真题推荐江苏省高考数学 真题分类汇编 三角函数
全国通用2020_2022三年高考数学真题分项汇编专题09三角函数(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:09 三角函数1.【2022年全国甲卷】将函数f(x)=sin(ωx+π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C的解析式,再结合对称性得ωπ2+π3=π2+kπ,k∈Z,即可求出ω的最小值.【详解】由题意知:曲线C为y=sin[ω(x+π2)+π3]=sin(ωx+ωπ2+π3),又C关于y轴对称,则ωπ2+π3=π2+kπ,k∈Z,解得ω=13+2k,k∈Z,又ω>0,故当k=0时,ω的最小值为13.故选:C.2.【2022年全国甲卷】设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]【答案】C【解析】【分析】由x的取值范围得到ωx+π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得ω>0,因为x∈(0,π),所以ωx+π3∈(π3,ωπ+π3),要使函数在区间(0,π)恰有三个极值点、两个零点,又y=sinx,x∈(π3,3π)的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈(136,83].故选:C.3.【2022年全国乙卷】函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A.−π2,π2B.−3π2,π2C.−π2,π2+2D.−3π2,π2+2【答案】D【解析】【分析】利用导数求得f(x)的单调区间,从而判断出f(x)在区间[0,2π]上的最小值和最大值. 【详解】f′(x)=−sinx+sinx+(x+1)cosx=(x+1)cosx,所以f(x)在区间(0,π2)和(3π2,2π)上f′(x)>0,即f(x)单调递增;在区间(π2,3π2)上f′(x)<0,即f(x)单调递减,又f(0)=f(2π)=2,f(π2)=π2+2,f(3π2)=−(3π2+1)+1=−3π2,所以f(x)在区间[0,2π]上的最小值为−3π2,最大值为π2+2.故选:D4.【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1 B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2, 所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin(52x +π4)+2, 所以f(π2)=sin(54π+π4)+2=1. 故选:A5.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos (α+π4)sinβ,则( ) A .tan(α−β)=1 B .tan(α+β)=1 C .tan(α−β)=−1 D .tan(α+β)=−1【答案】C 【解析】 【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】由已知得:sin αcos β+cos αsin β+cos αcos β−sin αsin β=2(cos α−sin α)sin β, 即:sin αcos β−cos αsin β+cos αcos β+sin αsin β=0, 即:sin (α−β)+cos (α−β)=0, 所以tan (α−β)=−1, 故选:C6.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 【答案】A 【解析】 【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】 cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴=sin tan cos ααα∴==. 故选:A. 【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α. 7.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是() A .3π B .3π和2 C .6π D .6π和2【答案】C 【解析】 【分析】利用辅助角公式化简()fx ,结合三角函数周期性和值域求得函数的最小正周期和最大值. 【详解】由题,()sin cos 3s 33334x x x x f x x π=+=+⎛+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T故选:C .8.【2021年乙卷文科】22π5πcos cos 1212-=( ) A.12 BCD 【答案】D 【解析】 【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解. 【详解】 由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D.9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( ) A .7sin 212x π⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭【答案】B 【解析】 【分析】解法一:从函数()y f x =的图象出发,按照已知的变换顺序,逐次变换,得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,即得2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x =的解析表达式;解法二:从函数sin 4y x π⎛⎫=- ⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x =的解析表达式.【详解】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=- ⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=- ⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+ ⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=- ⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+ ⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( ) A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】 【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++. 故选:C . 【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.12.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C 【解析】 【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果. 【详解】由题意可得,S 占地球表面积的百分比约为:226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f(x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 14.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A B .23C .13D 【答案】A 【解析】 【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论. 【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.15.【2020年新课标2卷理科】若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D 【解析】 【分析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D.方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D. 【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.16.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D. 【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.17.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12 B C .23D 【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 【详解】由题意可得:1sin sin 12θθθ+=,则:3sin 12θθ=1cos 2θθ+=从而有:sin coscos sin66ππθθ+=,即sin 63πθ⎛⎫+= ⎪⎝⎭故选:B. 【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.18.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C 【解析】 【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C 【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题. 19.【2022年新高考2卷】已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线【答案】AD 【解析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】 由题意得:f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z ,即φ=−4π3+k π,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin (2x +2π3).对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sinu 图象知y =f(x)在(0,5π12)上是单调递减; 对B ,当x ∈(−π12,11π12)时,2x +2π3∈(π2,5π2),由正弦函数y =sinu 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点;对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴;对D ,由y ′=2cos (2x +2π3)=−1得:cos (2x +2π3)=−12,解得2x +2π3=2π3+2k π或2x +2π3=4π3+2k π,k ∈Z , 从而得:x =k π或x =π3+k π,k ∈Z ,所以函数y =f(x)在点(0,√32)处的切线斜率为k =y ′|x=0=2cos 2π3=−1, 切线方程为:y −√32=−(x −0)即y =√32−x .故选:AD .20.【2020年新高考1卷(山东卷)】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +) B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 【答案】BC 【解析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果. 【详解】 由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 不妨令2ω=,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.21.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据f (T )=√32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解; 【详解】解: 因为f (x )=cos (ωx +φ),(ω>0,0<φ<π) 所以最小正周期T =2πω,因为f (T )=cos (ω⋅2πω+φ)=cos(2π+φ)=cosφ=√32, 又0<φ<π,所以φ=π6,即f (x )=cos (ωx +π6),又x =π9为f (x )的零点,所以π9ω+π6=π2+k π,k ∈Z ,解得ω=3+9k,k ∈Z ,因为ω>0,所以当k =0时ωmin =3; 故答案为:322.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】【解析】 【分析】首先确定函数的解析式,然后求解2f π⎛⎫⎪⎝⎭的值即可.【详解】由题意可得:31332,,241234T T Tπππππω=-=∴===, 当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈, 令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:【点睛】已知f (x )=Acos (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.23.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2 【解析】 【分析】先根据图象求出函数()f x 的解析式,再求出7(),()43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得. 【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2. 【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.24.【2020年新课标2卷文科】若2sin 3x =-,则cos2x =__________.【答案】19【解析】 【分析】直接利用余弦的二倍角公式进行运算求解即可. 【详解】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19.【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.25.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得. 【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=, 因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以2125=,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S Sππ+-=+.故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.。
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
江苏省各地市高考数学 最新联考试题分类汇编(5) 三角函数

一、填空题:7.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)已知01cos(75)3α+=,则0cos(302)α-的值为 ▲ .【答案】7911. (江苏省南通市2013届高三第二次调研) 设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ .【答案】1665- 7. (江苏省无锡市2013年2月高三质量检测)函数f (x )=sinx +sin (x -p3)的单调递增区间为 ▲ .【答案】[2k -p 3,2k +2p3],k ∈Z1、(常州市2013届高三期末)函数(1)()cos cos22x x f x -=的最小正周期为 ▲ . 答案:22、(连云港市2013届高三期末)如果函数y =3sin(2x +ϕ)(0<ϕ<π)的图象关于点(π3,0)中心对称,则ϕ= ▲ .答案:π3;5、(苏州市2013届高三期末)(苏州市2013届高三期末)已知θ为锐角,4sin(15)5θ+=,则cos(215)θ-= .6、(无锡市2013届高三期末)在△ABC 中,∠A=45o,∠C=105o,BC=2,则AC 的长度为 . 答案:17、(扬州市2013届高三期末)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,且5,3,sin 2sin a b C A ===,则sin A = ▲ .58、(镇江市2013届高三期末)5. 已知0ω>,函数3sin()4y x πωπ=+的周期比振幅小1,则ω= ▲ .答案:19、(镇江市2013届高三期末) 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .41-10、(南京市、盐城市2013届高三期末)在ABC ∆中, 若9cos 24cos 25A B -=, 则BCAC的值为 ▲ .2311、(南京市、盐城市2013届高三期末)若x ,y 满足22221log [4cos ()]ln ln 4cos ()22y e xy y xy +=-+, 则cos 4y x 的值为 ▲ . 答案:-1二、解答题:⒖(江苏省盐城市2013年3月高三第二次模拟)(本小题满分14分)已知函数(Ⅱ)因为46x ππ-≤≤,所以22633x πππ-≤+≤……………………………………9分 所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,所以()12f x -≤≤,当2,36x ππ+=-即4x π=-时,()min 1f x =-,当2,32x ππ+=即12x π=时,()min 2f x =,………………………………………14分⒘(江苏省盐城市2013年3月高三第二次模拟)(本小题满分14分)如图,在海岸线l 一侧C 处有一个美丽的小岛,某旅游公司为方便游客,在l 上设立了A 、B 两个报名点,满足A 、B 、C 中任意两点间的距离为10千米。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
十年高考真题分类汇编(2010-2019) 数学 专题05 三角函数(含解析)

十年高考真题分类汇编(2010—2019)数学专题05 三角函数1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15 B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1, ∴4sin αcos α=2cos 2α.∵α∈(0,π2),∴cos α>0,sin α>0, ∴2sin α=cos α. 又sin 2α+cos 2α=1, ∴5sin 2α=1,即sin 2α=15. ∵sin α>0,∴sin α=√55. 故选B.2.(2019·全国2·文T8)若x 1=π4,x 2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=( ) A.2 B.32C.1D.12【答案】A【解析】由题意,得f(x)=sin ωx 的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是( ) A.f(x)=|cos 2x| B.f(x)=|sin 2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2 【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O,连接OA,OB,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S1=βr2=4β为定值,S△OAB=12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S△PAB+S1-S△OAB.当P为弧AB的中点时S△PAB最大,最大值为12(2|OA|sin β)(OP+|OA|cos β)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S 的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sin β=4β+4sin β,故选B.6.(2019·全国3·理T 12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( ) A.①④ B.②③ C.①②③ D.①③④【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5,又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2, ∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B【解析】因为cos 2α=2cos 2α-1=23,所以cos 2α=56,sin 2α=16.所以tan 2α=15,tan α=±√55. 由于a,b 的正负性相同,不妨设tan α>0,即tan α=√55, 由三角函数定义得a=√55,b=2√55,故|a-b|=√55. 9.(2018·全国3·T4)若sin α=13,则cos 2α=( ) A.89B.79C.-79D.-89【答案】B【解析】cos 2α=1-2sin 2α=1-2×(13)2=79. 10.(2018·全国3·文T6)函数f(x)=tanx1+tan 2x的最小正周期为( )A.π4 B.π2 C.π D.2π【答案】C【解析】f(x)=tanx1+tan 2x =sinx cosx1+sin 2x cos 2x=sinxcosxcos 2x+sin 2x =12sin 2x,∴f(x)的最小正周期是π.故选C.11.(2018·全国1·文T8)已知函数f(x)=2cos 2x-sin 2x+2,则( ) A.f(x)的最小正周期为π,最大值为3 B.f(x)的最小正周期为π,最大值为4 C.f(x)的最小正周期为2π,最大值为3 D.f(x)的最小正周期为2π,最大值为4 【答案】B【解析】因为f(x)=2cos 2x-(1-cos 2x)+2=3cos 2x+1=3×1+cos2x 2+1=32cos 2x+52,所以函数f(x)的最小正周期为2π2=π,当cos 2x=1时,f(x)max =4.12.(2018·天津·理T 6)将函数y=sin (2x +π5)的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间[3π4,5π4]上单调递增B.在区间[3π4,π]上单调递减 C.在区间[5π4,3π2]上单调递增D.在区间[3π2,2π]上单调递减 【答案】A【解析】函数y=sin (2x +π5)y=sin [2(x -π10)+π5]=sin 2x.当-π2+2k π≤2x≤π2+2k π,k ∈Z,即-π4+k π≤x≤π4+k π,k ∈Z 时,y=sin 2x 单调递增. 当π2+2k π≤2x≤3π2+2k π,k ∈Z,即π4+k π≤x≤3π4+k π,k ∈Z 时,y=sin 2x 单调递减, 结合选项,可知y=sin 2x 在[3π4,5π4]上单调递增.故选A. 13.(2018·全国2·理T 10)若f(x)=cos x-sin x 在[-a,a]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D .π【答案】A【解析】f(x)=cos x-sin x=-√2sin x ·√22-cos x ·√22=-√2sin x-π4,当x ∈[-π4,34π],即x-π4∈[-π2,π2]时,y=sin x-π4单调递增,y=-√2sin x-π4单调递减.∵函数f(x)在[-a,a]是减函数,∴[-a,a]⊆[-π4,34π],∴0<a≤π4,∴a 的最大值为π4.14.(2017·全国3·文T4)已知sin α-cos α=43,则sin 2α=( ) A.-79B.-29C.29D.79【答案】A【解析】∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79. 15.(2017·山东·文T4)已知cos x=34,则cos 2x=( ) A.-14 B.14C.-18D.18【答案】D【解析】cos 2x=2cos2x-1=2×(34)2-1=18.16.(2017·全国3·理T6)设函数f(x)=cos (x +π3),则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=8π3对称 C.f(x+π)的一个零点为x=π6D.f(x)在(π2,π)单调递减 【答案】D【解析】由f (x )=cos (x +π3)的【解析】式知-2π是它的一个周期,故A 中结论正确;将x=8π3代入f (x )=cos (x +π3),得f (8π3)=-1,故y=f (x )的图象关于直线x=8π3对称,故B 中结论正确;f (x+π)=cos (x +4π3),当x=π6时,f (x+π)=cos (π6+4π3)=0,故C 中结论正确;当x ∈(π2,π)时,x+π3∈(5π6,4π3),显然f (x )先单调递减再单调递增,故D 中结论错误. 17.(2017·全国2·文T3)函数f(x)=sin (2x +π3)的最小正周期为( ) A.4π B.2π C .πD.π2【答案】C【解析】T=2π2=π,故选C .18.(2017·天津·T7)设函数f(x)=2sin(ωx+φ),x ∈R,其中ω>0,|φ|<π,若f (5π8)=2,f (11π8)=0,且f(x)的最小正周期大于2π,则( ) A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24 D .ω=13,φ=7π24 【答案】A 【解析】∵f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,∴f (x )的最小正周期为4(11π8−5π8)=3π. ∴ω=2π3π=23,∴f (x )=2sin (23x+φ). ∴2sin (23×5π8+φ)=2,∴φ=2k π+π12,k ∈Z . 又|φ|<π,∴取k=0,得φ=π12.19.(2017·山东·文T7)函数y=√3sin 2x+cos 2x 的最小正周期为( ) A.π2 B.2π3C .π D.2π【答案】C【解析】因为y=√3sin 2x+cos 2x=2(√32sin2x +12cos2x)=2sin (2x +π6),所以其最小正周期T=2π2=π. 20.(2017·全国1·理T 9)已知曲线C 1:y=cos x,C 2:y=sin (2x +2π3),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】曲线C 1的方程可化为y=cos x=sin (x +π2),把曲线C 1上各点的横坐标缩短到原来的12,纵坐标不变,得曲线y=sin (2x +π2)=sin 2(x +π4),为得到曲线C 2:y=sin 2(x +π3),需再把得到的曲线向左平移π12个单位长度.21.(2017·全国3·文T 6)函数f(x)=15sin (x +π3)+cos (x -π6)的最大值为( ) A.65 B.1C.35D.15【答案】A【解析】因为cos (x -π6)=cos [π2-(x +π3)]=sin (x +π3),所以f (x )=15sin (x +π3)+sin (x +π3)=65sin (x +π3),故函数f (x )的最大值为65.故选A .22.(2016·全国2·理T9)若cos (π4-α)=35,则sin 2α=( ) A.725B.15C.-15D.-725【答案】D【解析】cos [2(π4-α)]=2cos 2(π4-α)-1=2×(35)2-1=-725,且cos [2(π4-α)]=cos (π2-2α)=sin 2α,故选D .23.(2016·全国3·理T5)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825C.1D.1625【答案】A 【解析】由tan α=34,得cos2α+2sin 2α=cos 2α+4sinαcosαcos 2α+sin 2α=1+4tanα1+tan 2α=1+4×341+(34)2=42516=6425.故选A .24.(2016·全国3·文T6)若tan θ=-13,则cos 2θ=( ) A.-45B.-15C.15D.45【答案】D【解析】cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-(-13)21+(-13)2=45.故选D .25.(2016·全国1·理T12)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤π2),x=-π4为f (x)的零点,x=π4为y=f(x)图象的对称轴,且f(x)在(π18,5π36)单调,则ω的最大值为( )A.11B.9C.7D.5【答案】B【解析】由题意知π4--π4=T4+kT2,k ∈Z,即π2=2k+14T=2k+14·2πω,k ∈Z,又ω>0,所以ω=2k+1,k ∈Z .又因为f (x )在(π18,5π36)单调, 所以5π36−π18≤T2,T ≥π6,即2πω≥π6,ω≤12.因为ω>0,所以0<ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时f (x )=sin 11x-π4,f (x )在π18,3π44单调递增,在3π44,5π36单调递减,不满足条件;若ω=9,又|φ|≤π2,则φ=π4,此时f (x )=sin 9x+π4,满足f (x )在π18,5π36单调的条件,由此得ω的最大值为9.26.(2016·山东·理T7)函数f(x)=(√3sin x+cos x)(√3cos x-sin x)的最小正周期是( ) A.π2 B .πC.3π2D.2π【答案】B【解析】f (x )=2sin (x +π6)×2cos (x +π6)=2sin (2x +π3),故最小正周期T=2π2=π,应选B .27.(2016·浙江·理T5)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( ) A.与b 有关,且与c 有关 B.与b 有关,但与c 无关 C.与b 无关,且与c 无关 D.与b 无关,但与c 有关 【答案】B【解析】f (x )=sin 2x+b sin x+c=1-cos2x2+b sin x+c =-12cos 2x+b sin x+12+c.当b=0时,f (x )=-12cos 2x+12+c ,周期T=π; 当b ≠0时,f (x )=-12cos 2x+b sin x+12+c ,∵y=-12cos 2x 的周期为π,y=b sin x 的周期为2π, ∴f (x )的周期T=2π.∴f (x )的最小正周期与b 有关,但与c 无关.故选B .28.(2016·全国2·文T3)函数y=Asin(ωx+φ)的部分图象如图所示,则( ) A.y=2sin (2x -π6) B.y=2sin (2x -π3)C.y=2sin (x +π6)D.y=2sin (x +π3)【答案】A【解析】由题图知,A=2,周期T=2[π3-(-π6)]=π, 所以ω=2ππ=2,y=2sin(2x+φ). 因为函数图象过点(π3,2), 所以2=2sin (2×π3+φ).所以2π3+φ=2k π+π2(k ∈Z).令k=0,得φ=-π6,所以y=2sin (2x -π6),故选A .29.(2016·全国2·理T 7)若将函数y=2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( ) A.x=kπ2−π6(k ∈Z) B.x=kπ2+π6(k ∈Z) C.x=kπ2−π12(k ∈Z) D.x=kπ2+π12(k ∈Z)【答案】B【解析】由题意可知,将函数y=2sin 2x 的图象向左平移π12个单位长度得函数y=2sin [2(x +π12)]=2sin (2x +π6)的图象,令2x+π6=π2+k π(k ∈Z),得x=kπ2+π6(k ∈Z).故选B .30.(2016·全国1·文T 6)将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4) B .y=2sin (2x +π3)C.y=2sin (2x -π4) D.y=2sin (2x -π3) 【答案】D【解析】由已知周期T=π,右移14T=π4后得y=2sin [2(x -π4)+π6]=2sin (2x -π3)的图象,故选D .31.(2016·四川·理T 3)为了得到函数y=sin (2x -π3)的图象,只需把函数y=sin 2x 的图象上所有的点( ) A.向左平行移动π3个单位长度 B.向右平行移动π3个单位长度 C.向左平行移动π6个单位长度 D.向右平行移动π6个单位长度 【答案】D【解析】y=sin (2x -π3)=sin [2(x -π6)].32.(2016·北京·理T 7)将函数y=sin (2x -π3)图象上的点P (π4,t)向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin 2x 的图象上,则( ) A.t=12,s 的最小值为π6B.t=√32,s 的最小值为π6C.t=12,s 的最小值为π3 D.t=√32,s 的最小值为π3【答案】A【解析】设P'(x ,y ).由题意得t=sin (2×π4-π3)=12,且P'的纵坐标与P 的纵坐标相同,即y=12.又P'在函数y=sin 2x 的图象上,则sin 2x=12,故点P'的横坐标x=π12+k π(k ∈Z)或5π12+k π(k ∈Z),结合题意可得s 的最小值为π4−π12=π6.33.(2016·全国2·文T 11)函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4 B.5 C.6 D.7 【答案】B【解析】因为f (x )=1-2sin 2x+6sin x=-2sin x-322+112,而sin x ∈[-1,1],所以当sin x=1时,f (x )取最大值5,故选B .34.(2015·福建·文T6)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125B.-125C.512 D.-512【答案】D【解析】∵sin α=-513,且α为第四象限角,∴cos α=√1-sin 2α=1213.∴tan α=sinαcosα=-512.35.(2015·全国1·理T 2,)sin 20°cos 10°-cos 160°sin 10°=( ) A.-√32 B.√32C.-12D.12【答案】D【解析】sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(10°+20°)=sin 30°=12.36.(2015·重庆·理T9)若tan α=2tan π5,则cos (α-3π10)sin (α-π5)=( )A.1B.2C.3D.4 【答案】C【解析】因为tan α=2tan π5,所以cos (α-3π10)sin (α-π5)=sin (α-3π10+π2)sin (α-π5)=sin (α+π5)sin (α-π5)=sinαcos π5+cosαsin π5sinαcos π5-cosαsin π5=tanα+tan π5tanα-tan π5=3tan π5tan π5=3.37.(2015·重庆·文T6)若tan α=13,tan(α+β)=12,则tan β=( ) A.17 B.16C.57D.56【答案】A【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tan (α+β)tanα=12-131+12×13=17.38.(2015·安徽·理T10)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f(x)取得最小值,则下列结论正确的是( ) A.f(2)<f(-2)<f(0) B.f(0)<f(2)<f(-2) C.f(-2)<f(0)<f(2) D.f(2)<f(0)<f(-2) 【答案】A【解析】将要比较的函数值化归到函数的同一单调区间内.∵f (x )的最小正周期为π,∴f (-2)=f (π-2).又当x=2π3时,f (x )取得最小值, 故当x=π6时,f (x )取得最大值,π6,2π3是函数f (x )的一个递减区间.又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x=π6距离的大小.∵π-2-π6-0-π6=5π6-2-π6=2π3-2>0, ∴f (0)>f (π-2),即f (0)>f (-2),综上,f (0)>f (-2)>f (2).故选A .39.(2015·全国1·T8)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) A.(kπ-14,kπ+34),k ∈ZB.(2kπ-14,2kπ+34),k ∈Z C.(k -14,k +34),k ∈ZD.(2k -14,2k +34),k ∈Z 【答案】D【解析】不妨设ω>0,由函数图象可知,其周期为T=2×(54-14)=2,所以2πω=2,解得ω=π.所以f (x )=cos(πx+φ).由图象可知,当x=12(14+54)=34时,f (x )取得最小值,即f (34)=cos (3π4+φ)=-1, 解得3π4+φ=2k π+π(k ∈Z),解得φ=2k π+π4(k ∈Z). 令k=0,得φ=π4,所以f (x )=cos (πx +π4). 令2k π≤πx+π4≤2k π+π(k ∈Z), 解得2k-14≤x ≤2k+34(k ∈Z).所以函数f (x )=cos (πx +π4)的单调递减区间为[2k -14,2k +34](k ∈Z).结合选项知选D .40.(2015·陕西·理T 3文T 14)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (π6x +φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.10 【答案】C【解析】因为sin (π6x +φ)∈[-1,1],所以函数y=3sin (π6x +φ)+k 的最小值为k-3,最大值为k+3.由题图可知k-3=2,解得k=5. 所以y 的最大值为k+3=5+3=8.故选C .41.(2015·山东·理T 3文T 4)要得到函数y=sin (4x -π3)的图象,只需将函数y=sin 4x 的图象( ) A.向左平移π12个单位B.向右平移π12个单位C.向左平移π3个单位 D.向右平移π3个单位【答案】B【解析】∵y=sin (4x -π3)=sin [4(x -π12)],∴只需将函数y=sin 4x 的图象向右平移π12个单位即可.42.(2014·全国1·T 文2)若tan α>0,则( ) A.sin α>0 B.cos α>0 C.sin 2α>0 D.cos 2α>0【答案】C【解析】由tan α>0知角α是第一或第三象限角,当α是第一象限角时,sin 2α=2sin αcos α>0;当α是第三象限角时,sin α<0,cos α<0,仍有sin 2α=2sin αcos α>0,故选C . 43.(2014·大纲全国·文T2)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45【答案】D【解析】设角α的终边上点(-4,3)到原点O 的距离为r ,r=√(-4)2+32=5,∴由余弦函数的定义,得cos α=x r =-45,故选D .44.(2014·全国1·理T8)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2 B.3α+β=π2 C.2α-β=π2 D.2α+β=π2【答案】C 【解析】由已知,得sinαcosα=1+sinβcosβ, ∴sin αcos β=cos α+cos αsin β. ∴sin αcos β-cos αsin β=cos α. ∴sin(α-β)=cos α, ∴sin(α-β)=sin (π2-α). ∵α∈(0,π2),β∈(0,π2), ∴-π2<α-β<π2,0<π2-α<π2,∴α-β=π2-α,∴2α-β=π2.故选C .45.(2014·大纲全国·理T3)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 【答案】C【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=sin35°cos35°, ∴sin35°cos35°>sin 35°>sin 33°.∴c>b>a.故选C .46.(2014·全国1·文T7)在函数①y=cos|2x|,②y=|cos x|,③y=cos (2x +π6),④y=tan (2x -π4)中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③【答案】A【解析】由于y=cos|2x|=cos 2x,所以该函数的周期为2π2=π;由函数y=|cos x|的图象易知其周期为π;函数y=cos (2x +π6)的周期为2π2=π;函数y=tan (2x-π4)的周期为π2,故最小正周期为π的函数是①②③,故选A.47.(2014·全国1·理T 6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 作直线OA 的垂线,垂足为M,将点M 到直线OP 的距离表示成x 的函数f(x),则y=f(x)在[0,π]的图象大致为( )【答案】C【解析】由题意知|OM|=|cos x|,f(x)=|OM||sin x|=|sin xcos x|=12|sin 2x|,由此可知C 项中图符合.故选C .48.(2014·浙江·理T 4)为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=√2cos 3x 的图象 ( ) A.向右平移π4个单位 B.向左平移π4个单位 C.向右平移π12个单位 D.向左平移π12个单位【答案】C【解析】y=sin 3x+cos 3x=√2cos (3x -π4)=√2cos [3(x -π12)],因此需将函数y=√2cos 3x 的图象向右平移π12个单位.故选C .49.(2013·浙江·理T6)已知α∈R,sin α+2cos α=√102,则tan 2α=( ) A.43B.34C.-34 D.-43【答案】C【解析】由sin α+2cos α=√102,得sin α=√102-2cos α. ① 把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或cos α=3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.50.(2013·大纲全国·文T2)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213B.-513C.513D.1213【答案】A 【解析】∵α是第二象限角,∴cos α=-√1-sin 2α=-√1-(513)2=-1213.故选A . 51.(2013·广东·文T4)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15C.15 D.25【答案】C【解析】∵sin (5π2+α)=sin (π2+α)=cos α=15,∴cos α=15.52.(2013·全国2·文T6)已知sin 2α=23,则cos 2(α+π4)=( )A.16 B.13C.12D.23【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.53.(2012·全国·理T9)已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是()A.[12,54] B.[12,34] C.(0,12] D.(0,2]【答案】A【解析】结合y=si n ωx的图象可知y=sin ωx在[π2ω,3π2ω]单调递减,而y=sin(ωx+π4)=sin[ω(x+π4ω)],可知y=sin ωx的图象向左平移π4ω个单位之后可得y=sin(ωx+π4)的图象,故y=sin(ωx+π4)在[π4ω,5π4ω]单调递减,故应有[π2,π]⊆[π4ω,5π4ω],解得12≤ω≤54.54.(2012·全国·文T9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4【答案】A【解析】由题意可知函数f(x)的周期T=2×(5π4-π4)=2π,故ω=1,∴f(x)=sin(x+φ).令x+φ=kπ+π2,将x=π4代入可得φ=kπ+π4,∵0<φ<π,∴φ=π4.55.(2011·全国·理T5文T7)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos 2θ=( )A.-45B.-35C.35D.45【答案】B【解析】由三角函数的定义知tan θ=2,且θ为第一或第三象限角,故由“1”的代换得cos2θ=cos2θ-sin2θ=cos 2θ-sin2θcos2θ+sin2θ=1-tan2θ1+tan2θ=1-221+22=-35.56.(2011·全国·理T11)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<π2)的最小正周期为π,且f(-x)=f(x),则()A.f(x)在(0,π2)单调递减B.f(x)在(π4,3π4)单调递减C.f(x)在(0,π2)单调递增D.f(x)在(π4,3π4)单调递增【答案】A【解析】∵f (x )=sin(ωx+φ)+cos(ωx+φ)=√2sin ωx+φ+π4,又∵f (x )的最小正周期为π,∴2πω=π,即ω=2.又f (-x )=f (x ),故f (x )是偶函数,即φ+π4=π2+k π(k ∈Z),φ=k π+π4(k ∈Z).因|φ|<π2,取k=0,则φ=π4,从而f (x )=√2cos 2x ,且在(0,π2)上单调递减,故选A .57.(2011·全国·文T11)设函数f(x)=sin (2x +π4)+cos (2x +π4),则( ) A.y=f(x)在(0,π2)单调递增,其图象关于直线x=π4对称B.y=f(x)在(0,π2)单调递增,其图象关于直线x=π2对称C.y=f(x)在(0,π2)单调递减,其图象关于直线x=π4对称D.y=f(x)在(0,π2)单调递减,其图象关于直线x=π2对称 【答案】D【解析】∵f (x )=sin (2x +π4)+cos (2x +π4)=√2sin (2x +π4+π4)=√2cos 2x ,∴f (x )在(0,π2)内单调递减,且图象关于直线x=π2对称.故选D . 58.(2010·全国·理T9)若cos α=-45,α是第三象限的角,则1+tan α21-tanα2=( )A.-12B.12C.2D.-2【答案】A【解析】∵cos α=-45,α为第三象限角,∴sin α=-35.1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2) 2(cos α2+sin α2)(cos α2-sin α2)=1+sinαcos 2α2-sin 2α2=1+sinαcosα=-12.59.(2010·全国·文T10)若cos α=-45,α是第三象限的角,则sin (α+π4)等于( )A.-7√210B.7√210C.-√210 D.√210【答案】A【解析】因为α是第三象限的角,所以sin α<0.sin α=-√1-cos 2α=-√1-(-45)2=-35.故sin (α+π4)=sin αcos π4+cos αsin π4=√22(sin α+cos α)=√22(-35-45)=-7√210.60.(2010·全国·文T 6)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(√2 ,-√2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数大致图象为( )【答案】C【解析】因为d 是圆周上的点P 到x 轴的距离,所以每转半周,即π弧度,d 的值就会周期性出现,又质点P 的角速度为1,可知,该函数的周期为T=π1=π.起始点为P 0(√2,-√2)在第四象限,对应的d=√2,逆时针旋转到x 轴时,d 的值逐渐减小到0且此时t=π4.综上,只有C 项满足,故选C .61.(2019·江苏·T13)已知tanαtan (α+π4)=-23,则sin 2α+π4的值是 .【答案】√210 【解析】由tanαtan (α+π4)=tanαtanα+11-tanα=tanα(1-tanα)tanα+1=-23,得3tan 2α-5tan α-2=0,解得tan α=2或tan α=-13.又sin (2α+π4)=sin 2αcos π4+cos 2αsin π4=√22(sin 2α+cos 2α)=√22×2sinαcosα+cos 2α-sin 2αsin 2α+cos 2α=√22×2tanα+1-tan 2αtan 2α+1. (*) ①当tan α=2时,(*)式=√22×2×2+1-2222+1=√22×15=√210;②当tan α=-13时,(*)式=√22×2×(-13)+1-(-13)2(-13)2+1=√22×13-19109=√210.综上,sin (2α+π4)=√210.62.(2019·全国1·文T 15)函数f(x)=sin (2x +3π2)-3cos x 的最小值为.【答案】-4【解析】f(x)=sin (2x +3π2)-3cos x =-cos 2x-3cos x =-2cos 2x-3cos x+1=-2(cosx +34)2+178. ∵-1≤cos x≤1,∴当cos x=1时,f(x)min =-4. 故函数f(x)的最小值是-4.63.(2018·全国2·理T15)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= . 【答案】—12【解析】∵(sin α+cos β)2+(cos α+sin β)2=1,∴sin 2α+cos 2β+cos 2α+sin 2β+2sin αcos β+2sin βcos α=1+1+2sin(α+β)=1. ∴sin(α+β)=−12.64.(2018·全国2·文T15)已知tan α-5π4=15,则tan α=_________.【答案】32【解析】∵tan (α-54π)=tanα-tan 54π1+tanαtan 54π=tanα-11+tanα=15,∴5tan α-5=1+tan α.∴tan α=32.65.(2018·北京·理T11)设函数f(x)=cos (ωx -π6)(ω>0).若f(x)≤f (π4)对任意的实数x 都成立,则ω的最小值为____________. 【答案】23【解析】∵f(x)≤f (π4)对任意的实数x 都成立,∴当x=π4时,f(x)取得最大值,即f (π4)=cos (π4ω-π6)=1, ∴π4ω-π6=2k π,k ∈Z,∴ω=8k+23,k ∈Z. ∵ω>0,∴当k=0时,ω取得最小值23.66.(2018·全国3·理T 15)函数f(x)=cos (3x +π6)在[0,π]的零点个数为 . 【答案】3【解析】令f(x)=cos (3x +π6)=0,得3x+π6=π2+k π,k ∈Z,∴x=π9+kπ3=(3k+1)π9,k ∈Z.则在[0,π]的零点有π9,4π9,7π9.故有3个.67.(2018·全国1·理T 16)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 . 【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x-2. 令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π. 因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.68.(2018·江苏·T 7)已知函数y=sin(2x+φ)-π2<φ<π2的图象关于直线x=π3对称,则φ的值为_______. 【答案】−π6【解析】由题意可得sin (2π3+φ)=±1,解得2π3+φ=π2+k π(k ∈Z),即φ=-π6+k π(k ∈Z). 因为-π2<φ<π2,所以k=0,φ=-π6.69.(2017·北京·文T9)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β= 【答案】13【解析】由角α与角β的终边关于y 轴对称,得α+β=2k π+π,k ∈Z,即β=2k π+π-α,k ∈Z,故sinβ=sin(2k π+π-α)=sin α=13.70.(2017·全国1·文T15)已知α∈(0,π2),tan α=2,则cos (α-π4)=__________.【答案】3√1010【解析】由tan α=2,得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈(0,π2),所以cos α=√55,sin α=2√55.因为cos (α-π4)=cos αcos π4+sin αsin π4,所以cos (α-π4)=√55×√22+2√55×√22=3√1010.71.(2017·北京·理T12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________________. 【答案】-79【解析】由角α与角β的终边关于y 轴对称可得β=(2k+1)π-α,k ∈Z,则cos(α-β)=cos[2α-(2k+1)π]=-cos 2α=2sin 2α-1=2×(13)2-1=-79.72.(2017·江苏·T5)若tan (α-π4)=16,则tan α=________.【答案】75【解析】因为tan (α-π4)=tanα-tan π41+tanα·tan π4=tanα-11+tanα=16,所以tan α=75.73.(2017·全国2·理T 14)函数f(x)=sin 2x+√3cos x-34(x ∈[0,π2])的最大值是________. 【答案】1【解析】由题意可知f (x )=1-cos2x+√3cos x-34=-cos 2x+√3cos x+14=-(cosx -√32)2+1.因为x ∈[0,π2],所以cos x ∈[0,1]. 所以当cos x=√32时,函数f (x )取得最大值1.74.(2017·全国2·文T 13)函数f(x)=2cos x+sin x 的最大值为 . 【答案】√5【解析】因为f (x )=2cos x+sin x=√5sin(x+φ)(其中tan φ=2),所以f (x )的最大值为√5. 75.(2016·全国1·文T14)已知θ是第四象限角,且sin (θ+π4)=35,则tan (θ-π4)= . 【答案】-43【解析】∵sin (θ+π4)=35,∴cos (θ-π4)=cos [(θ+π4)-π2]=35.又θ是第四象限角,∴θ-π4是第三或第四象限角.∴sin (θ-π4)=-45.∴tan (θ-π4)=-43.76.(2016·四川·文T 11)sin 750°= . 【答案】12【解析】sin 750°=sin(720°+30°)=sin 30°=12. 77.(2016·四川·理T11)cos 2π8-sin 2π8=_________. 【答案】√22【解析】cos 2π8-sin 2π8=cos π4=√22.78.(2016·浙江·T10)已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=√2,b= . 【答案】1【解析】因为2cos 2x+sin 2x=1+cos 2x+sin 2x=√2sin (2x +π4)+1,所以A=√2,b=1.79.(2016·全国3·理T 14)函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移_______个单位长度得到. 【答案】2π3【解析】因为y=sin x+√3cos x=2sin (x +π3),y=sin x-√3cos x=2sin (x-π3)=2sin[(x-2π3)+π3],所以函数y=sin x-√3cos x 的图象可由函数y=sin x+√3cos x 的图象至少向右平移2π3个单位长度得到.80.(2015·江苏·理T8)已知tan α=-2,tan(α+β)=17,则tan β的值为 . 【答案】3【解析】tan β=tan[(α+β)-α]=tan (α+β)-tanα1+tanαtan (α+β)=17+21-27=3.81.(2015·四川·理T 12)sin 15°+sin 75°的值是_____________. 【答案】√62【解析】sin 15°+sin 75°=sin(45°-30°)+sin(45°+30°)=sin 45°cos 30°-cos 45°sin 30°+sin 45°cos 30°+cos 45°sin 30°=2sin 45°cos 30°=2×√22×√32=√62. 82.(2015·四川·文T13)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是 . 【答案】-1【解析】由sin α+2cos α=0,得tan α=-2.所以原式=2sinαcosα-cos 2αsin 2α+cos 2α=2tanα-1tan 2α+1=2×(-2)-1(-2)2+1=-55=-1. 83.(2015·天津·文T14)已知函数f(x)=sin ωx+cos ωx (ω>0),x ∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为 . 【答案】√π2【解析】f (x )=sin ωx+cos ωx=√2sin ωx+π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z,所以ω2=π4+2k π,k ∈Z . 又ω-(-ω)≤2πω2,即ω2≤π2,所以ω=√π2.84.(2015·湖南·文T15)已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图象的交点中,距离最短的两个交点的距离为2√3,则ω=____________. 【答案】π2【解析】如图所示,在同一直角坐标系中,作出函数y=2sin ωx 与y=2cos ωx 的图象,A ,B 为符合条件的两交点.则A (π4ω,√2),B (-3π4ω,-√2), 由|AB|=2√3,得√(πω)2+(2√2)2=2√3,解得πω=2,即ω=π2.85.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为 . 【答案】1【解析】∵f (x )=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.86.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f(x)max=1.87.(2014·重庆·文T13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=______.【答案】√22【解析】本题可逆推,将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.88.(2014·全国2·理T14)函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为. 【答案】1【解析】∵f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sin φ-2sin φcos(x+φ)=sin(x+φ)cosφ-cos(x+φ)sin φ=sin[(x+φ)-φ]=sin x.∴f(x)max=1.89.(2014·全国2·文T14)函数f(x)=sin(x+φ)-2sin φcos x的最大值为. 【答案】1【解析】∵f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x=sin x cos φ-cos x sin φ=sin(x-φ),∴f (x )max =1.90.(2013·全国2·理T15)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 【答案】-√105【解析】由tan (θ+π4)=1+tanθ1-tanθ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-3√1010,sin θ=√1010,sin θ+cos θ=-√105.91.(2013·全国2·文T 16)函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin (2x +π3)的图象重合,则φ=_________. 【答案】A【解析】由降幂公式变形,可得cos 2(α+π4)=1+cos (2α+π2)2=1-sin2α2=1-232=16.92.(2013·全国1·理T 15文T 16)设当x=θ时,函数f(x)=sin x-2cos x 取得最大值,则cos θ= . 【答案】−2√55【解析】∵f (x )=sin x-2cos x=√5sin(x-φ), 其中sin φ=2√55,cos φ=√55.当x-φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=cos (π2+φ)=-sin φ=-2√55. 93.(2011·江西·理T14)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 【答案】-8【解析】∵sin θ=-2√55<0及P (4,y )是角θ终边上一点,∴θ为第四象限角.又由三角函数的定义得√4+y 2=-2√55,且y<0,∴y=-8(合题意),y=8(舍去).故y=-8.94.(2019·浙江·T18)设函数f(x)=sin x,x ∈R. (1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值; (2)求函数y=f x+π122+f x+π42的值域.【解析】(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x 都有sin(x+θ)=sin(-x+θ),。
三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。
历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
2024年高考数学真题分类汇编05:三角函数与解三角形

解法二:令 h x f (x) g x , x 1,1 ,可知 h x 为偶函数,根据偶函数的对称性可
知 h x 的零点只能为 0,即可得 a 2 ,并代入检验即可. 【解析】解法一:令 f (x) g x ,即 a(x 1)2 1 cos x 2ax ,可得 ax2 a 1 cos x , 令 F x ax2 a 1,G x cos x ,
三角函数与解三角形
一、单选题
1.(2024·全国)已知 cos( ) m, tan tan 2 ,则 cos( ) ( )
A. 3m
B. m 3
C.
m 3
D. 3m
2.(2024·全国)当
xÎ
[0, 2 ] 时,曲线
y
sin
x
与
y
2
sin
3x
6
的交点个数为(
)
A.3
B.4
C.6
的最小正周期为
π
.则函数在
π 12
,
π 6
的最小值是( )
A. 3
2
B. 3 2
C.0
D. 3 2
9.(2024·上海)下列函数 f x 的最小正周期是 2π 的是( )
A. sinx cosx C. sin2x cos2x
B. sinxcosx D. sin2x cos2x
二、多选题
y
f
x 在 0,1 处的切线与两坐标轴围
成的三角形的面积为( )
A. 1 6
B.
1 3
C.
1 2
D.
2 3
7.(2024·北京)已知fxFra biblioteksinx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、三角函数(一)填空题1、(2008江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=2、(2009江苏卷4)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= . 【解析】 考查三角函数的周期知识。
32T π=,23T π=,所以3ω=3、(2010江苏卷10)定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
【解析】考查三角函数的图象、数形结合思想。
线段P 1P 2的长即为sinx 的值, 且其中的x 满足6cosx=5tanx ,解得sinx=23。
线段P 1P 2的长为234、(2010江苏卷13)在锐角三角形ABC ,A 、B 、C 的对边分别为a 、b 、c ,6cos baC ab+=,则tan tan tan tan C CA B+=_________。
【解析】考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。
一题多解。
(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性。
当A=B 或a=b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,2tan 2C =, 1tan tan 2tan 2A B C===,tan tan tan tan C CA B+= 4。
(方法二)226cos 6cos b a C ab C a b a b +=⇒=+,2222222236,22a b c c ab a b a b ab +-⋅=++=2tan tan sin cos sin sin cos sin sin()1sin tan tan cos sin sin cos sin sin cos sin sin C C C B A B A C A B CA B C A B C A B C A B+++=⋅=⋅=⋅5、(2011江苏卷7)已知,2)4tan(=+πx 则xx2tan tan 的值为__________.解析】221tan 1tan tan 1tan 4tan()2,tan ,2tan 41tan 3tan 2291tan x x x x x x x x x xπ++==∴=∴=-(-)==-. 本题主要考查三角函数的概念,同角三角函数的基本关系式,正弦余弦函数的诱导公式,两角和与差的正弦余弦正切,二倍角的正弦余弦正切及其运用,中档题.6、(2011江苏卷9)函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f 【解析】由图可知:72,,2,41234T A πππω==-== 7322,2,1223k k πππϕπϕπ⨯+=+=+ 6(0)2sin(2)3f k ππ=+= 由图知:6(0)f =本题主要考查正弦余弦正切函数的图像与性质,sin()y A x ωϕ=+的图像与性质以及诱导公式,数形结合思想,中档题. 7(2013江苏卷1)函数)42sin(3π+=x y 的最小正周期为 。
答案:1.π8(2013江苏卷11) 设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(πα+的值为 .【解析】根据4cos 65απ⎛⎫+= ⎪⎝⎭,2571251621)6(cos 2)32cos(2=-⨯=-+=+παπα, 因为0)32cos( πα+,所以 25242571)32sin(2=⎪⎭⎫⎝⎛-=+πα,因为502174sin)32cos(4cos)32sin(]4)32sin[()122sin(=+-+=-+=+ππαππαππαπα. 【点评】重点考查两角和与差的三角公式、角的灵活拆分、二倍角公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增根情况.本题属于中档题,运算量较大,难度稍高. (二)解答题1、(2008江苏卷15)如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为225,105. (Ⅰ)求tan(αβ+)的值;(Ⅱ)求2αβ+的值.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式. 由条件的225cos ,cos 105αβ==,因为α,β为锐角,所以sin α=725,sin 105β= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π2、(2009江苏卷15)(本小题满分14分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值; (2)求||b c +的最大值; (3)若tan tan 16αβ=,求证:a ∥b .【解析】 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。
满分14分。
3、(2010江苏卷17)(本小题满分14分)某兴趣小组测量电视塔AE 的高度H(单位:m ),如示意图,垂直放置的标杆BC 的高度h=4m ,仰角∠ABE=α,∠ADE=β。
(1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,请据此算出H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度。
若电视塔的实际高度为125m ,试问d 为多少时,α-β最大?【解析】本题主要考查解三角形的知识、两角差的正切及不等式的应用。
(1)tan tan H H AD AD ββ=⇒=,同理:tan HAB α=,tan h BD β=。
AD —AB=DB ,故得tan tan tan H H h βαβ-=,解得:tan 4 1.24124tan tan 1.24 1.20h H αβα⨯===--。
因此,算出的电视塔的高度H 是124m 。
(2)由题设知d AB =,得tan ,tan H H h H hd AD DB d αβ-====, 2tan tan tan()()1tan tan ()1H H h hd h d d H H h H H h d H H h d d d dαβαβαβ----====--+⋅+-+⋅+ ()2()H H h d H H h d-+≥-,(当且仅当()125121555d H H h =-=⨯=时,取等号) 故当555d =时,tan()αβ-最大。
因为02πβα<<<,则02παβ<-<,所以当555d =时,α-β最大。
故所求的d 是555m 。
4、(2010江苏卷23)(本小题满分10分) 已知△ABC 的三边长都是有理数。
(1)求证cosA 是有理数;(2)求证:对任意正整数n ,cosnA 是有理数。
【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。
(方法一)(1)证明:设三边长分别为,,a b c ,222cos 2b c a A bc +-=,∵,,a b c 是有理数,222b c a +-是有理数,分母2bc 为正有理数,又有理数集对于除法的具有封闭性,∴2222b c a bc+-必为有理数,∴cosA 是有理数。
(2)①当1n =时,显然cosA 是有理数;当2n =时,∵2cos22cos 1A A =-,因为cosA 是有理数, ∴cos2A 也是有理数; ②假设当(2)n k k ≤≥时,结论成立,即coskA 、cos(1)k A -均是有理数。
当1n k =+时,cos(1)cos cos sin sin k A kA A kA A +=-,1cos(1)cos cos [cos()cos()]2k A kA A kA A kA A +=---+,11cos(1)cos cos cos(1)cos(1)22k A kA A k A k A +=--++,解得:cos(1)2cos cos cos(1)k A kA A k A +=--∵cosA ,cos kA ,cos(1)k A -均是有理数,∴2cos cos cos(1)kA A k A --是有理数, ∴cos(1)k A +是有理数。
即当1n k =+时,结论成立。
综上所述,对于任意正整数n ,cosnA 是有理数。
(方法二)证明:(1)AB 、BC 、AC 为有理数及余弦定理知222cos 2AB AC BC A AB AC+-=⋅有理数。
(2)用数学归纳法证明cosnA 和sin sin A nA ⋅都是有理数。
①当1n =时,由(1)知cos A 是有理数,从而有2sin sin 1cos A A A ⋅=-也是有理数。
②假设当(1)n k k =≥时,cos kA 和sin sin A kA ⋅都是有理数。
当1n k =+时,由cos(1)cos cos sin sin k A A kA A kA +=⋅-⋅,sin sin(1)sin (sin cos cos sin )(sin sin )cos (sin sin )cos A k A A A kA A kA A A kA A kA A ⋅+=⋅⋅+⋅=⋅⋅+⋅⋅,及①和归纳假设,知cos(1)k A +和sin sin(1)A k A ⋅+都是有理数。
即当1n k =+时,结论成立。
综合①、②可知,对任意正整数n ,cosnA 是有理数。
5、(2011江苏卷15).在△ABC 中,角A 、B 、C 所对应的边为c b a ,,(1)若,cos 2)6sin(A A =+π求A 的值;(2)若c b A 3,31cos ==,求C sin 的值. 【解析】本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。