分式与因式分解测试题

合集下载

因式分解与分式周末作业

因式分解与分式周末作业

2015级2013年秋国庆数学作业(二)班级: 姓名:一、选择:1、若a x=3,b y =3,则y -3x 等于()A 、b a B 、ab C 、2ab D 、ab 2、已知多项式c bx x ++22分解因式为)1(32+-x x )(,则b,c 的值为( )A 、b=3,c=-1B 、b=-2,c=2C 、b=-6,c=-4D 、b=-4,c=-6 3、已知被除式是1223-+x x ,商式是x ,余式是-1,则除式是()A 、132-+x xB 、x x 22+C 、12-xD 、13-2+x x4、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 5、下列多项式中,没有公因式的是( )A 、()y x a +和(x +y )B 、()b a +32和()b a +-C 、()y x b -3和 ()y x -2D 、()b a 33-和()a b -6 6、若22169y mxy x ++是完全平方式 ,则m =( )A 、12B 、24C 、±12D 、±24 7、无论x 取什么数时,总是有意义的分式是( )A 、122+x x B 、12+x x C 、133+x x D 、25-xx 8、若分式2312+-+x x x 的值为0,则x 等于( )A 、-1B 、1C 、-1或1D 、1或29、分式21x ax +-中,当x=-a 时,下列结论正确的是( ) A 、分式值为零 B 、分式无意义 C 、若a ≠12,则分式的值为零 D 、若a ≠-12,则分式的值为零 10、任意给定一个非零数,按下列程序计算,最后输出的结果是( )2m m m →→-→÷→+→平方结果A 、mB 、2mC 、1+mD 、1-m11、计算()a b a bb a a +-÷的结果为( )A 、a b b -B 、a b b +C 、a b a -D 、a ba+12、))(())(())((b c a c ca b c b b c a b a a --+--+--的结果等于( )A 、aB 、bC 、1D 、0二、填空:13、若分式231-x 的值为负数,则x 的取值范围是__________。

因式分解及分式25题精选

因式分解及分式25题精选

1.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形2.分解因式:bx by ay ax -+-51023.分解因式:ay ax y x ++-224.分解因式:abc b a c c a b c b a 2)()()(222++++++5.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a6.分解因式:36152+-a a7.分解因式:101132+-x x8.分解因式2223y xy x +-9.因式分解:2)6)(3)(2)(1(x x x x x +++++10.因式分解:673676234+--+x x x x11.因式分解:4224)1()1()1(-+-++x x x12.分解因式613622-++-+y x y xy x13.如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值。

14.先化简112111122++-⋅--+x x x x x ,再求出x =21时的值.15.已知:222,053n m m n m m n m m n m ---++=-求的值.16.若()0322=++-b a ,求[12(a +b )3(b -a )]3÷[4(a +b )2(a -b )]2的值.17.已知方程0132=+-x x ,求①221x x +; ②2)1(x x +.18.111121212121-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x19. ()()()3223332323223x x xy x xy y x x y ----++-+-的值,其中1,12x y ==-,小明把12x =错写 12x =-,但他的计算结果也是正确的,请你帮他找出原因。

20.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价。

最新因式分解及分式的计算练习题(题型全)

最新因式分解及分式的计算练习题(题型全)

分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x 时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222b a b ab a ++-=4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72- B 、72 C 、27 D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421y xy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz 2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。

因式分解、分式专项练习

因式分解、分式专项练习

因式分解、分式专项练习一、选择题1.把多项式ax2-ay2分解因式,所得结果是( )A.a(x2-y2) B.a(x-y)2C.a(x+y)(x-y) D.(ax+ay)(ax-ay)2.下列因式分解错误的是( )A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23、多项式6a3b2-3ab2-18a2b3分解因式时,应提取的公因式是( )A.3a2b B.3ab2C.3a3b3D.3a2b24.下列从左到右的变形中,是因式分解的是( )A.(x+3)(x-3)=x2-9B.x2-9+x=(x+3)(x-3)+xC.3x2-3x+1=3x(x-1)+1D.a2-2ab+b2=(a-b)25.如果x2-x-m=(x+n)(x+7),那么m、n的值分别是( )A.56,8 B.-56,-8C.-56,8 D.56,-86.因式分解(x-1)2-9的结果是( )A.(x+8)(x+1) B.(x+2)(x-4)C.(x-2)(x+4) D.(x-10)(x+8)7.若x2-2(m-3)x+1是完全平方式,则m的值为( )A.3 B.4 C.2 D.4或28.(2012•株洲)若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x>﹣2 D.x<29.下列运算中,错误的是()A.B.C.D.二、填空题10.分解因式:2a2-8=____________ 11.分解因式:9x2-y2-4y-4=______ 12.若x-y=3,xy=-2,则xy2-x2y的值是______ 13.9x2-6x+________=(3x-1)214.(2012•天津)若分式的值为0,则x的值等于_________.15.计算2x2•(﹣3x3)的结果是_________.16.(2012•南宁)当x=_________时,分式无意义.17.(2012•黑龙江)函数中,自变量x的取值范围是_________.三、解答题19.先分解因式,再计算求值.(1)9x2+12xy+4y2,其中x=43,y=-12;(2)(a+b2)2-(a-b2)2,其中a=-18,b=2.20.(a﹣)÷.21.(2012•梅州)先化简,再求值:+÷x,其中x=.22.(2012•深圳)先化简÷,选取一个合适的a值,代入求值.23.(2012•遵义)解方程:24.已知,求的值.25.(2012•浙江)解方程:.。

因式分解与分式综合复习测试题

因式分解与分式综合复习测试题

因式分解与分式综合检测一 选择题1. 下列变形正确的是 ( )A .22a ab b +=+ B .2a a b ab = C .a ax b ax = D .2a abb b =2、下列各式的分解因式:①()()2210025105105p q q q -=+- ②()()22422m n m n m n --=-+-③()()2632x x x -=+- ④221142x x x ⎛⎫--+=-- ⎪⎝⎭正确的个数有( ) A 、0 B 、1 C 、2 D 、33.下列多项式,不能运用平方差公式分解的是( )A.42+-mB.22y x --C.122-y x D.412-x 4.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 5. 下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+ D .222()x y x y +=+ 6.若()()26323----x x 有意义,则x 的取值范围是( )A .3>xB .2<xC .3≠x 或2≠xD .3≠x 且2≠x 7.下列各式中,能用完全平方公式分解因式的是( ).A.4x 2-2x +1B.4x 2+4x -1C.x 2-xy +y 2 D .x 2-x +128.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 9、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( ) A 、()4x cm - B 、()4x cm - C 、()164x cm - D 、()416x cm -10、下列变形正确的是( ) A .x y x y x y x y -+--=-+ B .x y x y x y x y -+-=--+ C .x y x y x y x y -++=--- D .x y x yx y x y-+-=---+ 二、耐心填一填1.分解因式:244x x ---=_____________。

分式的乘除与因式分解课堂小测

分式的乘除与因式分解课堂小测

1因式分解小测1、下列分解因式正确的是A .()321x x x x -=- B.()()2632m m m m +-=+- C.()()24416a a a +-=- D.()()22x y x y x y +=+- 2、下列多项式中能用平方差公式分解因式的是A .22()x y +- B.22x xy - C.22x y -- D.29x -+3、下列各式中,能用完全平方公式分解因式的是A .241x - B.2441x x +- C.22x xy y -+ D.214x x -+ 4、下列各式变形正确的是( )A .()b a b a --=-- B. 33()()a b b a +=-+ C. ()()a b b a -+=-- D. ()b a a b --=-5、下列从左到右的变形,其中是因式分解的是( )A .()b a b a 222-=- B. ()()1112-+=-m m m C. ()12122+-=+-x x x x D.2(1)(1)(1)a a a a a -+=- 6、若942+-mx x 是完全平方式,则m 的值是7、已知3-=+b a ,2=ab ,则()2b a -的值是 8、若2224(3)ax x b mx ++=-,则a = ,b = ,m = 9、当a = ,b = 时,多项式224618a b a b +-++有最小值10、已知长方表的面积为22425m n -,其中一边长为25m n -,则另一条边长为11、分解因式①236()3()x x y y x -+- ②()22241x x -+ ③2(2)12(2)36x x -+-+④()()()()a b x y a b x y +++-- ⑤22()4()a x y b y x -+- ⑥22416()a a b --10、已知关于x 的二次三项式2x ax b -+因式分解的结果是(1)(3)x x --①求a ,b 的值;②若a ,b 是一个直角三角形的两条直角边,求其斜边的长。

因式分解和分式方程章节测试卷

因式分解和分式方程章节测试卷

数学周考试卷一、选择题(每小题3分,共27分)1.下列因式分解中,正确的是( )A .)(2a ax x ax ax -=-B .)1(222222++=++ac a b b c ab b aC .D .2.下列各式2a) A .2个 B .3个 C .4个 D.5个3.若关于的分式方程m 的取值范围是( )A 、B 、C 、且D 、且4.设mn n m =-,则nm 11-的值是( ) A 、mn1B 、0C 、1D 、1-5x 的取值范围是( )A 、B 、且C 、D 、且. 6.已知x+,那么的值是( )A .1B .﹣1C .±1D .47.下列各式变形正确的是( )A 、yx y x y x y x -+=--+- B 、d c b a d c b a +-=+-2 C D 8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共人,则所列方程为( )A 、31802180=--x xB 、31802180=-+x xC 、32180180=--x xD 、32180180=+-x x 9.A 、B 两地相距80千米,一辆大汽车从A 地开出2小时后,又从A 地开出一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B 地,求两种汽车每小时各走多少千米.设大汽车的速度为xkm/h ,则下面所列方程正确的是( )A .﹣=40B .﹣=2.4C .﹣2=+ D .+2=﹣222)(y x y x -=-)3)(2(652--=--x x x x x 1m >-1m ≥1m >-1m ≠1m ≥-1m ≠1x ≥1x ≤2x ≠1x >1x ≥2x ≠且x1011.当______时,分式392--xx的值为0;12_______个;13.若方程()()11116=---+xmxx有增根,则它的增根是,m=;14.已知m=2n≠0,则+﹣= .15.一项工程甲单独做要20小时,乙单独做要12小时。

2021年九年级数学中考专题复习小测《因式分解与分式》(Word版附答案)

2021年九年级数学中考专题复习小测《因式分解与分式》(Word版附答案)

因式分解与分式 (时间:45分钟)1.下列各选项中因式分解正确的是( ) A .x 2-1=(x -1)2 B .a 3-2a 2+a =a 2(a -2) C .-2y 2+4y =-2y (y +2) D .m 2n -2mn +n =n (m -1)22.(2020·衡阳中考)要使分式1x -1 有意义,则x 的取值范围是( )A .x >1B .x ≠1C .x =1D .x ≠03.化简(a -1)÷⎝ ⎛⎭⎪⎫1a -1 ·a 的结果是( ( ))A .-a 2B .1C .a 2D .-14.(2020·雅安中考)分式x 2-1x +1 =0,则x 的值是( )A .1B .-1C .±1D .05.(2020·威海中考)分式2a +2a 2-1 -a +11-a 化简后的结果为( )A .a +1a -1B .a +3a -1C.-aa-1 D.-a2+3a2-16.(2020·河北中考)若a≠b,则下列分式化简正确的是()A.a+2b+2=ab B.a-2b-2=abC.a2b2=ab D.12a12b=ab7.(2020·临沂中考)计算xx-1-yy-1的结果为()A.-x+y(x-1)(y-1)B.x-y(x-1)(y-1)C.-x-y(x-1)(y-1)D.x+y(x-1)(y-1)8.分解因式:(1)(2020·南通中考)xy-2y2=(2)(2020·丹东中考)mn3-4mn=.9.(2020·毕节模拟)分解因式:4ax2-4ax+a=.10.(2020·成都中考)已知a=7-3b,则代数式a2+6ab+9b2的值为.11.(2020·北京中考)若代数式1x-7有意义,则实数x的取值范围是.12.(2020·武汉中考)计算2m +n -m -3n m 2-n 2 的结果是 .13.已知:x ≠y ,y =-x +8,求代数式x 2x -y +y 2y -x 的值.14.(2020·雅安中考)先化简⎝ ⎛⎭⎪⎫x 2x +1-x +1 ÷x 2-1x 2+2x +1,再从-1,0,1中选择合适的x 值代入求值.15.(2020·潍坊中考)先化简,再求值:⎝ ⎛⎭⎪⎪⎫1-x +1x 2-2x +1 ÷x -3x -1 ,其中x 是16的算术平方根.16.已知:1a -1b =13 ,则abb -a 的值是( )A .13B .-13 C .3 D .-317.若多项式5x 2+17x -12可分解因式成(x +a )(bx +c ),其中a ,b ,c 均为整数,则a +c 的值为( )A .1B .7C .11D .1318.(2020·内江中考)分解因式:b 4-b 2-12= . 19.(2020·南充中考)若x 2+3x =-1,则x -1x +1= .20.(2020·济宁中考)已如m +n =-3,则分式m +n m ÷⎝ ⎛⎭⎪⎫-m 2-n 2m -2n 的值是 .21.先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1 ,其中x 为方程x 2+3x +2=0的根.22.先化简,再求值:⎝ ⎛⎭⎪⎫2m -1n ÷⎝ ⎛⎭⎪⎫m 2+n 2mn -5n m ·⎝ ⎛⎭⎪⎫m 2n +2n m+2 ,其中m +1 +(n -3)2=0.23.(2020·黔西县模拟)先化简,再求值:x 2x 2-1 ÷⎝ ⎛⎭⎪⎫1x -1+1 ,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥2.因式分解与分式 (时间:45分钟)1.下列各选项中因式分解正确的是DA .x 2-1=(x -1)2B .a 3-2a 2+a =a 2(a -2)C .-2y 2+4y =-2y (y +2)D .m 2n -2mn +n =n (m -1)22.(2020·衡阳中考)要使分式1x -1 有意义,则x 的取值范围是BA .x >1B .x ≠1C .x =1D .x ≠03.化简(a -1)÷⎝ ⎛⎭⎪⎫1a -1 ·a 的结果是( A )A .-a 2B .1C .a 2D .-14.(2020·雅安中考)分式x 2-1x +1 =0,则x 的值是AA .1B .-1C .±1D .05.(2020·威海中考)分式2a +2a 2-1 -a +11-a 化简后的结果为BA .a +1a -1B .a +3a -1C .-a a -1D .-a 2+3a 2-16.(2020·河北中考)若a ≠b ,则下列分式化简正确的是D A .a +2b +2 =a b B .a -2b -2=a bC .a 2b 2 =ab D .12a 12b=a b7.(2020·临沂中考)计算x x -1 -yy -1 的结果为AA .-x +y (x -1)(y -1)B .x -y(x -1)(y -1)C .-x -y (x -1)(y -1)D .x +y (x -1)(y -1)8.分解因式:(1)(2020·南通中考)xy -2y 2=y (x -2y ).(2)(2020·丹东中考)mn 3-4mn =mn (n +2)(n -2). 9.(2020·毕节模拟)分解因式:4ax 2-4ax +a =a (2x -1)2.10.(2020·成都中考)已知a =7-3b ,则代数式a 2+6ab +9b 2的值为49. 11.(2020·北京中考)若代数式1x -7 有意义,则实数x 的取值范围是x ≠7.12.(2020·武汉中考)计算2m +n -m -3n m 2-n 2 的结果是1m -n .13.已知:x ≠y ,y =-x +8,求代数式x 2x -y +y 2y -x 的值.解:原式=x 2-y 2x -y=(x +y )(x -y )x -y=x +y .当x ≠y ,y =-x +8时, 原式=x +(-x +8)=8.14.(2020·雅安中考)先化简⎝ ⎛⎭⎪⎫x 2x +1-x +1 ÷x 2-1x 2+2x +1,再从-1,0,1中选择合适的x 值代入求值.解:原式=x 2-(x 2-1)x +1 ÷(x +1)(x -1)(x +1)2=1x +1 ·x +1x -1 =1x -1. ∵x ≠±1,∴只能取x =0. 当x =0时,原式=-1.15.(2020·潍坊中考)先化简,再求值:⎝ ⎛⎭⎪⎪⎫1-x +1x 2-2x +1 ÷x -3x -1 ,其中x 是16的算术平方根.解:原式=x 2-2x +1-(x +1)x 2-2x +1 ÷x -3x -1 =x 2-3x x 2-2x +1 ·x -1x -3=x (x -3)(x -1)2 ·x -1x -3 =x x -1. ∵x 是16的算术平方根,∴x =4. 当x =4时,原式=43 .16.已知:1a -1b =13 ,则abb -a 的值是( C )A .13B .-13 C .3 D .-317.若多项式5x 2+17x -12可分解因式成(x +a )(bx +c ),其中a ,b ,c 均为整数,则a +c 的值为AA .1B .7C .11D .1318.(2020·内江中考)分解因式:b 4-b 2-12=(b +2)(b -2)(b 2+3). 19.(2020·南充中考)若x 2+3x =-1,则x -1x +1=-2.20.(2020·济宁中考)已如m +n =-3,则分式m +n m ÷⎝ ⎛⎭⎪⎫-m 2-n 2m -2n 的值是13 .21.先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1 ,其中x 为方程x 2+3x +2=0的根.解:原式=(x -1)÷2-x -1x +1 =(x -1)·x +1-(x -1) =-x -1.解x 2+3x +2=0,得x 1=-2,x 2=-1. ∵x =-1时,2x +1 无意义,∴x =-2.当x =-2时,原式=-(-2)-1=1.22.先化简,再求值:⎝ ⎛⎭⎪⎫2m -1n ÷⎝ ⎛⎭⎪⎫m 2+n 2mn -5n m ·⎝ ⎛⎭⎪⎫m 2n +2n m +2 ,其中m +1 +(n -3)2=0.解:原式=2n -m mn ÷m 2+n 2-5n 2mn ·m 2+4n 2+4mn2mn =2n -m mn ·mn (m +2n )(m -2n ) ·(m +2n )22mn=-m +2n 2mn .∵m +1 +(n -3)2=0,∴m +1=0,n -3=0,即m =-1,n =3. ∴-m +2n 2mn =--1+2×32×(-1)×3 =56 .∴原式的值为56 .23.(2020·黔西县模拟)先化简,再求值:x 2x 2-1 ÷⎝ ⎛⎭⎪⎫1x -1+1 ,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥2.解:原式=x 2x 2-1 ÷1+x -1x -1=x 2(x +1)(x -1) ·x -1x=x x +1. 解不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2, 得2<x ≤72 .其整数解为x =3.当x =3时,原式=33+1 =34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式与因式分解测试题(一)
姓名:______ 成绩:______
1、各式中,3x+2y, xy ,a +5 ,—4xy , 2x
, π分式的个数有
( )
A 、1个
B 、2个
C 、3个
D 、4个
2、当x 为任意实数时,下列分式一定有意义的是( )
A.23
x + B.212x - C.1x D. 21
1x +
3、如果把y
x y
322-中的x 和y 都扩大5倍,那么分式的值( )
A 扩大5倍
B 不变
C 缩小5倍
D 扩大4倍
4、下列各式中,正确的是( )
A .
a m a
b m b
+=+ B .
a b a b
++=0 C .
11
1
1
ab b ac c --=
--
D .221
x y x y x y
-=-+
5、化简
2293m m
m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、m
m -3
6、计算
x
x -++1111的正确结果是( ) A 、0 B 、212x x - C 、212x - D 、1
2
2-x
7、小张和小王同时从学校出发去距离15千米的一书店买书,小张比小王每小时多
走1千米,结果比小王早到半小时,设小王每小时走x 千米,则可列出的的方程是( ) A

2115115=-+x x
B 、2
1
11515=+-x x C 、
2115115=--x x D 、2
1
11515=--x x 8、下列各式从左到右的变化中属于因式分解的是( ). A . B .
C .
D .
9、 将+
分解因式,正确的是( ) A .
B .
C .
D .
10、下列多项式中能用平方差公式分解的有( ) ①
; ②
; ③
; ④

⑤; ⑥.
A .1个
B .2个
C .3个
D .4个 二、填空题(每小题3分,共30分) 11、如果是一个完全平方式,那么=______.
12、分解因式:=_______________ 13、分解因式:=______________
14、如果(x+q)(x+
)的积中不含x 项,那么q=___________.
15、在解分式方程:
412--x x +2=x
x 21
2+的过程中,去分母时,需方程两边都乘
以最简公分母是___________________.
16、分式
,21
x xy y
51,212-的最简公分母为 。

17、 z y z y z y x +=++2)(3)
(6;
18、分式x
x -+21
2中,当____=x 时,分式没有意义,当____=x 时,分式的值为
零;
19、不改变分式0.50.20.31
x y ++的值,使分式的分子分母各项系数都化为整数,结果是 20、用科学记数法表示0.000 501= . 三、解答题(共60分) 21、解方程: (9分)
(1)325+x =13-x (2)416222--+-x x x =1 (3)
2
1
321-=---x x x 。

22、(5分)先化简,再求值:1
1112
-÷⎪⎭⎫ ⎝⎛
-+
x x
x ,其中:x=-2。

23、(5分)已知:21=-
x x ,求22
1x
x +的值.
24、(5分)已知:4
32z
y x ==,求22232z y x xz yz xy ++-+的值;
25、(6分)若关于x 的分式方程3132--=-x m x 有增根,求m 的值.
26、(6分)利用因式分解计
算:
27、(6分)已知,求、的值.
28、(6分)请说明多项式710-79-78
能被41整除
29、(6分)从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B乘车从甲地出发,结果同时到达。

已知B乘车速度是A骑车速度的3倍,求两车的速度。

30、(6分)下面是某同学对多项式+4进行因式分解的过程:
解:设
原式=(第一步)
=(第二步)
=(第三步)
=(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的()
A.提取公因式 B.平方差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?______________(填彻底或不彻底) 若不彻底,请直接写出因式分解的最后结果_______________.
(3)请你模仿以上方法尝试对多项式进行因式分解.。

相关文档
最新文档