大学物理答案第三章

合集下载

大学物理3章答案-7页精选文档

大学物理3章答案-7页精选文档

第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。

已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。

求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。

解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。

当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。

解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。

大学物理答案 3.第三章

大学物理答案 3.第三章

第三章 质点系统的运动规律思考题3-19 在地球表面附近将物体以足够速度发射出去,物体可能以稳定轨道环绕地球运行,这就是所谓的“人造地球卫星”。

试估算物体能够环绕地球所需的最小发射速度(第一宇宙速度)。

分析:将地球与物体看成一个封闭系统,系统不受外力,机械能守恒。

答:物体被抛出后以稳定的轨道环绕地球运动,那么物体所受到的重力提供物体环绕地球运动的向心力:2v mg m R =. 此时,系统的机械能为:212mgR mv +初始时刻(物体被发射时)系统的机械能为:2012mgR mv + (R 为地球半径)所以,07.9/v v m s =≈ (第一宇宙速度)3-20 无风天气放烟花时,烟花质心的运动轨道如何?若将全部烟花微粒看作一组初速度相同,抛射监不同的斜抛运动,试证明在任何时刻所有烟花微粒都分布在同一球面上。

分析:这是一个质点组的问题。

将所有的烟花颗粒看成一个质点组系统,在无风天气,这个质点组系统爆炸之后只受到重力的作用,没有其他外力作用。

本题采用质心系分析起来比较方便。

答:无风天气放烟花,说明烟花爆炸后除重力以外,不再受其它外力的作用。

那么烟花爆炸时,有一个爆炸力,使烟花产生一个向斜上方的运动速度,其后只受重力的作用,所以烟花质心的运动轨道为一抛物线,烟花质心作的是斜抛运动。

**此处应为初速率相同。

我们选取烟花爆炸点作为坐标原点,建立直角坐标系。

假设初速率为v 0,它与水平面(XOY)的夹角为α,与XOZ 平面的夹角为β。

当抛射角不同时,角度α与β不同。

在直角坐标系中的初始速度分量分别为:αβαβαsin sin cos cos cos 000000v v v v v v z y x === 各个烟花微粒在水平方向(x 和y 方向)不受力,作匀速直线运动,在竖直方向受重力,作竖直上(或下)抛运动(即匀减速直线运动)。

烟花爆炸t 时间后,位移分别为:2020000021sin 21sin cos cos cos gt t v gt t v z t v t v y t v t v x z y x -=-=====αβαβα202222)()21( x t v gt z y =+++∴轨迹方程:所以,在任何时刻,烟花微粒全部分布在一个以)21- 0, ,0(2gt 为中心,半径为t v 0的球面上。

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n

i内
0

设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为

(完整版)大学物理学(课后答案)第3章

(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

大学物理第三章部分答案知识讲解

大学物理第三章部分答案知识讲解

大学物理第三章部分答案知识讲解大学物理第三章部分答案大学物理部分课后题参考答案第三章动量守恒定律和能量守恒定律选择题:3.15—3.19 A A D D C计算题:3.24 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50kg 的重物,结果是A 船停了下来,而B 船以3.4m/s 的速度继续向前驶去。

A 、B 两船原有质量分别为0.5?103kg 和1.0?103kg ,求在传递重物前两船的速度。

(忽略水对船的阻力)解:(1)对于A 船及抛出的重物和B 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设A 船抛出重物前的速度大小为v A 、B 船抛出重物前的速度大小为v B ,两船抛出的重物的质量均为m .则动量守恒式为,0B A A A =+-mv mv v m (1)(2)对于B 船及抛出的重物和A 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设B 船抛出重物后的速度大小为V B ,则动量守恒式为,B B A B B B V m mv mv v m =+- (2)联立(1)、(2)式并代入kg 105.03A ?=m 、kg 100.13B ?=m 、kg 50=m 、m /s 4.3B =V 可得 m/s 4.0))((2B A B B A -=----=m m m m m mV m v3.38用铁锤把钉子敲入墙面木板。

设木板对钉子的阻力与钉子进入木板的深度成正比。

若第一次敲击,能把钉子钉入木板m1000.12-?,第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?解:因阻力与深度成正比,则有F = kx (k 为阻力系数)。

现令x 0 = 1.00?10-2 m ,第二次钉入的深度为x ?,由于钉子两次所作功相等,可得+=x x x x x kx x kx 000d d 0m 1041.02-?=?x。

大学物理(机械工业出版社)第三章课后答案

第三章 刚体力学#3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。

(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C Jt JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。

3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力解:由牛顿第二定律和转动定律得ma T mg =- ααJ R Mg TR =-.sin 2由平行轴定理 223MR J =联立解得 g m M M m a 83sin 48+-=αmg mM MT 83)sin 43(++=α3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动,如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。

解:设平板的加速度为a 。

该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。

m g设圆柱体的质心加速度为C a ,则C a M f 22=遵守转动定理,ββ22221R M J R f ==又因为圆柱体无滑滚动 βR a a C += 且 g M M f )(211+=μ解以上各方程得 212131)(M M gM M F a ++-=μ3-4 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

大学物理第三章 部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:(1)对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ (2)对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰(3)对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 达到额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案


L 时时, (1)摩擦力做功多少? (2)弹性力做功多少? (3)其他力做功多少? (4)外力做的总功是多少? 8. 小球系于细绳的一端,质量为 m ,并以恒定的角速
度 ω 0 在光滑水平面上围绕一半径为 R 的圆周运动。细 绳穿过圆心小孔, 若手握绳的另一端用力 F 向下拉绳,使小球运转的半径减小一半, 求 力对小球所做的功。 9. 如图所示, 一小车从光滑的轨道上某处由
9. 解:由题意知小车飞越 BC 缺口时做斜抛运动,其射程 BC = 2 R sin α 。 设小车在 B 点时的速度为 υ B , 欲使小车 刚 好 越 过 BC , 应 满 足 2υ B ⋅ sin α g
-7-
2 R sin α = υ B ⋅ cos α ⋅
自治区精品课程—大学物理学
题库
gR (1) cos α 由 A 点运动到 B 点时机械能守恒得: 1 2 mgh = mg ( R + R cos α ) + mυ B (2) 2 由式(1)与(2)得 1 h = (1 + cos α + )R 2 cos α
自治区精品课程—大学物理学
题库
第三章 功和能
一、 填空 1. 功等于质点受的 和 的标量积,功是 变化的量度。 2. 物理学中用 来描述物体做功的快慢。力的瞬时功率等于 与 的标积。对于一定功率的机械,当速度小时,力就 (填“大”或“小” ) , 速度大时,力必定 (填“大”或“小” ) 。 3. 合外力对质点所做的功等于质点动能的增量,此即 定理。 4. 质点动能定理的微分形式是 。 5. 质点动能定理的积分形式是 。 6. 按做功性质,可以将力分为 和 。 7. 所做的功只取决于受力物体的初末位置,与物体所经过的路径无 关。做功与路径有关的力叫做 。 8. 物体在 力作用下,沿任意闭合路径绕一周所做的功等于零。 9. 保守力做功与物体势能改变量之间的关系是 。 10. 若保守力做正功,则势能 ( “增加”或“减少” ) ,若保守力做负功, 则 势能 ( “增加”或“减少” ) 。 11. 势能的增量与势能零点的选取 (填“有关”或“无关” ) ,势能的大小 与势能零点的选取 (填“有关”或“无关” ) 。 12. 质点系内各质点之间的相互作用力称为 ,质点系以外的其他物体对 质点系内各质点的作用力称为 。 13. 质点系在运动过程中, 所做的功与 所做的功的总 和等于质点系的机械能的增量,此即质点系的 原理。 14. 在只 有 做功 的情 况下, 质点 系的机 械能 保持不 变, 这就是 定律。 15. 行星沿 轨道绕太阳运行, 太阳位于椭圆的一个 上; 对任一行星, 以 太阳 中 心为 参 考点 , 行星 的 位置 矢 量在 相 等的 时 间内 扫 过的 面 积填 ( “相 等 ”或 “ 不 相等 ” ) ; 行星 绕 太阳 运 动的 和 椭圆 轨 道的 成正比。 16. 第一宇宙速度是 所需要 的速度。 17. 第二宇宙速度是 所需要的 最小速度。 18. 第三宇宙速度是 所需的 最小速度。 二、 简答 1. 2. 3. 4. 5. 简述质点动能定理的内容,并写出其微分形式和积分形式。 简述保守力做功与物体势能改变量之间的关系。 简述质点系功能原理的内容。 简述机械能守恒定律的内容。 简述行星运动的三大定律的内容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 功和能3-1 汽车在平直路面上行驶,若车与地面间的摩擦力恒定,而空气阻力与速度的平方成正比.设对于一辆质量为1500kg 的汽车总的阻力281300v .+=F (其中F 以N 为单位,v 以m/s 为单位),求当车速为60 km/h ,加速度为1.0m/s 2时,汽车引擎所损耗的瞬时功率.分析 作用力的瞬时功率等于该力与物体获得的速度的乘积.解 当汽车的加速度为a 时,引擎牵引力为F 1,应用牛顿第二定律,运动方程为ma F F =-1则 2181300v .++=-=ma F ma F根据瞬时功率的定义,汽车引擎所损耗的瞬时功率为W 103.83 W 3600100060360010006081300011500 813004221⨯=⨯⨯⨯⨯++⨯=++==])(..().(vv v ma F P 3-2 如习题1-7所述,若海岸高h = 10 m ,而猛烈的大风使船受到与绳的牵引方向相反的恒定的作用力F = 5000 N ,如图3-2所示.当岸上的水手将缆绳由50 m 收到30 m 后,求缆绳中张力的改变量,以及在此过程中水手所作的功.分析 水手拉缆绳的过程中,是通过缆绳将力作用在船上实现船体运动作的功.由于缆绳中的张力是变力,直接计算它的功比较困难.根据动能定理,合外力的功等于物体动能的增量,船在此过程中开始前和结束后都保持静止,船只在水平方向发生位移,水平方向只受缆绳张力水平分量和恒定阻力F 作用,则水手通过缆绳张力所作的功的量值应等于恒力F 所作的负功.解 缆绳长度由l 1=50 m 收到l 2=30 m 的过程中,位移为s ,水手作的功为J 101.035J 103010505000 52222222221⨯=---⨯=---==()(h l h l F Fs W设此过程中开始前缆绳张力为F T1、结束后为F T2,它们的水平方向分量都应与恒力F 等大而反向,因此有F l h l F =-1221T1 F l h l F =-2222T2则图3-2N 200N 1050501030305000 222222112222T1T2=⎪⎪⎭⎫ ⎝⎛---⨯=⎪⎪⎭⎫ ⎝⎛---=-h l l h l l F F F 3-3 质点沿x 轴运动,由x 1 = 0处移动到x 2 = 4 m 的过程中,受到力)1(00-=x x F F 的作用,其中x 0 = 2 m ,F 0 = 8 N ,作出F -x 曲线,求在此期间力F 对质点所作的功. 分析 当质点沿x 轴作直线运动时,如果外力是质点位置坐标x 的函数)(x F F =,质点从位置x 1运动到x 2的过程中,根据功的定义,该力所作的功为⎰=21d x x x x F W )(,即为F -x 图像中x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和.解 根据题意,F -x 曲线如图3-3所示.按照功的定义,有0J 42248 2d 1d 220220002121=-⨯⨯=-=-==⎰⎰)()()()(x x x F x x x F x x F W x x x x 由图3-3可见,x 1到x 2区间曲线)(x F 与x 轴线包围面积的代数和为零,与上面的计算结果一致.3-4 在x 轴线上运动的物体速度为v = 4 t 2 + 6(其中v 以m/s 为单位,t 以s 为单位),作用力3-=t F (其中F 以N 为单位,t 以s 为单位)沿x 轴正向.试求在t 1 = 1 s 和t 2 = 5 s 期间,力F 对物体所作的功.分析 当质点沿x 轴作直线运动时,如果外力是时间t 的函数)(t F F =,根据功的定义⎰=21d x x x x F W )(,无法直接积分计算,通常可利用微分关系式t t tx x d d d d d v ==,将积分变量转换为时间t 进行计算.积分变量代换后,积分的上下限也要作相应的代换.解 根据功的定义 []J 921834d 186124 d 643d d 2121212121234232=-+-=-+-=+-===⎰⎰⎰⎰t t t t t t t t x x t t t t t t t t t t t t t F x t F W )())(()()(v图3-33-5 在光滑的水平桌面上固定有如图3-5(a)所示的半圆形屏障,质量为m 的滑块以初速v 0沿屏障一端的切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,(1)证明当滑块从屏障另一端滑出时,摩擦力对它所作的功为)(1e 2120-=-μπv m W ;(2)说明上述结果为什么与圆弧半径无关. 分析 当外力无法表示成位移的函数时,功就不能直接由定义式积分进行计算.如果能确定物体初末状态的速度,可以应用动能定理,求出物体动能的增量就等于合外力对物体所作的功.证 (1)首先应计算出滑块从屏障另一端滑出时的速度.设滑块在屏障中位于如图3-5(b)所示的位置,在竖直方向无运动,在水平面内受到屏障压力F N 和摩擦力F f 作用,此时速度为v ,设屏障半径为R ,应用牛顿第二定律所得运动方程为法向: R v 2m F =N 切向: tm F d d f v =- 由于F f =μF N ,得 Rt 2d d v v μ-= 利用关系式θθθd d d d d d d d v v v v R t t ==,上式可写为 v v μθ-=d d (1) 由初末条件:当0=θ时,0v v =;当πθ=时,v v =,将上式分离变量并积分:⎰⎰-=πθμ0d d 0vv v v (2)得滑块从屏障另一端滑出时的速度为 μπ-=e 0v v (3)则摩擦力在此期间所作的功为)(1e 212121220202-=-=-μπv v v m m m W (2)由(1)和(2)式可以看出,当滑块发生角位移θd 时,速度的变化只与角位移θd 有关,与半径无关,因此(3)式给出的末速度也只与半圆的张角有关,这就导致最终结果与圆弧半径无关了.3-6 一个质点在指向中心的平方反比力2r k F /=的作用下,作半径为r 的圆v(a ) (b )图3-5周运动,求质点运动的速率和总机械能.(提示:选取距力心无穷远点的势能为零.)分析 与物体间距离平方成反比的力是自然界中普遍存在的一种力,例如万有引力和电荷间的库仑力.如果该力指向中心,计算势能时,从空间任意一点到势能零点(无穷远点)积分的路径方向与力的作用方向相反,积分表达式的矢量乘积变为标量乘积后要取负号.解 质点只在指向中心的力2r k F /=的作用下作圆周运动,当速率为v 时,法向加速度为r /2v ,则质点的法向运动方程为rm r k 22v = 得 mr k =v 选取距力心无穷远为势能零点,则势能为rk r r k E r r -=-=⋅=⎰⎰∞∞d d 2p r F 总机械能为rk r k r k r k m E E E 22212p k -=-=-=+=v 3-7 在力)(j i F y x k +=的作用下,质点在xy 平面内运动,(1)分别计算质点由原点O 经路径OBA 和路径OA 移动到达A 点该力所作的功,其中AB 是以O 为圆心R 为半径的一段圆弧,如图3-7(a )所示;(2)计算沿任意路径由位置P (x 1 , y 1)到Q (x 2 , y 2)该力所作的功,并由此证明该力是保守力.分析解 (1)根据功的定义,经路径OBA 该力所作的功为⎰⎰⎰⋅+⋅=⋅=BAOB OBA W s F s F s F d d d 1 由于力r j i F k y x k =+=)(,即沿原点指向质点所在位置的方向,所以有r F s F d d ⋅=⋅.从图3-7(a )可以看出,在路径OB 上,力的方向与位移方向相同x kx d d =⋅r F ;在路径BA 上,力的方向与位移方向垂直,0d d =⋅=⋅r F s F ,因此可得y O B x x(a ) (b )图3-720121d d d d kR x kx x kx W R OB BA OB ===⋅+⋅=⎰⎰⎰⎰s F s F 同理,经路径OA 该力所作的功为 20121d d d d kR r kr k W ROA OA OA ==⋅=⋅=⋅=⎰⎰⎰⎰r r r F s F (2)P 点的径矢大小为r 1,Q 点的径矢大小为r 2,则212121y x r +=,222222y x r +=.取任意路径L 如图3-7(b )所示,则 )]()[()(2122212221222121 d d d 21y y x x k r r k r kr W r r L L -+-=-==⋅=⋅=⎰⎰⎰r F s F 结果表明,沿任意路径力F 所作的功与路径无关,只与P 点和Q 点的位置有关,表明力F 为保守力.3-8 沿x 轴运动的某粒子的势能是其位置x 的函数x B x A x U -=2)( 据此所作的势能曲线如图3-8所示.(1)试求粒子势能最小值所对应的运动的平衡位置;(2)当粒子的总能量AB E 82-=时,粒子将被约束在一定范围内振动,求粒子往返运动的转折位置.分析 n m xB x A x U -=)(是粒子物理、固体物理和材料科学中描述粒子间相互作用经常出现的势能函数,对它的研究和讨论有十分重要的实际意义.这里仅就最简单的情况,即12==n m ,进行分析,获得粒子运动状态的初步印象.当粒子的能量比较小时,将在平衡位置附近作简谐振动,因此平衡位置和往返运动的转折位置就有重要意义.解 (1)由0d d =x x U )(可得势能函数最小值的位置,即 02d d 23=+-=x B x A x x U )( 解得 B A x 2= (2)在往返运动的转折点处,粒子的速度为零,即动能为零,总能量应等于粒子的势能,即AB x B x A x U 822-=-=)( 可得 088222=+-A ABx x B图3-8解得 B A x 1711.= BA x 8362.= 3-9 马拉雪橇上坡,从坡底到坡顶是一段半径为R 弧长为6π的圆弧形山坡.假设马的拉力始终沿圆弧的切线方向,雪橇的质量为m ,雪橇与雪地间的滑动摩擦系数为μ,求在这段路程中马所作的功.分析 在物体运动过程中,有摩擦力等非保守力存在时,应用功能原理计算外力的功比较便捷,外力和非保守内力的功等于物体系机械能的增量. 解 以雪橇为研究对象,受力情况如图3-9所示,如果始末时刻雪橇为静止状态,在上坡过程中,马的拉力的功和摩擦阻力的负功之和等于雪橇重力势能的增量. 由于此过程雪橇高度的增加为)cos (61π-R ,因此重力势能的增量为)cos (61π-mgR .当雪橇所在位置的法线方向与竖直方向夹角为θ时,摩擦力θμμcos mg F F ==N f ,位移θd d R s =,应用功能原理,马的拉力的功为)cos sin ()cos (cos 661 61d d 06f ππμπθθμπ-+=-+=⋅=⎰⎰m gR m gR m gR W s F3-10 用m/s 200=v 的初速度将一质量为kg 50.=m 的物体竖直上抛,所达到的高度是m 16=h ,求空气对它的平均阻力.分析 物体所受到的空气阻力是外力,重力是物体和地球组成的系统的内力,根据功能原理,空气阻力所作的功应等于系统机械能的增量.应在选取了势能零点后,确定系统的初末状态的机械能,计算出系统机械能的增量.解 取物体抛出点为重力势能零点,则物体初始机械能为20121v m E =,达最高点时机械能为mgh E =2,设空气对它的平均阻力为F ,应用功能原理得2021v m mgh Fh -=- 则 N 1.35N 8916220502220=-⨯⨯=-=).(.)(g h m F v 3-11 质量分别为m 1、m 2的二物体与劲度系数为k 的弹簧连接成如图3-11(a )所示的系统,物体m 1放置在光滑桌面上,忽略绳与滑轮的质量及摩擦.当物体达到平衡后,将m 2往下拉h 距离后放手,求物体m 1、m 2运动的最大速率.F f R图3-9分析 应用机械能守恒定律解力学问题时,系统的选取十分重要.选定系统后,要区分内力和外力、保守力和非保守力以及作功的力和不作功的力.仅当外力和非保守内力所作的功均为零时,才能应用机械能守恒定律.本题中m 1、m 2二物体连接在一起,位移大小、速率和加速度的大小都相同.忽略绳与滑轮的质量及摩擦的情况下,张力F T 和F ’T 为一对内力,大小相等,方向分别与物体运动方向相同和相反,因此系统运动过程中二力的功之和为零.解 以弹簧与二物体组成的弹性系统以及物体与地球组成的重力系统为研究对象,二物体受力情况如图3-11(b )所示.在系统运动过程中,因张力F T 和F ’T 所作功之和为零,只有作用在m 2上的重力及作用在m 1上的弹簧弹性力作功,系统机械能守恒.取竖直向下为x 轴正向,系统平衡时m 2的位置为坐标原点,设此时弹簧的伸长量为l 0,根据胡克定律,弹簧的弹性力大小为0kl F =.由于系统处于平衡状态,应有0T2='-F g m ,0T =-F F ,且因T T F F =',则 002=-kl g m (1)取m 2的平衡位置为重力势能零点,初始时,m 2向下位移h ,重力势能为gh m 2-,弹簧伸长量为)(h l +0,弹性势能为2021)(h l k +,则系统机械能为 gh m h l k E 220121-+=)( (2) 当m 2处于x 位置时,设速率为v ,则系统总动能为22121v )(m m +,重力势能为gx m 2-,弹簧伸长量为)(x l +0,弹性势能为2021)(x l k +,则系统机械能为 2212202121v )()(m m gx m x l k E ++-+= (3) 应用机械能守恒定律,1E E =,由(1)、(2)和(3)式得)(22212x h m m k -+=v 显然0=x 时有最大值 212m a x m m kh +=v 3-12 用弹簧将质量分别为m 1和m 2的两块木板连接起来,必须加多大的力’Tm 2 m 2g x(a ) (b )图3-11F 压到上面的板m 1上,以便当突然撤去F 时,上面的板跳起来能使下面的板也刚好被提离地面.分析 对于弹簧连接的两块木板组成的系统,初始时有外力作用,运动过程中m 2还受到地面的压力,弹簧的弹性力是变力,两块木板之间有相对运动,应用牛顿定律解这样的问题显得相当复杂.考虑到撤去外力F 后,作用于系统的力除作为保守力的重力和弹簧的弹性力外,只有地面的压力.根据题意,下面的板刚好被提离地面,表明其处于与地面接触的临界状态,实际并没有离开地面,也就是说没有发生位移,那么地面的压力就没有作功.于是,撤去外力F 后,只有重力和弹簧的弹性力作功,系统机械能守恒.解 以如图3-12(a )所示的弹簧连接的两块木板组成的弹性系统、以及和地球组成的重力系统为研究对象,两块木板的处于始末状态和受力情况分别如图3-12(b )和(c )所示.初刻,弹簧压缩形变量为x 1,弹性势能为2121kx ,设此时系统重力势能为零,系统机械能为21121kx E = 下面的板刚好被提离地面时,弹簧伸长形变量为x 2,弹性势能为2221kx ,重力势能为)(211x x g m +,系统机械能为22211221kx x x g m E ++=)( 机械能守恒21E E =,得22211212121kx x x g m kx ++=)( 即 )()(211222121x x g m x x k +=- 两边同除以21x x +,得 g m x x k 12121=-)( (1) 初始时,由图3-12(b )可见,m 1处于平衡状态,因11kx F =,则有011=-+kx g m F (2)12(a ) (b ) (c )图3-12m 2刚好被提离地面时,由图3-12(c )可见,地面压力为零,m 2处于平衡状态,因222kx F F ='=,则有022=-kx g m (3)(2)式减去(3)式得 )(2112x x k g m g m F -+-=将(1)式代入上式,得g m m F )(21+=3-13 质量m 的小球从光滑的轨道下滑,然后进入半径为R 的圆形轨道,开始下滑时,小球的高度R H 2=,如图3-13(a )所示.求:(1)小球在什么位置脱离圆轨道;(2)小球脱离圆轨道之后,能达到的最大高度;(3)经过高度为R 的A 点时,小球对轨道的压力.分析 当物体在光滑表面上运动时,支承面对物体的压力不作功,系统机械能守恒.在曲线形轨道上运动时,轨道的压力和重力的法向分量使物体产生法向加速度.物体脱离轨道的瞬间,轨道的压力为零,只有重力的法向分量使物体产生法向加速度.解 (1)小球在轨道上某点C 受力情况如图3-13(b )所示,此时速度为C v ,则法向运动方程为R m mg F 2N Cv =+θsin (1)如果就在C 点脱离圆轨道,0N =F ,由上式得θsin gR =2C v (2)小球运动过程中轨道压力方向始终与运动方向垂直,不作功,只有重力作功,机械能守恒.取轨道最低点为重力势能零点,初始时小球势能为R mg 2,到达C点时高度为)sin (θ+=1R h ,势能为mgh ,动能为2C 21v m ,由机械能守恒定律得 2C 212v m mgh mgR += (3)A(a ) (b )图3-13由(2)和(3)式,且)sin (θ+=1R h ,解得R h 35=(4) (2)小球离开轨道后作抛体运动,水平方向速度不变,等于C 点速度的水平分量θsin C v .最高点高度为max h ,重力势能为max mgh ,动能为θ22C 21sin v m ,应用机械能守恒定律,得θ22C max 212sin v m mgh mgR += (5) 由(2)、(3)、(4)和(5)式,解得R R h 8512750max .== (3)位于A 点时,0=θ,由(1)式得 Rm F 2A N v = 应用机械能守恒定律,得2A 212v m mgR mgR += 从以上两式得 mg F 2N =3-14 劲度系数为N/m 10013⨯.的弹簧,水平放置,其一端固定在墙上,另一端被质量为8 kg 的物体压缩,当弹簧形变量为15 cm 时,将物体释放,在弹簧的作用下,物体水平射出,物体和平面间摩擦力为5 N ,(1)求弹簧恢复原长时,物体的速度;(2)若弹簧恢复原长后,物体和弹簧就脱离接触,求物体此后能跑多远.分析 根据受力和各作用力作功的不同情况,将运动过程分阶段讨论,可以分别应用动能定理和功能原理求解.解 (1)取物体与弹簧组成的弹性系统为研究对象,在弹簧恢复原长的过程中,重力和平面支承力不作功,摩擦力f F 作负功,弹簧的弹性力是保守力,根据功能原理,摩擦力所作的功应等于系统机械能的增量.初始时,弹簧被压缩量m 150.=x ,弹性势能为221kx ;弹簧恢复原长时,速度为v ,动能为221v m ,则有 22f 2121kx m x F -=-v 得m/s 1.62m/s 15052150100181 2123f 2=⨯⨯-⨯⨯⨯=-=)...((x F kx m v(2)物体和弹簧脱离后,在摩擦力作用下作减速运动,设此后位移为s ,应用动能定理,摩擦力所作的功应等于物体动能的增量,则2f 210v m s F -=- 得 m 12m 52621822f 2..=⨯⨯==F m s v 3-15 如图3-15所示,自动卸料车重量为G 2,连同料重为G 1,它从静止开始沿着与水平方向成︒30角的斜面下滑,滑到底端时与一呈自然长度的轻弹簧相碰,当弹簧压缩量达最大时,卸料车自动翻斗卸料,然后因弹簧的弹性力作用,料车反弹沿斜面回到原有高度.设车与斜面间的摩擦力为车重的0.25倍,求21G 的值. 分析 由于卸料车下滑与返回过程的受力情况不同,应分两阶段分析讨论.因为整个过程中除摩擦力外,没有其他的非保守力和外力作功,所以可以应用功能原理求解. 解 以卸料车与弹簧和地球组成的弹性和重力系统为研究对象.在下滑阶段,料车载重,设料车行程的高差为h ,弹簧最大压缩量为l ∆,取斜面顶端为重力势能零点,则重力势能增量为h G 1-,弹簧弹性势能增量为221)(l k ∆,摩擦力1f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2112130250)(sin .l k h G h G ∆+-=︒- 在料车返回过程中,重力势能增量为h G 2,弹簧弹性势能增量为221)(l k ∆-,摩擦力2f 250G F .=作功为︒-302501sin .h G ,应用功能原理,得 2222130250)(sin .l k h G h G ∆-=︒- 由以上两式可得3250302503021=-︒+︒=.sin .sin G G 3-16 如图3-16所示,滑块置于一竖直轻弹簧上,弹簧原长为R ,用力使弹簧压缩到R/2时释放,则滑块恰好能通过上方光滑的1/4圆弧形轨道,并由A图3-15点抛出.(1)求弹簧的劲度系数;(2)求滑块落到地面时的水平位置.分析 在滑块离开轨道之前,由于轨道光滑,除重力和弹簧的弹性力外无其他力作功,可以应用机械能守恒定律.滑块离开轨道后,作平抛运动,运用运动学中的公式求解.在竖直光滑圆形轨道上运动的物体,只受重力和轨道压力作用,当物体刚好能通过圆形轨道顶端,表明在顶点时轨道压力为零,物体圆周运动的法向加速度只由重力产生.解 (1)取地面为重力势能零点,当弹簧被压缩时,弹性势能为2221⎪⎭⎫ ⎝⎛R k ,重力势能为mgR 21,到达A 点时,重力势能为mgR 2,速度为v ,动能为221v m ,应用机械能守恒定律得2221221221v m mgR mgR R k +=+⎪⎭⎫ ⎝⎛ (1) 根据题意,在A 点的运动方程为 Rm m g 2v = (2) 由以上两式得 Rmg k 16= (2)滑块脱离A 点后作平抛运动,竖直方向下落距离为2R ,水平运动距离为s ,则有R gt 2212= t s v = 再利用(2)式,得 R s 2=3-17 劲度系数为k 原长为R 的弹簧一端固定在竖立的半径为R 的大圆环的顶点A ,弹簧另一端连接一环形重物由位置B 释放,在重力的作用下重物向下滑移,如图所示,到达最低点C 时的速度刚好为零,如果忽略重物与大圆环之间的摩擦,求重物的质量以及运动中角加速度为零的位置.分析 通常所讨论问题中的弹簧的长度方向与物体运动方向相同.如果弹簧的长度方向以及伸长或压缩方向与物体运动方向不同,只要弹簧的弹性形变量为x ,根据胡克定律,它作用于物体的弹性力大小就为kx ,系统的弹性势能就等于221kx . 解 由于不计摩擦,只有重力和弹簧的弹性力作功,系统机械能守恒. 初始时,设重力势能为零,弹性势能为221221R k )(-,达最低点C 时,重力势能为mgR -,弹性势能为221kR ,应用 A图3-16B 图3-17机械能守恒定律得222211221kR mgR R k +-=-)( 则重物质量为 )(12-=gkR m (1) (2)由图3-17可见,当弹簧与竖直方向夹角为θ时,重力在圆环切线方向的分量为)sin(θ2mg ;弹簧伸长量为)cos (R R -θ2,弹性力为)cos (R R k -θ2,在圆环切线方向的分量为θθsin )cos (R R k -2,则重物的切向运动方程为R m R R k mg αθθθ=--sin )cos ()sin(22令角加速度0=α,得θθθθsin )cos (cos sin R R k mg -=22利用(1)式,得 2241-=θc o s 42312241'︒=-=arccos θ 3-18 在倾角为︒30的光滑斜面上,质量为1.8 kg 的物体由静止开始下滑,到达底部时将一个沿斜面放置的劲度系数N/m 2000=k 的弹簧压缩了0.2 m 后,达瞬时静止,求:(1)物体达瞬时静止前在斜面上滑过的路程;(2)它与弹簧开始接触时的速率. 分析 只有重力和弹簧的弹性力作功,将物体和弹簧以及地球共同组成一个保守系统机械能守恒.由于实际问题所涉及的都是物体不同位置之间势能的差值,因此势能零点的选取不影响结果,只需考虑如何选取可以使表达式最简单. 解 (1)设物体在斜面上滑过的路程为s ,物体达到的最低点为重力势能零点,弹簧压缩量为0x ,弹性势能为2021kx .开始下滑时重力势能为︒30sin mgs ,应用机械能守恒定律,得202130kx mgs =︒sin m 544m 3089812202000302220.sin ...sin =︒⨯⨯⨯⨯=︒=mg kx s (2)设物体与弹簧刚接触时,速度为v ,距最低点距离为0x ,此时重力势图3-18能为︒300sin mgx ,应用机械能守恒定律,得20213030v m mgx mgs +︒=︒sin sin m/s 6.52m/s 3020544892 3020=︒⨯-⨯⨯=︒=sin )..(.sin )(s-x g v3-19 在气垫导轨上质量为m 的滑块被劲度系数分别为k 1、k 2的两弹簧连接到气轨的两端点A 、B 上.起初气轨水平放置,两弹簧均处于无形变状态,滑块位于O 点,如图3-19(a )所示.现迅速将气轨的B 端抬高,使其与水平面的夹角为α,如图3-19(b )所示,求滑块运动可能达到的最低点与O 点间的距离及滑块可能达到的最大速率.分析 当重力势能和弹簧的弹性势能同时存在,应用机械能守恒定律时,应该注意势能零点的选取问题.可以按表达式最简单的原则选取重力势能零点,而弹性势能零点则通常应选取在弹簧无形变位置.解 取气轨倾斜后O 点为重力势能和弹性势能零点,设最低点与O 点间的距离为1x ,在最低点时,重力势能为αsin 1mgx -,弹性势能为212121x k k )(+,应用机械能守恒定律,得02121211=++-x k k mgx )(sin α 2112k k mg x +=αsin 气轨倾斜后,在重力和弹性力作用下,O 点不再是平衡位置.设平衡位置为O ',与O 点距离为0x ,应用牛顿定律可得0021=+-x k k mg )(sin α (1)重力势能为αsin 0mgx -,弹性势能为202121x k k )(+,物体通过O '点时速率最大,设为m v ,动能为2m 21mv ,应用机械能守恒定律,得 021212m 20210=+++-v m x k k mgx )(sin α (2) 由(1)和(2)式得(a ) (b )图3-19210m k k m g gx +=-=ααsin sin v 3-20 在一根光滑的半径很小的水平轴上,挂着一段均匀绳,长为l ,质量为m ,如图3-20(a )所示,绳开始滑动时,d BC =.求当l BC 32=时的加速度,并证明此时速度为)(22922d ld l l g -+-=v 分析 挂在光滑细轴上的软绳,左右两段相互作用的张力大小相等,为内力,以整条软绳为研究对象,作用在左右两段上的重力相对于运动方向分别为同向和反向.轴的支承力始终垂直于绳的运动方向,不产生加速度,也不作功.与其他连接体问题类似,沿运动方向应用牛顿定律建立方程最为简捷. 解 当l BC 32=时,设软绳加速度为a ,沿运动方向应用牛顿定律得 ma mg mg =-3132 g a 31= 取B 点为重力势能零点,竖直向下为x 轴正向,位于坐标x 的绳上小段d x 的势能为x lmgx d -,则 初始时,d BC =,势能为 2021d d lmg x l mgx d -=-⎰ d l BA -=,势能为 2021d )(d l lmg x l mgx d l --=-⎰- l d BC 32==时,势能为 23221⎪⎭⎫ ⎝⎛-l l mg l BA 31=,势能为 23121⎪⎭⎫ ⎝⎛-l l mg 此时绳的速率为v ,动能为221v m ,应用机械能守恒定律,得 2222231213221212121⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=---l l mg l l mg m d l l mg d l mg v )( 解得 )(22922d ld l l g -+-=vA x d - (a ) (b )图3-203-21 假设地球可以看成是质量为m '、半径为R 的球体,试由(3-20)式推求以地面为重力势能零点时质量为m 的物体在距地面高度为h 处(R h <<)的重力势能的表达式,并将所得结果与(3-15)式作比较.分析 物体与地球之间的作用力是万有引力,是物体质心间距离平方成反比的力,往往取无限远处为这类力的势能零点.但在地球表面附近,通常取地球表面为重力势能零点.由于计算势能时,一般都是计算两位置的势能差,因此选取不同的零点,所得最终结果都相同.解 由(3-20)式得物体从高度为h 处移动到地面万有引力作的功为)(h R R h m m G h R R m m G r r m m G W Rh R +'=⎪⎭⎫ ⎝⎛+-'='-=⎰+0020 11d 根据势能定义,此功就等于重力势能.注意到在地球表面附近h R >>,则20p Rh m m G W E '≈= 与(3-15)式作比较,得 20Rm G g '=。

相关文档
最新文档