立体几何证明方法汇总

合集下载

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。

平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。

在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。

本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。

一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。

要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。

通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。

2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。

这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。

3. 平行线的性质:在平面几何中,平行线具有很多性质。

常见的平行线定理包括等角定理、同位角定理、内错角定理等。

通过运用这些性质,可以证明两条直线平行。

二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。

根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。

2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。

这一方法常用于证明两条直线垂直的情况。

通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。

3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。

两条直线垂直时,其错角是互相垂直的。

通过构建直线的错角,可以证明所求的两条直线垂直关系。

三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。

通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。

2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。

立体几何所有的定理大总结(绝对全)

立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。

2.画法:借助辅助平⾯。

1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。

2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。

设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。

1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。

2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。

(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。

(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。

(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。

(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。

1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。

2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

高考指南立体几何垂直证明的六大绝招秒懂

高考指南立体几何垂直证明的六大绝招秒懂

高考指南立体几何垂直证明的六大绝招秒懂!类型一AD⊥SC,求证:AD⊥面SBC证明:∵SA⊥面ABC ∴SA⊥BC又∠ACB=90°∴AC⊥BC又AC,SA⊆面SAC ∴BC ⊥面SAC∴BC⊥AD又AD⊥SC且BC,SC⊆面SBC∴AD⊥面SBC变式:如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,求证:AD⊥AC类型二利用等腰三角形中线证垂直例题:在三棱锥P-ABC中,AC=BC,AP=BP,求证PC⊥AB证明:取AB的中点M,连接PM,CM∵AC=BC,M是AB的中点,∴AB⊥CM∵AP=BP,M是AB的中点,∴AB⊥PM∴AB⊥面PCM∴AB⊥PC变式:四棱锥P-ABCD,底面ABCD是正方形,PA=AD,求证面PAD⊥面PCD类型三利用勾股定理逆定理证垂直例题:如图,四棱锥P-ABCD的底面是边成为3的正方形,PA⊥CD,PA=4,PD=5,求证:PA⊥面ABCD证明:∵PA=4,AB=3,PD=5∴PA2+AB2=PD2,∴三角形PAD是直角三角形,∴PA⊥AD又PA ⊥CD,∴PA⊥面ABCD变式:如果,在三棱台ABC-DEF中,平面BDEF⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,求证:BF⊥面ACFD类型四利用三角形全等证垂直例题:如图,三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°,求证:AB⊥PC证明:取AB的中点M,连接CM,∵△PAB是等边三角形,∴PB=PA又PC=PC,∠PAC=∠PBC=90°∴△PBC≌△PAC,∴BC=AC∴△ACB是等腰三角形,M是AB的中点,∴CM⊥AB又在等边△PAB中,M是AB的中点,∴PM⊥AB∴AB⊥面PMC∴AB⊥PC变式:如图,在以A、B、C、D、E、F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°,求证:CD⊥BF类型五利用平行关系证明垂直例题:如图四棱锥P-ABCD,底面是正方形,PA⊥底面ABCD,∠PDA=45°,E是棱AB的中点,求证:面PCE⊥面PCD证明:分别做PC,PD的中点M,N两点,连接EM,MN,NA∵MN为△PCD的中位线,∴MN∥CD且MN=1/2CD又∵E是AB的中点,∴AE∥CD且AE=1/2CD ∴四边形AEMN是平行四边形,则EM∥AN,∵PA⊥面ABCD,∴PA⊥AD,且∠PDA=45°,∴△PAD 是等腰直角三角形又N是PD中点,∴AN⊥PD∵四边ABCD是正方形,∴CD⊥AD,又PA⊥CD,∴CD⊥面PAD,∴CD⊥AN,又上面已求PD⊥AN,∴AN⊥面PCD又∵EM∥AN,∴EM⊥面PCD∵EM ⊂面PEC,∴面PEC⊥面PCD变式:如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,证明CD⊥面A1OC.类型六梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD,证明:PA⊥BD。

立体几何证明的向量公式和定理证明

立体几何证明的向量公式和定理证明

立体几何证明的向量公式和定理证明立体几何中的向量公式和定理证明非常多,下面仅列举其中几个常见的向量公式和定理的证明。

1.向量叉乘的模长公式证明:对于两个三维向量A=(a1,a2,a3)和B=(b1,b2,b3),它们的叉乘C=A×B定义为C=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。

根据向量的定义,我们有C,^2=(a2b3-a3b2)^2+(a3b1-a1b3)^2+(a1b2-a2b1)^2=(a2^2b3^2-2a2a3b2b3+a3^2b2^2)+(a3^2b1^2-2a1a3b1b3+a1^2b3^2)+(a1^2b2^2-2a1a2b1b2+a2^2b1^2)=a2^2b3^2+a3^2b1^2+a1^2b2^2-2a2a3b2b3-2a1a3b1b3-2a1a2b1b2+a3^2b2^2+a1^2b3^2+a2^2b1^2-2a1a2b1b2-2a2a3b2b3+a1^2b2^2=a1^2(b2^2+b3^2)+a2^2(b1^2+b3^2)+a3^2(b1^2+b2^2)-2(a1a2b1b2+a2a3b2b3+a1a3b1b3)=a1^2,B,^2+a2^2,B,^2+a3^2,B,^2-2(a1a2b1b2+a2a3b2b3+a1a3b1b3)=(a1^2+a2^2+a3^2),B,^2=,A,^2,B,^2因此,可以得出,C, = ,A × B, = ,A,B,sinθ,其中θ为A和B的夹角。

2.向量线性组合的余子定理证明:设有n个非零向量v1, v2, ..., vn,如果它们的线性组合为零向量,即存在一组不全为零的实数c1, c2, ..., cn,使得c1v1 + c2v2 + ...+ cnvn = 0,则对于其中任意一个向量,它的余子向量与其余子式满足如下关系:v1 × (v2 × ... × vn) = (v1 · vn) (v2 × ... × vn) -(v1 · vn-1)(v2 × ... × vn-1)vn为了证明上述关系,我们可以使用向量叉乘的定义进行展开计算。

立体几何基本知识总结和线面垂直平行六种关系的证明方法

立体几何基本知识总结和线面垂直平行六种关系的证明方法

立体几何基本知识总结I. 基础知识要点 一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[]180,0∈θ)(异面直线所成角(] 90,0∈θ)(斜线与平面成角()90,0∈θ)(直线与平面所成角[]90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性12方向相同12方向不相同证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都POAaPαβθM AB O取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.图1θθ1θ2图2⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. l ab c FEH GBCDAO'⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.构造以半径为斜边的直角三角形线面垂直平行六种关系的证明方法总结一、线线平行的证明方法:1、利用平行四边形。

高中数学教案立体几何的证明方法

高中数学教案立体几何的证明方法

高中数学教案立体几何的证明方法高中数学教案:立体几何的证明方法一、引言立体几何是数学中一个重要而有趣的分支,它研究的是在三维空间中的图形和空间关系。

在学习立体几何时,我们常常需要运用证明方法来推导和验证几何定理。

本文将介绍高中数学教案中常用的立体几何的证明方法,帮助学生更好地理解和应用这些方法。

二、平行线与平面的关系证明1. 定理1:同一平面内,如果一条直线与两条平行线相交,则这两条平行线互相平行。

证明方法:利用反证法,假设两条平行线不互相平行,通过构造辅助线,找到矛盾之处,从而得出结论。

2. 定理2:如果一条直线与两个平行的平面相交,则这两个平面互相平行。

证明方法:同样采用反证法,通过构造辅助平面和辅助线,推导出矛盾现象,从而证明两个平面是相互平行的。

三、平面与平面的关系证明1. 定理3:如果两个平面相交于一条直线,则它们相交于一点,或者它们平行。

证明方法:可以采用平行线与平面的关系证明思路,通过构造直线和平行线,运用之前的证明方法来证明这个定理。

2. 定理4:如果两个平面平行于同一个平面,则这两个平面是平行的。

证明方法:采用反证法,通过构造辅助线、辅助平面和平面间的距离关系,证明两个平面是平行的。

四、立体几何中的等腰三角形证明1. 定理5:在三棱柱中,底面的对角线互相平分。

证明方法:运用向量的知识,通过向量的投影和平分线的特性,证明底面对角线互相平分。

2. 定理6:在正方体中,对角线互相垂直。

证明方法:采用向量的证明方法,通过向量积的性质,证明对角线是垂直的。

五、体积和表面积的证明方法1. 定理7:在立方体中,体积与边长的关系。

证明方法:通过数学归纳法,证明立方体的体积与边长的立方成正比。

2. 定理8:在正方体中,表面积与边长的关系。

证明方法:采用重叠面积的思想,将正方体展开成平面图形,通过计算各个面的面积,证明表面积与边长的平方成正比。

六、结论立体几何的证明方法是数学学习中不可或缺的一部分。

立体几何常见证明方法

立体几何常见证明方法

立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。

2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。

3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。

4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。

二、线面平行的证明方法1、根据线面平行的定义,证直线与平面没有公共点。

2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。

(用相似三角形或平行四边形)3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。

三、面面平行的证明方法1、根据定义,若两平面没有公共点,则两平面平行。

2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。

或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。

3、垂直同一直线的两平面平行。

4、平行同一平面的两平面平行。

四、两直线垂直的证明方法1、根据定义,证明两直线所成的角为90°2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).五、线面垂直的证明方法1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.六、面面垂直的证明方法1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。

立体几何证明定理及性质总结

立体几何证明定理及性质总结

一.直线和平面的三种位置关系:1。

线面平行2. 线面相交l符号表示:符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

方法二:用面面平行实现.mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβαmlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现.αββα////ll⇒⎭⎬⎫⊂3.面面平行:方法一:用线线平行实现. 方法二:用线面平行实现βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

方法二:用面面垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥llmlm,2。

面面垂直:l方法一:用线面垂直实现。

方法二:计算所成二面角为直角.βαβα⊥⇒⎭⎬⎫⊂⊥l l3. 线线垂直:方法一:用线面垂直实现.m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理.PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

① 中位线定理例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE的中点. (1)求证:GH ∥平面CDE ;(2)若2,CD DB ==,求四棱锥F-ABCD 的体积.练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。

求证:AC 1∥平面CDB 1;2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。

(1)求证://1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积.3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。

(1)证明://PA BDE 平面;(2)求PAD ∆以PA 为轴旋转所围成的几何体体积。

A 1C _ H_ G_ D_ A_ B_ CEFGPABCDFEA B C D EF例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形)练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。

求证:AF ∥平面PCE ;②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。

求证://PAD MN 平面PABCDMN③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ;的交点.求证://1O C 面④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11AB D .D 1C 1B 1A 1A BCDEF③比例关系例题3、P 是平行四边形ABCD 平面外一点,M 、N 分别是PB 、BC 上的点,且NCBN PM BM =,求证:MN//平面PCD(利用比例关系)练习:如图,四边形ABCD 为正方形,⊥EA 平面ABCD ,//EF AB ,=4,=2,=1AB AE EF .(Ⅱ)若点M 在线段AC 上,且满足14CM CA =, 求证://EM 平面FBC ;④面面平行-线面平行例题4、如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=︒90,AD=3,EF=2。

(Ⅰ)求证:平面ABE//平面CDF(II )求证:AE//平面DCF ;(利用面面平行-线面平行)练习:1、如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AB ==,E ,F ,G 分别为PC 、PD 、BC 的中点.(1)求证:;EFG PA 面//;ABE F M1A 1C 1B EFGACBEBACNDFM(2)求三棱锥P EFG -的体积.2、如图,在直三棱柱111ABC A B C -中,090ACB ∠=,,,E F G 分别是11,,AA AC BB 的中点,且1CG C G ⊥.(Ⅰ)求证://CG BEF 平面;3、如图所示,正方形ADEF 与梯形ABCD 所在的平面互相垂直, ,//,22AD CD AB CD CD AB AD ⊥==. 在EC 上找一点M ,使得//BM 平面ADEF ,请确定M 点的位置,并给出证明.4、(2012山东文)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .例题: 如图,已知四棱锥ABCD P -。

若底面ABCD 为平行四 边形,E 为PC 的中点,在DE 上取点F ,过AP和点F 的平面与 平面BDE 的交线为FG ,求证:FG AP //。

证明:连AC 与BD ,设交点为O ,连OE 。

练习:1、如图,在四棱锥P ABCD -中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,60BAD ∠=︒,N 是PB 中点,过A 、N 、D 三点的平面交PC 于M .求证://AD MN ;2、(2012浙江高考)如图,在侧棱锥垂直底面的四棱锥ABCD-A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB=2。

AD=2,BC=4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点。

(1)证明:EF ∥A 1D 1;DABC P MN3.如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.(1)求证:平面AEC⊥平面ABE;(面面垂直性质)(2)点F在BE上,若DE//平面ACF,求BEBF的值。

(线面平行的性质21)例、如图,在正方体1111ABCD A B C D-中,E、F、G分别是AB、AD、11C D的中点.求证:平面1D EF∥平面BDG.练习:如图所示,在正方体ABCD-1111DCBA中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.例题:已知在正方体ABCD-1111DCBA中,E,F分别是1111ADDC和上的点,点P在正方体外,平面PEF与正方体相交于AC,求证:ABCD//平面EFA1B1C1D1ACBPDPC①菱形的对角线互相垂直:例题。

已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于M ,GC 垂直于ABCD 所在平面。

求证:EF⊥平面GMC .练习:如图ABCD-1111D C B A 是底面为正方形的长方体,求证:(1)BD ⊥平面A ACC 1 (2)1AC BD ⊥②等腰三角形底边的中线垂直底边例1、 如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥;ABCDABC D练习:1、在三棱锥A-BCD 中,AB=AC,BD=DC,求证:AD BC ⊥③圆的直径所对的圆周角为直角例题3、如图AB 是圆O 的直径,C 是圆周上异于A 、B 的任意一点,⊥PA 平面ABC ,(1)图中共有多少个直角三角形?(2)若PC AH ⊥,且AH 与PC 交于H ,求证:AH ⊥平面PBC.④利用勾股定理例4、在长方体1111D C B A ABCD -中,底面ABCD 是边长为1的正方形,侧棱21=AA ,E 是侧棱1BB 的中点。

求证:AE ⊥平面11A D E ;证明:1111D C B A ABCD -Θ为长方体,练习:如图,四棱锥P-ABCD 的底面是边长为1的正方形,2,1,==⊥PD PA CD PA ,求证:(1)⊥PA 平面ABCD(2)求四棱锥P-ABCD 的体积.D 1C 1B 1A EDCBABCDPA PACBHO⑤间接法,用线面垂直的性质定理(b l b b l ⊥⇒⊂⊥α,)例题:如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,︒=∠60DAB ,ABCD PD AD AB 底面⊥=,2,证明:BD PA ⊥;练习1:如图,在直三棱柱111ABC A B C -中,AC =3, BC =4,AB =5,14AA =,点D 是AB 的中点。

(Ⅰ)求证:1AC BC ⊥;练习2: 如图,四边形ABCD 为矩形,⊥BC 平面ABE ,F 为CE 上的点,且⊥BF 平面ACE . 求证:BE AE ⊥; 证明:因为ABE BC 平面⊥,ABE AE 平面⊂,例1如图,AB 是⊙O 的直径,PA 垂直⊙O 所在的平面,C 是圆上不同于A ,B 的任意一点,求证:平面PAC ⊥平面PBC .练习1:如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥AB CDE FaBD Ap2、如图,在直三棱柱111ABC A B C-中,E、F分别是1A B、1A C的中点,点D在11B C上,11A DB C⊥。

求证:(1)EF∥平面ABC;(2)平面1A FD⊥平面11BB C C.3、如图, ABCD是正方形,SA⊥平面ABCD,BK⊥SC于K,连结DK,求证(1)平面SBC⊥平面KBD例1:如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD, O为AD中点.,求证:PO⊥平面ABCD;例2:如图,在四棱锥P ABCD-中,底面ABCD是060DAB∠=且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面PAD;(2)求证:AD PB⊥;练习:1、如图AB是圆O的直径,C是圆周上异于A、B的任意一点,⊥PA平面ABC,(1)图中共有多少个直角三角形?(2)若PCAH⊥,且AH与PC交于H,求证:平面PAC⊥平面PBC.(3) AH⊥平面PBCHOsACKDF GB DE A C2、在四棱锥ABCD P -中,平面PAD ⊥平面ABCD , AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点. 求证:平面BEF ⊥平面PAD3、如图,正方形ABCD 所在平面与以AB 为直径的半圆O 所在平面ABEF 互相垂直,P 为半圆周上异于A ,B 两点的任一点,求证:○1直线AP ⊥平面PBC 。

②平面PBC ⊥平面APC4、如图,三角形ABC 中,AC=BC=AB 22,ABED 是边长为a 的正方形,平面ABED ⊥底面ABC ,且,若G 、F 分别是EC 、BD 的中点,(Ⅰ)求证:GF//底面ABC ; (Ⅱ)求几何体ADEBC 的体积V 。

5、如图,AB C D ,,,为空间四点.在ABC △中, 22AB AC BC ===,.等边三角形ADB 以AB 为轴运动.(Ⅰ)当平面ADB ⊥平面ABC 时,求CD ;DA BFEADCA 1B 1C 1D 1AP五、体积问题1. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。

(1)求证://1BD 平面DE C 1; (2)求三棱锥BC D D 1-的体积.练习1:三棱锥P ABC -中,PAC ∆和PBC ∆的等边三角形,2AB =,O D 、分别是AB PB、的中点.(1)求证://OD 平面PAC (2)求证:平面PAB ⊥平面ABC ; (3)求三棱锥A PBC -的体积.2、如图,长方体1111D C B A ABCD -中,11==AA AB ,2=AD ,E 是BC的中点.(I)求证:平面AE A 1⊥平面DE D 1; (II)求三棱锥DE A A 1-的体积.A 1C3、如图,在四棱锥P-ABCD 中,,垂直于底面ABCD PD 底面ABCD 是直角梯形, ,90,//o BAD AB DC =∠且4222====PD DC AD AB (单位:cm ),E为PA的中点。

相关文档
最新文档