江苏高考三角函数真题版

合集下载

三角函数、解三角形 选择填空题(江苏高考版)含答案

三角函数、解三角形 选择填空题(江苏高考版)含答案
A. B. C. D.
7、已知 , ,其中 ,则 ()
A. B. C. D.
【答案】D
8、若 的外接圆半径为2,且 ,则 的取值范围是()
A. B. C. D.
【答案】A
9、已知函数 , ,则下列结论正确的是()
A. 的图象关于点 对称B. 的图象的一条对称轴是
C. 在 上递减D. 在 值域为
【答案】BC
10.已知sin( ﹣ )= ,则sin(2 + )=
A. =2B.
C. 在( ,0)上单调递增D. 在(0,2 )上有3个极小值点
答案:AC
解析:因为 , ,所以 ,故B错;因为 在[0,2 ]上有且仅有4个零点,故A对;易知 ,画出草图可知,在( ,0)上单调递增,故C正确;在(0,2 )上有2个极小值点,故D错.综上选AC.
13.已知cos( )= ,a∈(0, ),则sina =______________
答案:
14.在平面直角坐标系xOy中,设A(1,0),B(3,4),向量 =x +y ,x+y=6,则| |的最小值为()
A. 1B. 2C. D. 2
答案:D
15.已知α+β= (α>0,β>0),则tanα+tanβ的最小值为( )
A. B. 1C.-2-2 D.-2+2
答案:D
16.若函数f(x) =cos2x+sinx,则关于f(x)的性质说法正确的有( )
31.若向量 , 满足| - |= ,则 的最小值为.
【答案】-
【考点】平面向量的综合应用
【解析】法一:由题意,| - |2= 2+ 2-2 ≥-2 -2 =-4 ,即3≥-4 ,则 ≥- .
法二:由题意, = ≥- | - |2=- ,所以 的最小值为- .

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3 =(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3. (2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 由此可见,g(t)在区间⎝⎛⎭⎫-1,-12和⎝⎛⎭⎫12,1上单调增,在区间⎝⎛⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。

高中三角函数历年高考真题_含答案

高中三角函数历年高考真题_含答案

历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。

8.6江苏历届高考试题分类汇编(三角函数2)

8.6江苏历届高考试题分类汇编(三角函数2)

江苏历届高考试题分类汇编(三角函数2)(2014江苏高考第5题)5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是.(2014江苏高考第14题)14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是.(2014江苏高考第15题) 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.(2015江苏高考第14题)14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则1110()k k k a a +=⋅∑ 的值为(2015江苏高考第15题)15.(本小题满分14分)在ABC ∆中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值.(2016江苏高考第9题)9、 定义在区间[0,3]π上的函数sin 2y x =的图像与cos y x =的图像的交点个数是__▲__(2016江苏高考第13题) 13、在锐角三角形ABC 中,若sin 2sinBsinC,A =则tan tan tan A B C 的最小值是__▲____(2016江苏高考第15题) 15、(本小题满分14分) 在ABC ∆中,6AC =,4cos 5B =,4C π= (1) 求AB 的长;(2) 求cos()6A π-的值(2017江苏高考第12题)12.如图,在同一个平面内,向量OA ,OB ,OC 的模分别为OA 与OC的夹角为α,且tanα=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=.(2017江苏高考第16题) 16.(本小题满分14分)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ⊥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.(第12题)【答案】(2014江苏高考第5题)5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.(2014江苏高考第14题)14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.(2014江苏高考第15题) 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.(2015江苏高考第14题)14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则1110()k k k a a +=⋅∑ 的值为【答案】【解析】试题分析:20111(1)(1)(1)(cos ,sin cos )(cos ,sin cos )666666k k k k k k k k a a ππππππ++++⋅=+⋅+2(1)21(21)cossincos cos sin cos 6666626k k k k k ππππππππ++++=++=++因此111012k k k a a +=⋅==∑ 考点:向量数量积,三角函数性质(2015江苏高考第15题) 15.(本小题满分14分)在ABC ∆中,已知 60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值.【答案】(12【解析】(2016江苏高考第9题) 10、定义在区间[0,3]π上的函数sin 2y x =的图像与cos y x =的图像的交点个数是__▲__(2016江苏高考第13题) 14、在锐角三角形ABC 中,若sin 2sinBsinC,A 则tan tan tan A B C 的最小值是__▲____(2016江苏高考第15题) 15、(本小题满分14分)在ABC ∆中,6AC =,4cos 5B =,4C π= (3) 求AB 的长; (4) 求cos()6A π-的值(2017江苏高考第12题)12.如图,在同一个平面内,向量OA ,OB ,OC 的模分别为OA 与OC的夹角为α,且tanα=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=.【答案】3(第12题)(2017江苏高考第16题)16.(本小题满分14分)已知向量(cos,sin),(3,[0,π].a b==∈x x x(1)若a⊥b,求x的值;(2)记()f x=⋅a b,求()f x的最大值和最小值以及对应的x的值.。

三角函数(江苏高考真题)

三角函数(江苏高考真题)

三角函数(江苏高考真题)1.(2019)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin()2B π+的值.2.(2018)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.3.(2017)已知向量=(cosx ,sinx ),=(3,﹣),x ∈[0,π].(1)若∥,求x 的值;(2)记f (x )=,求f (x )的最大值和最小值以及对应的x 的值.4.(2016)在ABC △中,AC =6,4πcos .54B C ==(1)求AB 的长;(2)求πcos(6A -)的值.5.(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°.(1)求BC 的长;(2)求sin2C 的值.6.(2014)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.7.(2013)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=,求证:a ⊥b ;(2)设c =(0,1),若a+b =c ,求α,β的值.8.(2012)在ABC ∆中,已知3AB AC BA BC = .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值.9.(2011)在ABC ∆中,角,,A B C 的对边分别为c b a ,,.(1)若sin(2cos 6A A π+=,求A 的值;(2)若1cos 3A =,3b c =,求C sin 的值.10.(2019)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是.11.(2018)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是12.(2017)若tan (α﹣)=.则tanα=.13.(2016)定义在区间[0,3]π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是14.(2016)在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是15.(2015)已知tanα=﹣2,tan (α+β)=,则tanβ的值为.16.(2015)设向量=(cos ,sin +cos )(k=0,1,2,…,12),则(a k •a k+1)的值为.17.(2014)已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是.18.(2014)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是.19.(2013)函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期为__________.20.(2012)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为21.(2011)已知tan()24x π+=,则xx 2tan tan 的值为22.(2011)函数()sin()f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>)的部分图象如图所示,则(0)f 的值是23.(2010)定义在区间⎪⎭⎫ ⎝⎛20π,上的函数x y cos 6=的图像与x y tan 5=的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与x sin =的图像交于点P 2,则线段P 1P 2的长为.24.(2010)在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b a C a b+=,则tan tan tan tan C C A B +=25.(2009)函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所示,则ω=。

高考真题——三角函数及解三角形真题(加答案)

高考真题——三角函数及解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。

十年高考分类江苏高考数学试卷精校版含详解4三角函数解三角形部分

十年高考分类江苏高考数学试卷精校版含详解4三角函数解三角形部分

十年高考分类江苏高考数学试卷精校版含详解4三角函数解三角形部分一、选择题(共7小题;共35分)1. 已知a∈R,函数f(x)=sinx−∣a∣(x∈R)为奇函数,则a=( )A. 0B. 1C. −1D. ±12. 若sin(π6−α)=13,则cos(2π3+2α)=( )A. −79B. −13C. 13D. 793. 下列函数中,周期为π2的是( )A. y=sin x2B. y=sin2x C. y=cos x4D. y=cos4x4. 为了得到函数y=2sin(x3+π6),x∈R的图象,只需把函数y=2sinx,x∈R的图象上的所有点( )A. 向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)B. 向右平移π6个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)C. 向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D. 向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5. 已知x∈(−π2,0),cosx=45,则tan2x=( )A. 724B. −724C. 247D. −2476. 函数f(x)=sinx−√3cosx(x∈[−π,0])的单调递增区间是( )A. [−π,−5π6] B. [−5π6,−π6]C. [−π3,0] D. [−π6,0]7. △ABC中,A=π3,BC=3,则△ABC的周长为( )A. 4√3sin(B+π3)+3 B. 4√3sin(B+π6)+3C. 6sin(B+π3)+3 D. 6sin(B+π6)+3二、填空题(共23小题;共115分)8. 如图,函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[−π,0]上的图象如图所示,则ω=.9. 函数 y =3sin (2x +π4) 的最小正周期为 .10. 已知函数 y =cosx 与 y =sin (2x +φ)(0≤φ<π),它们的图象有一个横坐标为 π3 的交点,则 φ的值是 .11. 若函数 f (x )=cos (ωx −π6)(ω>0) 最小正周期为 π5,则 ω= . 12. 在 △ABC 中,已知 BC =12 , A =60∘ , B =45∘ ,则 AC = .13. 定义在区间 [0,3π] 上的函数 y =sin2x 的图象与 y =cosx 的图象的交点个数是 . 14. 若 tan (α−π4)=16,则 tanα= .15. 在平面直角坐标系 xOy 中,已知 △ABC 顶点 A (−4,0) 和 C (4,0) ,顶点 B 在椭圆x 225+y 29=1 上,则sinA+sinC sinB= .16. 函数 f (x )=Asin (ωx +φ),(A,ω,φ 是常数,A >0,ω>0)的部分图象如图所示,则f (0)= .17. 已知 tan (x +π4)=2, 则 tanxtan2x的值为 .18. 若 △ABC 的内角满足 sinA +√2sinB =2sinC ,则 cosC 的最小值是 . 19. 若 cos (α+β)=15,cos (α−β)=35,则 tanαtanβ= . 20. 设 α 为锐角,若 cos (α+π6)=45,则 sin (2α+π12) 的值为 .21. 如图,在同一个平面内,向量 OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为 1,1,√2,OA ⃗⃗⃗⃗⃗ 与 OC⃗⃗⃗⃗⃗ 的夹角为 α,且 tanα=7,OB ⃗⃗⃗⃗⃗ 与 OC⃗⃗⃗⃗⃗ 的夹角为 45∘.若 OC ⃗⃗⃗⃗⃗ =mOA ⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ (m,n ∈R ),则 m +n = .22. 已知 tanα=−2,tan (α+β)=17,则 tanβ 的值为 .23. 定义在区间 (0,π2) 上的函数 y =6cosx 的图象与 y =5tanx 的图象的交点为 P ,过点 P 作 PP 1⊥x 轴于点 P 1,直线 PP 1 与 y =sinx 的图象交于点 P 2,则线段 P 1P 2 的长为 . 24. cot20∘cos10∘+√3sin10∘tan70∘−2cos40∘= .25. 在锐角 △ABC 中,sinA =2sinBsinC ,则 tanAtanBtanC 的最小值是 . 26. 设向量 a k ⃗⃗⃗⃗ =(coskπ6,sin kπ6+coskπ6)(k =0,1,2,⋯,12),则 ∑(a k ⃗⃗⃗⃗ ⋅a k+1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )11k=0 的值为 .27. 在锐角△ABC中,A、B、C的对边分别为a、b、c,ba +ab=6cosC,则tanCtanA+tanCtanB=.28. 某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].29. 在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.30. 满足条件AB=2,AC=√2BC的三角形ABC的面积的最大值是.三、解答题(共17小题;共221分)31. 在△ABC中,AC=6,cosB=45,C=π4.(1)求AB的长;(2)求cos(A−π6)的值.32. 已知α∈(π2,π),sinα=√55.(1)求sin(π4+α)的值;(2)求cos(5π6−2α)的值.33. 已知a=(cosα,sinα),b⃗=(cosβ,sinβ),0<β<α<π.(1)若∣∣a−b⃗∣∣=√2,求证:a⊥b⃗;(2)设c=(0,1),若a+b⃗=c,求α,β的值.34. 如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10√7cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度,玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.35. 已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.36. 在 △ABC 中,已知 AB =2,AC =3,A =60∘.(1)求 BC 的长; (2)求 sin2C 的值.37. 设向量 a =(4cosα,sinα),b ⃗ =(sinβ,4cosβ),c =(cosβ,−4sinβ).(1)若 a 与 b ⃗ −2c 垂直,求 tan (α+β) 的值; (2)求 ∣∣b ⃗ +c ∣∣ 的最大值;(3)若 tanαtanβ=16,求证:a ∥b⃗ .38. 如图,在平面直角坐标系 xOy 中,以 Ox 轴为始边作两个锐角 α,β,它们的终边分别与单位圆相交于 A ,B 两点,已知 A ,B 的横坐标分别为 √210,2√55.求:(1)tan (α+β) 的值; (2)α+2β 的值.39. 已知函数 f (x )=sin (ωx +φ)(ω>0,0≤φ≤π) 是 R 上的偶函数,其图象关于点 M (3π4,0) 对称,且在区间 [0,π2] 上是单调函数,求 φ 和 ω 的值.40. 在 △ABC 中,已知 AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ . (1)求证:tanB =3tanA ; (2)若 cosC =√55,求 A 的值.41. 如图,游客从某旅游景区的景点 A 处下山至 C 处有两种路径.一种是从 A 沿直线步行到 C ,另一种是先从 A 沿索道乘缆车到 B ,然后从 B 沿直线步行到 C .现有甲、乙两位游客从 A 处下山,甲沿 AC 匀速步行,速度为 50m/min .在甲出发 2min 后,乙从 A 乘缆车到 B ,在 B 处停留 1min 后,再从 B 匀速步行到 C .假设缆车匀速直线运动的速度为 130m/min ,山路 AC 长为 1260m ,经测量,cosA =1213,cosC =35.(1)求索道 AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在 C 处互相等待的时间不超过 3 分钟,乙步行的速度应控制在什么范围内? 42. 在平面直角坐标系 xOy 中,设 P (x,y ) 是椭圆 x 23+y 2=1 上的一个动点,求 S =x +y 的最大值.43. 在△ABC中,角A,B,C所对应的边为a,b,c.)=2cosA,求A的值;(1)若sin(A+π6,b=3c,求sinC的值.(2)若cosA=1344. 某兴趣小组测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC高度ℎ=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α−β最大.45. 已知△ABC的三边长为有理数.(1)求证:cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.46. 如图,在直三棱柱ABC−A1B1C1中,底面是等腰直角三角形,∠ACB=90∘,侧棱AA1=2,D、E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(1)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(2)求点A1到平面AED的距离.47. 在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1−EF−B成直二面角,连结A1B、A1P(如图2).(1)求证:A1E⊥平面BEP;(2)求直线A1E与平面A1BP所成角的大小;(3)求二面角B−A1P−F的大小.(用反三角函数表示)答案第一部分 1. A2. A【解析】cos (2π3+2α)=cos [π−(π3−2α)]=−cos [2(π6−α)]=2sin 2(π6−α)−1=−79.3. D4. C5. D6. D7. D【解析】在 △ABC 中,由正弦定理得:ACsinB =√32,化简得 AC =2√3sinB ,AB sin(π−B−π3)=√32,化简得 AB =2√3sin (2π3−B), 所以三角形的周长为:3+AC +AB=3+2√3sinB +2√3sin (2π3−B)=3+3√3sinB +3cosB=6sin (B +π6)+3.第二部分 8. 3 9. π 【解析】T =2π2=π10. π6【解析】由题意,得 sin (2×π3+φ)=cos π3,则 φ=π6适合题意.11. 10【解析】因为 f (x )=cos (ωx −π6) 的最小正周期为 2πω=π5.所以 ω=10. 12. 4√6 13. 7【解析】画出两个函数的图象,经观察共有 7 个交点.14. 75 15. 54 16. √62【解析】由图可知,A =√2,T4=7π12−π3=π4,所以 T =2πω=π,ω=2.从而 2×7π12+φ=2kπ+3π2,φ=2kπ+π3,其中 k ∈Z .则 f (0)=√2sin (2kπ+π3)=√62. 17. 49【解析】tanx=tan (x +π4−π4)=tan (x +π4)−11+tan (x +π4)=13.tanx tan2x=tanx 2tanx 1−tan 2x =(1−tan 2x )2=49. 18.√6−√24【解析】因为 sinA +√2sinB =2sinC ,由正弦定理得 a +√2b =2c . 所以cosC =a 2+b 2−c 22ab =4a 2+4b 2−(a+√2b)28ab=3a 2+2b 28ab −√24≥2√3a 2⋅2b 28ab−√24=√64−√24,当且仅当 3a 2=2b 2 即 √3a =√2b 时取等号. 19. 12【解析】cos (α+β)=cosαcosβ−sinαsinβ=15, ⋯⋯①cos (α−β)=cosαcosβ+sinαsinβ=35. ⋯⋯②由 ①②,得 cosαcosβ=25,sinαsinβ=15, 故 tanαtanβ=sinαsinβcosαcosβ=12.20.17√250【解析】因为 cos (α+π6)=45,所以 α+π6∈(0,π2).所以 sin (α+π6)=35.所以 sin (2α+π3)=2sin (α+π6)cos (α+π6)=2×35×45=2425, cos (2α+π3)=2cos 2(α+π6)−1=725. 所以sin (2α+π12)=sin [(2α+π3)−π4]=sin (2α+π3)cos π4−cos (2α+π3)sin π4=17√250.21. 3 22. 3 23. 23【解析】由题意知线段 P 1P 2 长即为垂线 PP 1 与 y =sinx 图象交点的纵坐标.因为 {y =6cosx,y =5tanx, 所以6cosx =5tanx .即 6(cosx )2=5sinx .即 6(sinx )2+5sinx −6=0.因为 x ∈(0,π2).所以 sinx =23,即 P 1P 2=23. 24. 2【解析】cot20∘cos10∘+√3sin10∘tan70∘−2cos40∘=tan70∘(cos10∘+√3sin10∘)−2cos40∘=2tan70∘sin40∘−2cos40∘=−2(cos70∘cos40∘−sin40∘sin70∘)cos70∘=−2cos110∘cos70∘=2.25. 8【解析】因为 sinA =sin (B +C )=sinBcosC +cosBsinC , 所以由已知得 sinBcosC +cosBsinC =2sinBsinC (∗). 由三角形 ABC 为锐角三角形,得 cosB >0,cosC >0.在 (∗) 式两端同时除以 cosBcosC ,得 tanB +tanC =2tanBtanC , 又 tanA =−tan (B +C )=−tanB+tanC 1−tanBtanC(#),则 tanAtanBtanC =−tanB+tanC 1−tanBtanC×tanBtanC =−2(tanBtanC )21−tanBtanC.令 tanBtanC =t .由 (#) 及 tanA >0,tanB >0,tanC >0,得 1−tanBtanC <0,即 t >1. tanAtanBtanC =−2t 21−t =−21t 2−1t=21t(1−1t).因为 1t (1−1t )≤(1t +1−1t2)2=14,所以当且仅当 t =2 时,tanAtanBtanC 的最小值为 8.当 t =2,即 {tanB +tanC =4,tanBtanC =2,,亦即 {tanB =2+√2,tanC =2−√2,tanA =4 或 {tanB =2−√2,tanC =2+√2,tanA =4时,tanAtanBtanC 的最小值为 8. 26. 9√3【解析】提示:a k ⃗⃗⃗⃗ ⋅a k+1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3√34+sin 2k+16π+12cos 2k+16π.27. 4【解析】由已知 ba+ab =6cosC 及余弦定理 cosC =a 2+b 2−c 22ab,可得2a 2+2b 2=3c 2. ⋯⋯①而tanC tanA +tanC tanB =sin 2C cosCsinAsinB =6c 2a 2+b 2, 将①代入可得结果为 4. 28. 10sin πt60【解析】如图,设 ∠AOB =θ,θ∈[0,π],由垂径定理,得 d =2×5sin θ2=10sin θ2.因为θ={πt 30,t ∈[0,30],2π−πt30,t ∈(30,60],所以d ={10sinπt 60,t ∈[0,30],10sin (π−πt60),t ∈(30,60],化简即得d =10sin πt60,t ∈[0,60].29. 8【解析】由 sinA =sin (B +C )=2sinBsinC , 得 sinBcosC +cosBsinC =2sinBsinC . 两边同时除以 cosBcosC , 得 tanB +tanC =2tanBtanC . 令 tanB +tanC =2tanBtanC =m , 又 △ABC 是锐角三角形,所以 2tanBtanC =tanB +tanC >2√tanB ⋅tanC , 则 tanBtanC >1,所以 m >2.又在三角形 ABC 中,有tanAtanBtanC=−tan (B +C )tanBtanC =−m1−12m ⋅12m=m 2m−2=(m −2)+4m−2+4≥2√(m −2)⋅4m−2+4=8,当且仅当 m −2=4m−2, 即 m =4 时取等号,故 tanAtanBtanC 的最小值为 8. 30. 2√2【解析】设 BC =x ,则 AC =√2x ,根据面积公式,得 S △ABC =12AB ⋅BCsinB =x√1−cos 2B . 根据余弦定理,得 cosB =AB 2+BC 2−AC 22AB⋅BC=4+x 2−2x 24x=4−x 24x,于是 S △ABC =x √1−(4−x 24x)2=√128−(x 2−12)216.由三角形三边关系有 {√2x +x >2,x +2>√2x,解得 2√2−2<x <2√2+2,故当 x =2√3 时,S △ABC 取到最大值 2√2. 第三部分31. (1) 由 cosB =45,得 sinB =35. 由 ABsinC =ACsinB ,得 AB =ACsinC sinB=6×√22×53=5√2.(2) cosA =−cos (C +B )=sinBsinC −cosBcosC=35×√22−45×√22=−√210.由 A 为三角形的内角,得 sinA =7√210.cos (A −π6)=cosAcos π6+sinAsin π6=−√210×√32+7√210×12=7√2−√620.32. (1) 因为 α∈(π2,π),sinα=√55, 所以 cosα=−√1−sin 2α=−2√55. 故sin (π4+α)=sin π4cosα+cos π4sinα=√22×(−2√55)+√22×√55=−√1010.(2) 由(1)知 sin2α=2sinαcosα=2×√55×(−2√55)=−45,cos2α=1−2sin 2α=1−2×(√55)2=35,所以cos (5π6−2α)=cos5π6cos2α+sin 5π6sin2α=(−√32)×35+12×(−45)=−4+3√310.33. (1) 由题意得 ∣∣a −b ⃗ ∣∣2=2,即(a −b ⃗ )2=a 2−2a ⋅b⃗ +b ⃗ 2=2. 又因为 a 2=b ⃗ 2=∣a ∣2=∣∣b ⃗ ∣∣2=1,所以2−2a ⋅b⃗ =2, 即 a ⋅b ⃗ =0,故 a ⊥b⃗ . (2) 因为 a +b ⃗ =(cosα+cosβ,sinα+sinβ)=(0,1), 所以 {cosα+cosβ=0,sinα+sinβ=1,由此得cosα=cos (π−β),由 0<β<π,得0<π−β<π.又 0<α<π,故 α=π−β.代入 sinα+sinβ=1,得sinα=sinβ=12,而 α>β,所以α=5π6,β=π6.34. (1) 设玻璃棒在 CC 1 上的点 M ,玻璃棒与水面的交点为 N , 如图 1,在平面 ACM 中,过 N 作 NP ∥MC ,交 AC 于点 P ,因为ABCD−A1B1C1D1为正四棱柱,所以CC1⊥平面ABCD,又因为AC⊂平面ABCD,所以CC1⊥AC,所以NP⊥AC,所以NP=12cm,且AM2=AC2+MC2,解得MC=30cm,因为NP∥MC,所以△ANP∽△AMC,所以ANAM =NPMC,AN40=1230,得AN=16cm.所以玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,如图2,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,因为EFGH−E1F1G1H1为正四棱台,所以EE1=GG1,EG∥E1G1,EG≠E1G1,所以EE1G1G为等腰梯形,画出截面E1EGG1,因为E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,所以E1Q=24cm,由勾股定理得:E1E=40cm,所以sin∠EE1G1=45,sin∠EGM=sin∠EE1G1=45,cos∠EGM=−35,根据正弦定理得:EMsin∠EGM =EGsin∠EMG,所以sin∠EMG=725,cos∠EMG=2425,所以sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=35,所以EN=NPsin∠GEM =1235=20cm.所以玻璃棒l没入水中部分的长度为20cm.35. 因为a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.所以ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α−β)≤8.当且仅当cos(α−β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当ac =bd时取等号.所以−8≤ac+bd≤8.36. (1)由余弦定理知,BC2=AB2+AC2−2AB⋅AC⋅cosA=4+9−2×2×3×12=7,所以BC=√7.(2)由正弦定理知,ABsinC =BCsinA,所以sinC=ABBC ⋅sinA=∘√7=√217.因为AB<BC,所以C为锐角,则cosC=√1−sin2C=√1−37=2√77.因此sin2C=2sinC⋅cosC=2×√217×2√77=4√37.37. (1)因为a与b⃗−2c垂直,所以a⋅(b⃗−2c)=4cosαsinβ−8cosαcosβ+4sinαcosβ+8sinαsinβ=4sin(α+β)−8cos(α+β)=0,因此tan(α+β)=2.(2)由b⃗+c=(sinβ+cosβ,4cosβ−4sinβ),得∣∣b⃗+c∣∣=√(sinβ+cosβ)2+(4cosβ−4sinβ)2=√17−15sin2β≤4√2,又当β=kπ−π4,k∈Z时,等号成立,所以∣∣b⃗+c∣∣的最大值为4√2.(3)由tanαtanβ=16,得4cosαsinβ=sinα4cosβ,所以a∥b⃗.38. (1)由已知,点A,B的坐标分别为(cosα,sinα),(cosβ,sinβ).因为α、β都是锐角,且cosα=√210,cosβ=2√55,所以sinα=7√210,sinβ=√55, 则tanα=7,tanβ=12,tan (α+β)=tanα+tanβ1−tanαtanβ=−3.(2) 由 tanβ=12 得tan2β=2tanβ1−tan 2β=43,所以tan (α+2β)=tanα+tan2β1−tanαtan2β=−1.又 α,β∈(0,π2),所以 α+2β∈(0,3π2),故α+2β=3π4.39. 由 f (x )=sinωxcosφ+cosωxsinφ 是偶函数,得 cosφ=0. 依题设 0≤φ≤π,所以解得 φ=π2.由 f (x ) 的图象关于点 M 对称,得 f (3π4)=0.所以3ωπ4+π2=π+kπ,k =0,1,2⋯ ∴ω=23(2k +1),k =0,1,2,⋯当 k =0 时,ω=23,f (x )=sin (23x +π2) 在 [0,π2] 上是减函数; 当 k =1 时,ω=2,f (x )=sin (2x +π2) 在 [0,π2] 上是减函数; 当 k ≥2 时,ω≥103,f (x )=sin (ωx +π2) 在 [0,π2] 上不是单调函数. 综上得 ω=23 或 ω=2.40. (1) 因为 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ , 所以AB ⋅AC ⋅cosA =3BA ⋅BC ⋅cosB,即AC ⋅cosA =3BC ⋅cosB,由正弦定理知AC sinB =BCsinA, 从而sinBcosA =3sinAcosB,又因为 0<A +B <π,所以cosA >0,cosB >0,所以 tanB =3tanA . (2) 因为 cosC =√55,0<C <π,所以sinC =√1−cos 2C =2√55, 从而 tanC =2,于是 tan [π−(A +B )]=2.即tan (A +B )=−2,亦即tanA +tanB1−tanAtanB=−2,由(1)得4tanA1−3tan 2A=−2,解得tanA =1或−13,因为 cosA >0,故 tanA =1.所以 A =π4.41. (1) 在 △ABC 中,因为 cosA =1213,cosC =35,所以sinA =513,sinC =45, 从而sinB=sin [π−(A +C )]=sin (A +C )=sinAcosC +cosAsinC =513×35+1213×45=6365. 由正弦定理ABsinC=AC sinB,得AB=ACsinB⋅sinC =12606365×45=1040(m ),所以索道 AB 的长为 1040m .(2) 设乙出发 tmin 后,甲、乙两游客距离为 d , 此时,甲行走了 (100+50t )m ,乙距离 A 处 130tm , 所以,由余弦定理得d 2=(100+50t )2+(130t )2−2×130t ×(100+50t )×1213=200(37t 2−70t +50).由于 0≤t ≤1040130,即0≤t ≤8,故当 t =3537(min ) 时,甲、乙两游客距离最短.(3) 由正弦定理 BC sinA=AC sinB,得BC=ACsinB ⋅sinA =12606365×513=500(m ).乙从 B 出发时,甲已走了50×(2+8+1)=550(m ),还需走 710m 才能到达 C .设乙步行的速度为 vm/min ,由题意得−3≤500v −71050≤3,解得125043≤v ≤62514, 所以为使两位游客在 C 处互相等待的时间不超过 3min , 乙步行的速度应控制在 [125043,62514](单位:m/min )范围内.42. 由已知可设 P(√3cosφ,sinφ)(0≤φ<2π),则S =x +y=√3cosφ+sinφ=2sin (φ+π3),所以当 φ=π6 时,S 取最大值 2. 43. (1) 因为sin (A +π6)=√32sinA +12cosA =2cosA,所以 sinA =√3cosA ,所以 A =π3. (2) 因为 cosA =13,b =3c ,所以a 2=b 2+c 2−2bccosA =8c 2,a =2√2c.由正弦定理得:2√2c sinA =csinC, 而 sinA =√1−cos 2A =2√23,所以 sinC =13.44. (1) 因为tanα=AE AB ,tanβ=AE AD, 所以tanαtanβ=AD AB =3130. 又tanα=HAB,tanβ=4AD−AB,所以H AB ⋅AD−AB4=ADAB,把ADAB =3130代入得H=124m.(2)由题设知d=AB,从而tanα=Hd.由AB=AD−BD=Htanβ−ℎtanβ,得tanβ=H−ℎd.所以tan(α−β)=tanα−tanβ1+tanαtanβ=ℎd+H(H−ℎ)d≤ℎ2√H(H−ℎ),当且仅当d=H(H−ℎ)d,即d=√H(H−ℎ)=√125×(125−4)=55√5时,上式取等号.所以当d=55√5时,tan(α−β)最大.因为0<β<α<π2,则0<α−β<π2,所以当d=55√5时,α−β最大.故所求的d是55√5m.45. (1)由AB,BC,AC为有理数及余弦定理知cosA=AB2+AC2−BC22AB⋅AC是有理数.(2)用数学归纳法证明cosnA和sinA⋅sinnA都是有理数.①当n=1时,由(1)知cosA是有理数,从而有sinA⋅sinA=1−cos2A也是有理数.②假设当n=k(k≥1)时,coskA和sinA⋅sinkA都是有理数.当n=k+1时,由cos(k+1)A=cosA⋅coskA−sinA⋅sinkA,sinA⋅sin(k+1)A=sinA⋅(sinA⋅coskA+cosA⋅sinkA)=(sinA⋅sinA)⋅coskA+(sinA⋅sinkA)⋅cosA,由①和归纳假设,知cos(k+1)A与sinA⋅sin(k+1)A都是有理数,即当n=k+1时,结论成立.综合①、②可知,对任意正整数n,cosnA是有理数.46. (1)连结BG,则BG是BE在面ABD的射影,从而∠EBG是A1B与平面ABD所成的角.设F为AB中点,连结EF、FC,因为E是A1B的中点,所以EF∥AA1,且EF=12AA1,又D是CC1的中点,所以CD∥AA1,且CD=12AA1,从而EF∥CD,且EF=CD,所以EFCD为平行四边形.又DC⊥平面ABC,所以EFCD为矩形.连结DF,G是△ADB的重心,则G∈DF.在Rt△EFD中,EF2=FG⋅FD=13FD2.由EF=1,解得FD=√3,从而ED=√2,EG=1×√2√3=√63.在Rt△ABC中,因为FC=ED=√2,所以AB=2√2,A1B=2√3,EB=√3.在Rt△EBG中,sin∠EBG=EGEB=√23.因此,A1B与平面ABD所成的角是arcsin√23.(2)因为ED⊥AB,ED⊥EF,EF∩AB=F,所以ED⊥平面A1AB.设A1到平面AED的距离为ℎ,由V A1−AED =V D−AA1E,得S△AED⋅ℎ=S△A1AE⋅ED,因为S △A 1AE =12S △A 1AB =√2,S △AED =12AE ⋅ED =√62.所以ℎ=√2×√2√62=2√63. 因此,A 1 到平面 AED 的距离为 2√63. 47. (1) 不妨设正三角形 ABC 的边长为 3,则在图 1 中,取 BE 的中点 D ,连结 DF . ∵ AE ∶EB =CF ∶FA =1∶2,∴ AF =AD =2,而 ∠A =60∘, ∴ △ADF 为正三角形. 又 AE =DE =1,∴ EF ⊥AE . 从而在图 2 中,EF ⊥A 1E . ∵ 二面角 A 1−EF −B 为直二面角, ∴ A 1E ⊥平面 BEP .(2) 在图 2 中,∵ A 1E ⊥平面 BEP , ∴ A 1E ⊥BP ,由线面垂直的判定与性质,得 BP 垂直于 A 1E 在面 A 1BP 内的射影. 设 A 1E 在平面 A 1BP 内的射影为 A 1Q ,且 A 1Q 交 BP 于 Q .则 ∠EA 1Q 就是 A 1E 与平面 A 1BP 所成的角,且 BP ⊥A 1Q . 在 △EBP 中,∵ BE =BP =2,∠EBP =60∘, ∴ △EBP 为正三角形,∴ BE =EP . 又 ∵ A 1E ⊥平面 BEP ,∴ A 1B =A 1P , ∴ Q 为 BP 的中点,且 EQ =√3,而 A 1E =1, ∴ 在 Rt △A 1EQ 中,tan∠EA 1Q =EQA 1E=√3. 因此,直线 A 1E与面 A 1BP 所成角为 60∘.(3)在图2中,过F作FM⊥A1P于M,连结QM、QF.∵CF=CP=1,∠C=60∘,∴△FCP为正三角形,从而PF=1.又∵PQ=12BP=1,∴PF=PQ.⋯⋯①∵A1E⊥平面BEP,EQ=EF=√3,∴A1F=A1Q,∴△A1FP≌△A1QP,从而∠A1PF=∠A1PQ.⋯⋯②由①、②及MP为公共边,得△FMP≌△QMP,∴∠QMP=∠FMP=90∘,且MF=MQ,从而∠FMQ为二面角B−A1P−F的平面角.在Rt△A1QP中,A1Q=A1F=2,PQ=1,∴A1P=√5.由MQ⊥A1P,得MF=MQ=A1Q⋅PQA1P=2√55.在△FCQ中,FC=1,QC=2,∠C=60∘.由余弦定理,得QF=√3,在△FMQ中,cos∠FMQ=MF2+MQ2−QF22MF⋅MQ=−78.因此,二面角B−A1P−F的大小为π−arccos78.第21页(共21 页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三角函数真题
2018:
7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3
x π=对称,则ϕ的值是 ▲ .
16.(本小题满分14分)
已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值;
(2)求tan()αβ-的值.
17.(本小题满分14分)
某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,
大棚Ⅰ的地块形状为矩形ABCD ,大棚Ⅱ的地块形状
为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧
上.设OC 与MN 所成的角为θ.
(1)用θ分别表示矩形ABCD 和CDP △的面积,并确
定sin θ的取值围;
(2)若大棚Ⅰ种植甲种蔬菜,大棚Ⅱ种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.
2017:5.若tan 1-
=46
πα⎛⎫ ⎪⎝⎭,则tan α= 16. (本小题满分14分)
已知向量a =(cos x ,sin x ),,.
(1)若a ∥b ,求x 的值;(2)记,求的最大值和最小值以及对应的x 的值
18. (本小题满分16分)
如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为
32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为
12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不
计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l
没入水中部分的长度;16
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l
没入水中部分的长度. 20
2016:9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点
个数是▲ .
14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .
15.(本小题满分14分)
在ABC △中,AC =6,4πcos .54B
C , (1)求AB 的长;
(2)求πcos(6A
)的值.
17.(本小题满分14分)
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍.
(1) 若16,PO 2,AB m m ==则仓库的容积是多少?
(2) 若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?
2015:8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 15.(本小题满分14分)
在ABC 中,已知2,3,60.AB AC A ===
(1)求BC 的长;
(2)求sin2C 的值。

2018:全国卷2
6. 在
中,,,,则 A. B. C. D.
10. 若在是减函数,则的最大值是 A. B. C.
D. 15. 已知,,则__________.
2010:卷
10、定义在区间⎪⎭⎫ ⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为_______▲_____。

13、在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos b a C a b
+=,则tan tan tan tan C C A B
+=____▲_____。

17.某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。

(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔
的距离d (单位:m ),使α与β之差较大,可以提高测量精
确度。

若电视塔的实际高度为125m ,试问d 为多少时,α-β最大?
2011:卷
7.已知,2)4tan(=+π
x 则x
x 2tan tan 的值为__________ 9.函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则f (0)=
15.在△ABC 中,角A 、B 、C 所对应的边为c b a ,,
(1)若,cos 2)6sin(A A =+π
求A 的值;
(2)若c b A 3,3
1cos ==,求C sin 的值.
2012:卷
11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝
⎭,则)122sin(π+a 的值为 ▲ .
15.在A B C ∆中,已知3AB AC BA BC =.
(1)求证:tan 3tan B A =;
(2)若cos C =
求A 的值.
2013:卷
1函数)4
2sin(3π-=x y 的最小正周期为 ▲ . 15.(本小题满分14分)
已知()cos sin a αα=,,()cos sin b ββ=,,0βαπ<<<.
(1) 若2a b -=,求证:a b ⊥;
(2) 设()01c ,=,若a b c +=,求α,β的值.
18. (本小题满分16分)
如图,游客从某旅游景区的景点处下山至C 处有两种路径. 一种是从沿A 直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min. 在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C . 假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5
C =. (1) 求索道AB 的长;
(2) 问乙出发多少分钟后,乙在缆车上与甲的距离
最短?
(3) 为使两位游客在C 处相互等待的时间不超过3
分钟,乙步行的速度应控制在什么围?
2014:卷
5.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为
3
π的交点,则ϕ的值是_______.
14. 若ABC ∆的角满足sin 22sin A B C =,则cos C 的最小值是_______.
15【14分】已知()
2απ∈π,,5sin α=. (1)求()sin 4
απ+的值; (2)求()cos 26α5π-的值.
18.【16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个
圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正向170m 处(OC 为河岸),4tan 3
BCO ∠=. (1)求新桥BC 的长; (2)当OM 多长时,圆形保护区的
面积最大?.。

相关文档
最新文档