.﹣6)÷的值.=2×,求代数式12.(1)已知a﹣b.(2=)解分式方程:+1.0.解方程:﹣1813=.()=xxx,其中满足(+13x)14+1.先化简,再求值:.﹣=15.解分式方程:.x,其中.先化简,再求值:16(﹣)÷3=.17.解方程﹣2.18.解方程:1+=.=19.解分式方程:+3.解分式方程.201().)2(精品文档.精品文档整式乘法与因式分解,分式的练习参考答案与试题解析一.解答题(共20小题)2m3m2m2的值.32xx)1.已知x)﹣(=2,求(6m2m x﹣【解答】解:原式=4x92m32m x4(x﹣9)=3﹣92×2=4×=14.mm212332)的值.mm?×9)×27÷(=3m,求(﹣2.已知3 mm2m3m1+5m21,3==3×33=×3【解答】解:3×927×∴1+5m=21,∴m=4,233265=﹣m=﹣÷m÷(m4?m.∴(﹣m)=﹣)m3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣4aa(1)(﹣2b)(a﹣b)22.)﹣2y)+9y+(3y)x﹣(4x﹣9y)(4x+3(2)(2x 22222+4ab﹣b4+4)原式=(1aa﹣4ab+4ba﹣【解答】解:22;b+3=a222222﹣12xxy+4+12xy﹣16xy+81)原式=(24xy+9y+9 22.+94=﹣3xy4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1+yx.﹣2xy2()【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).22﹣1yxyx2()﹣2+精品文档.精品文档2﹣)1=(x﹣y=(x﹣y+1)(x﹣y﹣1).5.分解因式:3223b;ab(1)3 ﹣30a b +75a22.n)m﹣+2n)6﹣4((2)(3m22)﹣x(7x+yy)+xy(3)8(x.﹣23223bbaba﹣30a+75【解答】解:(1)322)a10ab3ab(b+25﹣=2;)a﹣b=3ab(522)n﹣6)m﹣4((2)(3m+2n=[(3m+2n)+2(m﹣6n)][(3m+2n)﹣2(m﹣6n)]=(3m+2n+2m﹣12n)(3m+2n﹣2m+12n)=(5m﹣10n)(m+14n)=5(m﹣2n)(m+14n);22)﹣x(7x+﹣2yy)+xy(3)8(x222﹣xy+7x﹣16yxy﹣=8x22yx16﹣==(x+4y)(x﹣4y).2233.xy?﹣(﹣2x6).计算:xxyy?(﹣0.5)2233xy)?﹣(﹣2x解:xy?(﹣0.5xy【解答】)4343yyx+8=0.1x43.y=8.1x7.化简:3639+1)(x+x;+1)(1)(x﹣1)(x222222)y;﹣xyxy++y+)(x)(2(x﹣y()x2222.)y﹣2xy+4x(3)(+2y)(x3639+1)x)x)x)(【解答】解:1(﹣1(+x+1(精品文档.精品文档99+1))(=(xx﹣118﹣1=x;222222)y﹣xy)(﹣yx)(x++xy+(2)(xy 2222)yxy)(x++xy+y﹣)×(x+y﹣=(xy)(x 3333)yy+)(=(xx﹣66;y﹣=x2222)yxy﹣2(x+2y)+4(x(3)222])2xy+4x+2y)(xy﹣=[(332)=(xy+86336yx+64=xy+162﹣(a﹣2b))(a+2b)8.(a+2b2﹣(a﹣2b)(a+2b)【解答】解:(a+2b)2222)b﹣+4b﹣(a=a4+4ab2222baab+4b+4=a﹣+42+4abb.=89.把下列各式分解因式:33xyy1)x﹣(222x﹣+4)((2)x16(3)x(y﹣z)﹣y(z﹣y)33,xyyx解:(1)﹣【解答】22),﹣xy(xy==xy(x+y)(x﹣y);222,x﹣(x+4)16)(222+4﹣4x)x=(x+4+4x)(,22;2)﹣)x=(+2(x精品文档.精品文档(3)x(y﹣z)﹣y(z﹣y),=x(y﹣z)+y(y﹣z),=(x+y)(y﹣z).523)(a)a+10.(1)计算:(﹣a)(﹣1011.×(﹣0.125)8(2)计算:523))a+((1)(﹣a)(﹣a【解答】解:66a+=(﹣a)66a+=a6a=210118×(﹣0.125)(2)101018×80.125=×10×8×8)=(0.125=1×8=811.因式分解:22﹣2mnmmnn﹣84(1)2(m+1)﹣()mm+1)(22y+12xy+9)4xy(3222﹣6)﹣x15x.﹣6)(+2((4)22﹣2mn=2mn(2m﹣4)4mn﹣8mnn﹣1);1【解答】解:(2(m+1)﹣(mm+1)(2)2﹣1)+1)(m=(m2(m﹣1)=(m+1);2y+12xy4)x+9y(32+12x+9)4=y(x2;+3)x(=y2精品文档.精品文档222﹣6)﹣15+2((4)(xx﹣6)22﹣6+5x)﹣3)=(x(﹣622﹣1)9)(=(xx﹣=(x+3)(x﹣3)(x+1)(x﹣1).÷的值.,求代数式×1)已知a﹣b=212.(=)解分式方程:+1(2.)原式=1【解答】解:(×(=a+b)(a﹣b))a=2(﹣b;当a﹣4×2=b=2时,原式=2(2)方程两边都乘x(x﹣1),得22,xx3+x=﹣解得x=3,检验:当x=3时,x(x﹣1)=6≠0,∴原分式方程的解为x=3..解方程:﹣18=0.13=t,则原方程可化为:【解答】解:设2,t18﹣3t﹣=0,即(t﹣0t+3)=6)(,3=﹣t=6,t解得21,3或6即==﹣=.或解得xx=﹣=都是原方程的解.x=﹣或x经检验,.先化简,再求值:,其中x满足x(x+1)=143(x+1).精品文档.精品文档÷解:原式=【解答】×=,=∵x(x+1)=3(x+1),(x+1)(x﹣3)=0,∴x=﹣1或x=3,2﹣1≠0,即又∵xx≠±1,∴x=3,∴原式==4..解分式方程:﹣.=15解:原方程即﹣=,【解答】两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.)÷,其中x﹣(=3.16.先化简,再求值:,÷﹣]【解答】解:原式=[,=×,×=,=时,原式=1=.3x=当172﹣..解方程【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,精品文档.精品文档检验:当x=3时,(x﹣3)=0,∴x=3是原分式方程的增根,原分式方程无解.=.解方程:.1+18【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2是原分式方程的增根,∴原分式方程无解.+=193.解分式方程:.【解答】解:去分母得:x﹣2=3x﹣3,=x,解得:=x是分式方程的解.经检验20.解分式方程.)(1.)(2,(1)【解答】解:分式方程的最简公分母为x(x+1),方程两边都乘以x(x+1)得:22=6x(x+1x(+1)+5x),化简得:4x=1,=,解得:x精品文档.精品文档=是原分式方程的解;x 经检验,),(2分式方程的最简公分母为(x+2)(x﹣2),方程两边都乘以(x+2)(x﹣2)得:22,)=(﹣16x)(x﹣2+2化简得:8x=﹣16,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解.精品文档.。

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学测验题
一、选择题(请把答案写到下面的框内,每题4分,共48分)
1. 下列各式
m 1、21、y x +15、π2、y x b a --25、432
2
b a -、6
5xy
其中
分式共有( )个。

A 、2 B 、3 C 、4 D 、
5.
7. 若0≠-=y x xy ,则分式
=-x
y 1
1( ) A 、
xy
1
B 、x y -
C 、1
D 、-1
8.若x+m 与x+3的乘积中不含x 的一次项,则m 的值为( )。

A 、-3
B 、3
C 、0
D 、1 9.若16)3(22+-+x m x 是完全平方式,则m 的值为( )。

A 、3 B 、-5 C 、7 D 、7或-1 10. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千 米/时,则可列
11.把多项式n n x x 632-- 分解因式,结果为( )。

A 、)2(3+-n n x x
B 、)2(32n n x x +-
C 、)2(32+-x x n
D 、)2(32n n x x -- 12. 已知b
a b
a b a ab b a -+>>=+则
且,0622的值为( ) A 、2 B 、2± C 、2 D 、

二、填空题(每题4分,共20分)
13. =⨯-201520145.1)3
2
( 。

14. 用科学记数法表示:-0.0000002005= .
15.边长分别为a 和2a 的两个正方形按如图的样式摆放,则图中阴影部分的面积 是 。

16.若分式
y
y --55
||的值为0,则y= 。

17.若a>0,3,2==y x a a ,则=-y x a 。

三、解答题(共32分)
18.计算(每题5分,共10分)
(1)
))((b a b a b )2(322-+-÷--b ab b a (2)
33223)()(----•ab b a
19.(8分)先化简再求值:
)111(3121322+---++•--x x x x x x ,其中x=- 6
5。

20.(6分)解下列方程:
114
112=---+x x x
21.(8分)观察下列算式: ①1×3-22=3-4=-1; ②2×4-32=8-9=-1; ③3×5-42=15-16=-1.
(1) 请你按照三个算式的规律写出第④个、第⑤个算式; (2)把这个规律用含字母的式子表示出来,并说明其正确性。

相关文档
最新文档