线性代数习题 [第一章]行列式
线性代数1-5章习题

线性代数习题集皖西学院金数学院编制第一章 行 列 式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( 1 )2. 213210124121012342=-.( 2 ) 3. 13434121.42042=-( 1) 4. 123213123213123213.a a a b b b b b b a a a c c c c c c =( 1 ) 5. 123123123123123123.a a a a a a b b b b b b c c c c c c ---------=---( 1 ) 6. n 阶行列式n D 中元素ij a 的代数余子式ij A 为1n -阶行列式. ( 1 )7. 312143245328836256=.( 2 ) 8. 111213212223313233a a a a a a a a a 122r r + 111213211122122313313233222+++a a a a a a a a a a a a ( 2 ) 9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( 1 )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. (1 ) 二、选择题1.若12532453r s a a a a a 是5阶行列式中带正号的一项,则,r s 的值为( B ). A.1,1r s == B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( C )A. 4312B. 51432C. 45312D. 6543213.若行列式21120312x--=-, 则x =( C ). A.–2 B. 2 C. -1 D. 14.行列式0000000000a b c d e f的值等于(B ).A. abcdefB. abdf -C. abdfD. cdf5.设abc ≠0,则三阶行列式000dc b a的值是( C ). A .a B .-b C .0 D .abc 6.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a++=( D ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( D )..0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠8. 215152521112223030223-=---是按( B )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212n i i in n n nna a a D a a a a a a =L L LL L L L LL L L L L L L L L则下式中( B )是正确的. 1122.0i i i i in in A a A a A a A +++=L 1122.0i j i j ni nj B a A a A a A +++=L 1122.i i i i in ni C a A a A a A D +++=L 1122.i j i j ni nj D D a A a A a A =+++L10. 349571214的23a 的代数余子式23A 的值为( C ). A. 3 B. -3 C. 5 D. -5 三、填空题1. 排列36715284的逆序数是____13____.2. 四阶行列式中的一项14322341a a a a 应取的符号是____正___. 3.若,0211=k 则k=_1/2__________. 4.行列式1694432111中32a 元素的代数余子式A 32=____-2________.5.598413111=_____5_____. 6.行列式0001001010000100=__-1____.7.行列式004003002001000=______24____. 8.非零元素只有1n -行的n 阶行列式的值等于_____0_____.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=____16______. 10. n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =____(1)i j ijM +-______,nD 按第j列展开的公式是n D =____1122j j j j nj nj a A a A a A +++L ______.第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( 1 )2.若,AB O =且,A O ≠则.=B O ( 2 )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( 2 )4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( 1 ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( 2 )6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( 2 )7. 42042069126232110110⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( 2 )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( 1 )9.设,A B 为同阶方阵,则 A B A B +=+. ( 2 )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( 1 ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( D )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有 222.(+)+2+B A B A AB B = .D AB A B =2.若,s n n l A B ⨯⨯,则下列运算有意义的是( A )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( C )..=A m t .=B m s .=C n s .=D n t4.矩阵1111A --⎛⎫= ⎪⎝⎭的伴随矩阵*=A ( D )A .⎪⎪⎭⎫ ⎝⎛--1111B .⎪⎪⎭⎫ ⎝⎛--1111C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.设2阶矩阵a b A c d ⎛⎫=⎪⎝⎭,则*=A ( A )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫ ⎝⎛--a b c dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 7. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( B ). A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫ ⎝⎛3172 C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛21738. n 阶矩阵A 行列式为,A 则kA 的行列式为( B ).A. kA B. n k A C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有(C )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( C )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题1.设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100021013B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则2+=A B _____320252027⎛⎫⎪⎪ ⎪⎝⎭________2.设A=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B=,010201⎢⎣⎡⎥⎦⎤则AB =___326010142⎛⎫⎪⎪ ⎪⎝⎭________. 3.设矩阵A=⎪⎪⎭⎫ ⎝⎛21,B=⎪⎪⎭⎫ ⎝⎛31,则A T B =______7______. 4.⎪⎪⎪⎭⎫⎝⎛321(1,2,3)=______ 123246369⎛⎫⎪⎪ ⎪⎝⎭____.5.n 1111⎪⎪⎭⎫⎝⎛=___11112222n n n n ----⎛⎫⎪⎝⎭_______. 6.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =________ 2554⎛⎫⎪⎝⎭______________. 7.设2阶矩阵A =⎪⎪⎭⎫⎝⎛3202,则A *A =_____6666⎛⎫ ⎪⎝⎭________. 8.设矩阵A=⎪⎭⎫⎝⎛4321,则行列式|A 2|=_____4_____. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc≠0,则A -1=____ 1d b ad bc c a -⎛⎫⎪--⎝⎭______ . 10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭ _____ 11.--⎛⎫⎪⎝⎭O B AO __________.第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( B )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是( D )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则( C )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( B ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是(D )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解 (D) 若AX b =有无穷多解 ,则0AX =有非零解6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( C )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。
线性代数习题集(带答案)

第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是 5 阶偶排列的是( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ).n!(A) k (B) n k (C) k2n(n 1) (D) k23. n 阶行列式的展开式中含a11a12 的项共有( )项.(A) 0 (B) n 2 (C) (n 2)! (D) (n 1)!0 0 0 14.11( ).1 0 0 0(A) 0 (B) 1 (C) 1 (D) 20 0 1 05.011( ).1 0 0 0(A) 0 (B) 1 (C) 1 (D) 22x x 1 16.在函数1 x 1 2f (x) 中3 2 x 33x 项的系数是( ).0 0 0 1(A) 0 (B) 1 (C) 1 (D) 217. 若a a a11 12 131D a a a ,则21 22 232a a a31 32 332aa13a33a11a312a122a3211D 2a a a 2a ( ).1 21 23 21 222a31(A) 4 (B) 4 (C) 2 (D) 2a a11 ,则128.若 aa a21 22 a12a11ka22ka21( ).2 (D) k2a (A)ka (B) ka (C) k a9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ).(A) 0 (B) 3 (C) 3 (D) 28 7 4 310. 若6 2 3 1D ,则D 中第一行元的代数余子式的和为( ).1 1 1 14 3 7 5(A) 1 (B) 2 (C) 3 (D) 03 04 011. 若1 1 1 1D ,则D 中第四行元的余子式的和为( ).0 1 0 05 3 2 2(A) 1 (B) 2 (C) 3 (D) 0x 1 x2kx312. k 等于下列选项中哪个值时,齐次线性方程组x1 kx2x30 有非零解.kx1 x2x3( )(A) 1 (B) 2 (C) 3 (D) 0二、填空题21.2n阶排列24 (2n)13 (2n 1) 的逆序数是.2.在六阶行列式中项a32a54a41a65a13a26 所带的符号是.3.四阶行列式中包含a22a43 且带正号的项是.2 n4.若一个n 阶行列式中至少有n 1个元素等于0 , 则这个行列式的值等于.1 1 1 05.行列式11111.0 0 1 00 1 0 00 0 2 06.行列式.0 0 0 n 1n 0 0 0a 11 a1(n1)a1n7.行列式a21a2(n1) 0 .an10 0a11a12a13a11a133a123a128.如果D a a a M21 22 23 ,则D a a 3a 3a .1 21 23 22 22a 31 a32a33a31a333a323a329.已知某5 阶行列式的值为5,将其第一行与第 5 行交换并转置,再用 2 乘所有元素,则所得的新行列式的值为.31 1 1 x 110.行列式11 x11x 1111. x 1 1 1 11 1 11 1 111.n 阶行列式.1 1 112.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.1 2 3 413.设行列式5 6 7 8D ,A4 j ( j 1,2, 3, 4) 为 D 中第四行元的代数余子式,4 3 2 18 7 6 5则4A41 3A42 2A43 A44 .a b c a14.已知c b a bD , D 中第四列元的代数余子式的和为.b ac ca cb d1 2 3 43 34 4D ,A4 j 为a4 j ( j 1,2, 3, 4) 的代数余子式,则15.设行列式 61 5 6 71 12 2A41 A ,A43 A44 .4241 3 5 2n 11 2 0 016.已知行列式D 1 0 3 0 ,D 中第一行元的代数余子式的和为1 0 0 n.kx1 2x2x317.齐次线性方程组2x1 kx20 仅有零解的充要条件是.x 1x2x3x12x2x318.若齐次线性方程组2x2 5x30有非零解,则k = .3x1 2x2kx3三、计算题b a 2a 3a c dab2b3bcd ac2c3cbd ad2d3dbc;2.xyxyxyxyxyxy1.;x a1 a2an210 1 x 1 a1 x a2an211 0 1 x 3.解方程0x 1 1 0 ;4.a1a2x an21;1 x 1 0 a1 a2a x31a 1 a2a3an115a1 1 11 a 11 15. 1 1 a 12( a j 1,j 0,1, , n);1 1 1 an1 1 1 13 1 b 1 16. 1 1 2 b 11 1 1 (n 1) b1 1 1 1 x a1a2anb 1 a1a1a1a1x a2an7. b1 b2a2a2;8.a1a2x an;b 1 b2b3ana1a2a3x2 1 0 0 01 2 x1 x x1 2x x1 n1 2 1 0 09. x2x11 22xx x2 n ; 10.0 1 2 0 0xnx1xnx21 2 xn0 0 0 2 10 0 0 1 21 a a 0 0 01 1 a a 0 011.D 0 1 1 a a 0 .0 0 1 1 a a0 0 0 1 1 a6四、证明题21 1a a 12a a21 1b b 12b b 1.设abcd 1,证明:021 1c c 12c c21 1d d 12d d .a 1b x1a x1b1c1a1b1c12. a2 bx2ax2b2c2(1 2 x ) a2b2c2.a 3b x3a x3b3c3a3b3c31 1 1 1a b c d3. 2 (b a)( c a)( d a)(c b)( d b)(d c)( a b c d)2 2 2a b c d .4 a4b4c d41 1 1a 1 a2an4.2a12a22nanai(a aj i) .i 1 1 i j nna12n2a2 nan2na1na2nna1 1 15.设a, b, c两两不等,证明 a b c 0的充要条件是 a b c 0.3 b3 c3 a7参考答案一.单项选择题A D A C C D ABCD B B二.填空题1. n ;2.“”;3. a14 a22 a31a43 ;4. 0 ;5. 0 ;6. ( 1) !n 1 n ;n( n1)7.( 1) 2 a1n a2(n1) a n1 ; 8. 3M ; 9. 160; 10. 4 x ; 11.( n 1n) ; 12. 2 ;n113. 0 ; 14.0 ;15. 12, 9; 16.n! (1 ) ; 17. k 2,3 ;18. k7k k1三.计算题3 y3 1.(a b c d)(b a)(c a)( d a)(c b)( d b)( d c) ; 2. 2(x ) ;n 13. x 2,0,1;4. (xk 1 a k )n n15. (a 1) (1 ) ;6. (2 b)(1 b) ((n 2) b) ;k a1k 0 k 0 k7.nn b a( 1) ( ) ; 8.k kn n( x a k ) (x a ) ;k k 1 k 1 k 1 n9. 1x ; 10. n 1;kk 12 a411. (1 a)(1 a ) .四. 证明题(略)8第二章矩阵一、单项选择题1. A 、B为n 阶方阵,则下列各式中成立的是( ) 。
线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
线性代数章节练习题

b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵
(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。
⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。
;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。
《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,
线性代数作业习题

第一章:行列式1、计算下列行列式1 2 2 … 2 22 2 2 … 2 22 23 … 2 2:::::2 2 2 … n-1 22 2 2 … 2 n解:首先利用每一行元素分别减去第二行元素得到:-1 0 0 02 2 2 00 0 1 00 0 0 2 00 0 0.......n-2可利用代数余子式求出:(-1)*2*(n-2)!2、计算下列行列式:|x y x+y||y x+y y||x+y y xl解:|x y x+y||y x+y y||x+y y x|=x|x+y y|+y(-1)| y y|+(x+y)| y x+y|| y x| |x+y x| |x+y y |=x(x²+xy-y²)-y(xy-xy-y²)+(x+y)(y²-x²-2xy-y²)=x(x²+xy-y²)-y(-y²)+(x+y)(-x²-2xy)=x³+x²y-xy²+y³-x³-x²y-2x²y-2xy²=y³-2x²y-3xy²=y(y²-2x²-3xy)3、计算下列行列式:1 2 -5 1-3 1 0 -62 0 -1 24 1 -7 6解:根据行(列)与行(列)之间互换,行列式值改变符号。
所以第一列与第二列互换,得出2 1 -5 11 -3 0 -60 2 -1 21 4 -7 6根据行列式倍加不变原理。
第四列乘以-2加上第一列,第四列乘以-1加上第二列,结果如下。
0 -7 9 -110 -7 7 -120 2 -1 21 4 -7 6根据行列式倍加不变原理。
第四列乘以-2加上第一列,第四列乘以-1加上第二列0 -7 9 -110 -7 7 -12- 0 2 -1 21 4 -7 6根据计算,得出= (-14)+49-62=-274、求二阶行列式1-x^2 2x----- -----1+X^2 1+X^2解:原式=([1-x²]²+4x²)/(1+x²)²=(1+x²)²/(1+x²)²=15、设A B为n阶方阵,满足ATA=AAT=E,BTB=BBT=E及|A|+|B|=0,求|A+B|解:原式=([1-x²]²+4x²)/(1+x²)²=(1+x²)²/(1+x²)²=1由已知, |A|^2=|B|^2 = 1所以|A|, |B| 等于1 或-1因为|A|+|B|=0所以|A||B|= -1所以有|A+B|= - |A||A+B||B|= - |A^T||A+B||B^T|= - |A^T AB^T+A^T BB^T|= - |B^T+A^T|= - |(A+B)^T|= - |A+B|.所以|A+B| = 0.第二章:矩阵1、已知矩阵A=[1 1 1][2 -1 0][1 0 1]B=[3 1 1][2 1 2][1 2 3 ] 求:AB解:AB=[1×3+1×2+1×1 1×1+1×1+1×2 1×1+1×2+1×32×3-1×2+0×1 2×1-1×1+0×2 2×1-1×2+0×31×3+0×2+1×1 1×1+0×2+1×2 1×1+0×2+1×3]=[6 4 6][ 4 3 4]2、设A=[2 2 3][1 -1 0][3 1 2] A*为A的伴随矩阵,求A(-1)A*解:AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4A^-1=-1/2 -1/4 3/4-1/2 -5/4 3/41 1 -1(A^-1)^2=9/8 19/16 -21/1613/8 39/16 -33/16-2 -5/2 5/2所以A^-1A* = |A| (A^-1)^2 =9/2 19/4 -21/413/2 39/4 -33/4-8 -10 103、判断关于逆矩阵(A+B)的逆等于不等于A的逆加B的逆解:一般不等于,反例:令A=B=E则(A+B)=2E,(A+B)逆=E/2而A逆+B逆=E+E=2E所以不等4、求矩阵的秩[1 3 2 a][2 -4 -1 b]其中a,b,c为任意实数解:r(A)=3因为[1 3 2][2-4-1][3-2 0]的行列式不为0,说明原矩阵有一个3阶子式不为0,秩至少是3;又因为原矩阵是3*4的矩阵,它的秩最多为3,所以答案就是35、一个方程组x+y+z=22x+y+3z=03y+4z=1求方程的解解:设A=[111213034]B=[21]A的逆阵为C=(1/7)*[5,1,-28,-4,1-6,3,1]x=C.B=1/7[817-11]第三章:向量空间1、已知α1=(1,1,2,-1)α2=(-2,1,0,0,)α3=(-1,2,0,1)又β满足3(α1-β)+2(α3+β)=5(α2+β)求β解:由题设,有3α1-3β+2α3+2β=5α2+5β3α1+2α3-5α2=6β(3,3,0,-3)+(-2,4,0,2)-(-10,5,0,0)=6β6β=(11,2,0,-1)β=(11/6,1/3,0,-1/6)2、设数域F上向量空间V的向量组{α1 , α2 , α3}线性无关,向量β1可由α1 , α2 , α3线性表示,而β2不能由α1 , α2 , α3线性表示。
线性代数练习册练习题—第1章 行列式

第1章 行列式及其应用一、填空题1.行列式1221--k k 0≠的充分必要条件是 .2.排列36715284的逆序数是 。
3.已知排列397461t s r 为奇排列,则r = , s = ,t = . 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 . 5.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = , j = .6.设行列式275620513--=D ,则第三行各余子式之和的值为 . 7.行列式=30092280923621534215 .8.行列式=1110110********* .9.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是 .10.若方程225143214343314321x x -- = 0 ,则 .11.行列式 ==2100121001210012D12. 行列式122305403-- 中元素3的代数余子式是 . 13. 设行列式4321630*********=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= . 14.已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = .15. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k .二.选择题1.若行列式x52231521- = 0,则=x ( ).(A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = ( ).(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x 根的个数是( ).(A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ). (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为( ).(A )3,2==l k ,符号为正 (B )3,2==l k ,符号为负 (C )2,3==l k ,符号为正 (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是( ).(A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于等于n 个7.如果133********21131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( ). (A )8 (B )12- (C )24- (D )24 8.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D ( ). (A )18 (B )18- (C )9- (D )27-9. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a =( ). (A )8 (B )2 (C )0 (D )6- 10.若111111111111101-------=x A ,则A 中x 的一次项系数是 ( ).(A )1 (B )1- (C )4 (D )4-11.4阶行列式443322110000000a b a b b a b a 的值等于 ( ).(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a --(C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 12.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是( ).(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----= (D )2221211a b a b x ----=,2211112b a b a x -----=13. 方程0881441221111132=--x x x的根为 ( ). (A )3,2,1 (B )2,2,1- (C )2,1,0 (D )2,1,1-14. 已知a a a a a a a a a a =333231232221131211,那么=+++323133312221232112111311222a a a a a a a a a a a a ( ). (A )a (B )a - (C)a 2 (D )a 2-15. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则 ( ).(A )0≠λ且1≠λ (B )0=λ或1=λ (C )0=λ (D )1=λ三、判断题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1—1 全排列及行列式的定义
1. 计算三阶行列式123
4
56789。
2. 写出4阶行列式中含有因子1324a a 并带正号的项。
3. 利用行列式的定义计算下列行列式:
⑴0
004003002001
0004
D
⑵0
0000000052
51
42413231
2524232221
151********a a a a a a a a a a a a a a a a D =
⑶0
10000
200
0010Λ
ΛΛΛΛΛΛn
n D n -=
4. 利用行列式的定义计算210111()0211
1
1
x
x x f x x x
-=
中34
,
x x 的系数。
习题1—2 行列式的性质
1. 计算下列各行列式的值:
⑴
2141
012112025
62
-
⑵ef
cf
bf
de cd bd
ae ac ab
---
⑶
2
2
2
2
2
2
2
2
22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a
2. 在n 阶行列式nn
n n n n a a a a a a a a a D Λ
ΛΛΛΛ2
1
222
2111211
=
中,已知),,2,1,(n j i a a ji ij Λ=-=,
证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值:
⑴x
a
a
a x a a a x
D n Λ
ΛΛΛΛ=
⑵n
n a a a D +++=
11
1
11111121
Λ
ΛΛΛΛ()120n a a a ≠L
习题1—3 行列式按行(列)展开
1. 已知ij A 是行列式1
22
30
5
4
03
--的元素ij a (3,2,1,=j i )的代数余子式,求323127A A +的
值。
2. 按第三列展开下列行列式,并计算其值:
1
1
111110101
d
c
b a ------
3. 计算下列n 阶行列式的值
⑴a
a a a
D n 0
1
0000
00
100Λ
ΛΛΛΛΛΛ=
⑵x
y
y x y x y x D n 0
0000
00
000Λ
ΛΛΛΛΛΛΛ=
4. 试用数学归纳法证明:
n n n n n n n
n a x a x a x a x a a a a x x x
D ++++=+---=
----1111
2
2
110000
0100001ΛΛ
ΛΛΛΛΛΛΛ
习题1—4 克拉默法则
1. 用克拉默法则解下列方程组:
⑴⎪⎩
⎪
⎨⎧=+-=+--=-+4452227253
2z y x z y x z y x
⑵⎪⎪⎩⎪⎪⎨⎧-=++-=+-+=---=-++8
232422383226232t z y x t z y x t z y x t z y x
2. 判断齐次线性方程组⎪⎩
⎪
⎨⎧=-+=+-=-+028*******z y x z y x z y x 是否仅有零解
3. 问λ取何值时,齐次线性方程组⎪⎩
⎪
⎨⎧=-++=+-+=+--0)1(0)3(2042)1(z y x z y x z y x λλλ有非零解
4. λ取何值时,齐次线性方程组⎪⎩
⎪
⎨⎧=+-=-+=-+0200z y x z y x z y x λλ仅有零解。