云南省楚雄彝族自治州2021版中考数学试卷A卷

合集下载

云南省楚雄彝族自治州2021年中考数学一模试卷A卷

云南省楚雄彝族自治州2021年中考数学一模试卷A卷

云南省楚雄彝族自治州2021年中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017九下·萧山月考) 实数的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间2. (2分)(2017·海淀模拟) 2016年10月1日,约110 000名群众观看了天安门广场的升旗仪式.将110 000用科学记数法表示应为()A . 11×104B . 1.1×105C . 1.1×104D . 0.11×1063. (2分)(2019·南充) 下列各式计算正确的是()A . x+x2=x3B .C .D .4. (2分)在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A . (﹣2, 1)B . (1,﹣2)C . (2,-1)D . (-1,2)5. (2分) (2017八下·胶州期末) 下列四个图形中,是中心对称图形的是()A .B .C .D .6. (2分) (2020八上·息县期末) 如图,以的顶点为圆心,适当长为半径画弧,分别交于点,交于点;再分别以,为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接,则下列说法不一定成立的是()A . 射线是的平分线B . 是等腰三角形C . ,两点关于所在直线对称D . ,两点关于所在直线对称二、填空题 (共6题;共6分)7. (1分)(2020·宁波模拟) 若关于的分式方程的解为非负数,则的取值范围为________.8. (1分)(2017·贵港) 因式分解:x2﹣x=________.9. (1分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________ .10. (1分) (2017九上·泰州开学考) 如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF 沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有________个.11. (1分)已知a+b=2,b≤2,y﹣a2﹣2a+2=0.则y的取值范围是________12. (1分)(2020·拉萨模拟) 如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为________cm2.三、三.解答题 (共11题;共122分)13. (10分)(2017·冠县模拟) 综合题。

云南省2021-2022学年中考数学试卷A卷

云南省2021-2022学年中考数学试卷A卷

云南省2021-2022学年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)(2017·桂林) 在实数2、0、﹣1、﹣2中,最小的实数是()A . 2B . 0C . ﹣1D . ﹣22. (2分) (2019七上·香坊期末) 如图,点、分别为三角形边、上一点,作射线,则下列说法错误的是()A . 与是对顶角;B . 与是同位角C . 与是同旁内角;D . 与是内错角.3. (2分)分解因式x3-x的结果是()A . x(x2-1)B . x(x-1)2C . x(x+1)2D . x(x+1)(x-1)4. (2分)某几何体的三视图如图所示,这个几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥5. (2分) (2017八上·郑州期中) 下列计算或判断:(1)±3是27的立方根;(2);(3)的平方根是2;(4);(5),其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分)如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().A . CE=DEB .C . ∠BAC=∠BADD . AC>AD7. (2分)如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A . 梯形B . 平行四边形C . 矩形D . 菱形8. (2分) (2016九上·大石桥期中) 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .9. (2分) (2019八上·和平期中) 点P(x,y)关于直线x=1的对称点P1坐标是()A .B .C .D .10. (2分)在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球()个A . 6个B . 7个C . 9个D . 12个11. (2分)(2016·大庆) 下列说法正确的是()A . 对角线互相垂直的四边形是菱形B . 矩形的对角线互相垂直C . 一组对边平行的四边形是平行四边形D . 四边相等的四边形是菱形12. (2分) (2020八上·蜀山月考) 若以周长为12长方形的长为自变量x,宽的长度y为x的函数,则它的表达式是()A . y=-x+6(0<x<6)B . y=-x+6(0<x≤3)C . y=-2x+12(0<x<6)D . y=-x+6(3<x<6)二、填空题 (共6题;共6分)13. (1分))计算4﹣(﹣6)的结果为________14. (1分)(2012·泰州) 根据排列规律,在横线上填上合适的代数式:x,3x2 , 5x3 , ________,9x5 ,….15. (1分) (2016八下·固始期末) 已知函数y=(m+2)x+m2﹣4是一次函数,则m________.16. (1分)若关于x的不等式组的解集是x>2,则m的取值范围是________17. (1分)(2020·台州模拟) 如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为________18. (1分)(2018·临河模拟) 如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是________三、解答题 (共8题;共71分)19. (5分) (2016七下·江阴期中) 先化简,再求值:(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=1,b=﹣1.20. (5分) (2017七下·林甸期末) 你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?21. (13分) (2020八下·襄州期末) 2020年4月是我国第32个爱国卫生月.某校八年级通过网课举行了主题为“防疫有我,爱卫同行”的知识竞赛活动,对全校2200名学生“预防新冠病毒知识”进行了测试(试卷满分100分),从中随机抽取了20名学生的测试卷,按五个级别分别进行了统计,其中得分在C级别这一范围内的成绩分别是:70,72,74,76,77,78,78,78,79,79(数据整理与描述)将调查结果绘制成如下的统计表和不完整的统计图:级别分数频数频率A20.10B m0.20C100.50D3nE10.05(数据应用)请根据以上信息解答下列问题:(1)填空: ________, ________;(2)补全频数分布直方图;(3)被抽取的20名学生成绩的中位数为________;(4)若这次测试成绩不低于80分的确定为优秀,请估计该校这次测试获得优秀的学生人数.22. (5分) (2020九下·大同月考) 为表达全国各族人民对抗击新冠肺炎疫情斗争牺牲烈士和逝世同胞的深切哀悼,国务院决定,2020年4月4日举行全国性哀悼活动在此期间,全国和驻外使领馆下半旗志哀下半旗时,应当先将国旗升至杆顶,然后降至旗顶与杆顶之间的距离为旗杆全长的三分之一处.如图,将国旗升至杆顶A后,在C点处测得旗顶A的仰角为,再下到旗杆全长处的D点 (即 ),在的延长线上且米,在E处测得旗顶D的仰角为求旗杆的高度. (参考数据: )23. (8分) (2019八下·灌云月考) 观察下列等式:=1﹣,;,……,将以上二个等式两边分别相加得:++ + =1﹣ + ﹣ + ﹣=用你发现的规律解答下列问题:(1)直接写出下列各式的计算结果:① + + +…+ =________;② + + +…+ =________;(2)仿照题中的计算形式,猜想并写出:=________;(3)解方程: + + = .24. (5分)(2018·曲靖模拟) 如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.25. (15分) (2020八上·湛江月考) 如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与点C重合,点D与点G重合,若BC=8,AB=4,求:(1)求CF的长.(2)求EF的长.(3)求阴影部分△GED的面积.26. (15分)(2020·沈阳模拟) 如图,直线l:y=﹣ x+2与x轴、y轴分别交于A、B两点,动点M从点A以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)将直线l向上平移4个单位后得到直线l',交y轴于点C.求直线l′的函数表达式;(3)设点M的移动时间为t,当t为何值时,△COM≌△AOB,并求出此时点M的坐标.参考答案一、选择题: (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共71分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

楚雄彝族自治州2021版中考数学试卷A卷

楚雄彝族自治州2021版中考数学试卷A卷

楚雄彝族自治州2021版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项 (共14题;共28分)1. (2分) (2019七上·大通月考) 在有理数中,下列说法正确的是()A . 有最小的负整数,但没有最大的正整数B . 有最小的自然数,也有最大的负整数C . 有最大的数,也有最小的数D . 有最小的数,但没有最大的数2. (2分)(2017·平顶山模拟) 如图,已知直线a∥b,∠1=46°.∠2=66°,则∠3等于()A . 112°B . 100°C . 130°D . 120°3. (2分)(2012·遵义) 下列运算中,正确的是()A . 3a﹣a=3B . a2+a3=a5C . (﹣2a)3=﹣6a3D . ab2÷a=b24. (2分)(2016·临沂) 不等式组的解集,在数轴上表示正确的是()A .B .C .D .5. (2分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A . 9B . 11C . 14D . 186. (2分)我校举行A,B两项趣味比赛,甲、乙两名学生各自随机选择其中一项,则他们恰好参加同一项比赛的概率是()A .B .C .D .7. (2分)(2020·邹平模拟) 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则么的度数为()A . 120°B . 180°C . 240°D . 300°8. (2分) (2020·宁波) 我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A .B .C .D .9. (2分)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是()分数(分)8992959697评委(位)12211A . 92分B . 93分C . 94分D . 95分10. (2分)(2017·黔东南模拟) 如图,已知点A的坐标为(3,4),⊙A的半径为3,延长OA交⊙A于点B,过点B作⊙A的切线,交y轴于点C,则OC长为()A . 8B . 9C . 10D . 1111. (2分)(2019·莲湖模拟) 下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A . 2+7nB . 8+7nC . 4+7nD . 7n+112. (2分)(2018·河东模拟) 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A . ∠ABD=∠EB . ∠CBE=∠CC . AD∥BCD . AD=BC13. (2分)小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.你认为其中正确的信息是()A . ①②③⑤B . ①②③④C . ①③④⑤D . ②③④⑤14. (2分) (2020九下·霍林郭勒月考) 如图,△ABC是等腰直角三角形,∠ACB=90°,点A在反比例函数y=﹣的图象上,点B、C都在反比例函数y=﹣的图象上,AB∥x轴,则点A的坐标为()A . (﹣,2 )B . (﹣,)C . (﹣,)D . (﹣2 ,)二、填空题(共5小题,每小题3分,满分15分) (共5题;共5分)15. (1分)(2020·凉山州) 因式分解: =________.16. (1分)我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯。

2021年云南省中考数学试卷及答案(Word最新版)

2021年云南省中考数学试卷及答案(Word最新版)

2021年云南省中考数学试卷及答案通过整理的2021年云南省中考数学试卷及答案相关文档,希望对大家有所帮助,谢谢观看!2021年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab= .3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4= .5.(3.00分)如图,已知AB∥CD,若=,则= .6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1 8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540° B.450° C.360° D.180° 10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.an B.﹣an C.(﹣1)n+1an D.(﹣1)nan 11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A 的正切值为()A.3 B.C.D.13.(4.00分)2021年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2021一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72° D.全校“不了解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32 三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0 16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分6 8 7 8 5 7 8 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c 的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品3 2 120 B商品2.5 3.5 200 设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O 上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E 是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD 的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE 的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2021年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.[来源:学#科#网] 故答案为:2 【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知A B∥CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△CO D,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1 【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()[来源:] A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540° B.450° C.360° D.180° 【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.an B.﹣an C.(﹣1)n+1an D.(﹣1)nan 【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•an.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2021年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2021一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72°[来源:Z|xx|] D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,[来源:学,科,网] “非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32 【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0 【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1 =2﹣4 【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△A BC 和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分6 8 7 8 5 7 8 (1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8 ∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品3 2 120 B 商品2.5 3.5 200 设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x 取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O 的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°[来源:学科网ZXXK] ∴∠OCD=90° ∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60° ∴r+2=2r,∴r=2,∠AOC=120° ∴BC=2,∴由勾股定理可知:AC=2 易求S△AOC=×2×1= S扇形OAC== ∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.【分析】(1)作EG⊥AB 于点G,由S△ABE=×AB×EG=30得AB•EG=60,即可得出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE 及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S△ABE=×AB×EG=30,则AB•EG=60,∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠H BE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

云南省楚雄彝族自治州2021年中考数学模拟试卷A卷

云南省楚雄彝族自治州2021年中考数学模拟试卷A卷

云南省楚雄彝族自治州2021年中考数学模拟试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·侯马期中) 若(x+y﹣3)2与3|x﹣y﹣1|互为相反数,则yx的值是()A .B . 1C . 2D . 42. (2分)(2016·遵义) 下列运算正确的是()A . a6÷a2=a3B . (a2)3=a5C . a2•a3=a6D . 3a2﹣2a2=a23. (2分) (2016九上·抚宁期中) 观察下列图案,既是中心对称图形又是轴对称图形的是()A .B .C .D .4. (2分) H7N9型禽流感病毒是全球首次发现的新亚型流感病毒,医学研究检测到一个H7N9型禽流感病毒球形直径为0.000000115米,用科学计数法表示此病毒的直径为()A . 0.115×10-6米B . 1.15×10-7米C . 11.5×10-8米D . 115×10-9米5. (2分) (2018八上·柘城期末) 一个正多边形,它的一个外角等于与它相邻的内角的,则这个多边形是()A . 正十二边形B . 正十边形C . 正八边形D . 正六边形6. (2分)已知两圆半径分别为7、3,圆心距为4,则这两圆的位置关系为()A . 外离B . 内切C . 相交D . 内含7. (2分)(2017·黑龙江模拟) 如图,是一个由3个相同的正方体组成的立体图形,则它的主视图为()A .B .C .D .8. (2分)一个正方形和两个等边三角形的位置如图所示,若∠1=50°,则∠2+∠3=()A . 190°B . 130°C . 100°D . 80°9. (2分)统计得到一组数据,其中最大值是136,最小值是52,取组距为10,可以分成()A . 10组B . 9组C . 8组D . 7组10. (2分)正方形ABCD、正方形BEFG和正方形RKPF的位置如图4所示,点G在线段DK上,正方形BEFG 的边长为4,则的面积为()A . 10B . 12C . 14D . 1611. (2分)若△ABC∽△DEF,AB:DE=2:1且△ABC的周长为16,则△DEF的周长为()A . 4B . 6C . 8D . 3212. (2分) (2017八下·罗山期中) 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④S△CEF=2S△ABE ,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2016八下·大石桥期中) 函数的自变量x的取值范围是________.14. (1分) (2017八下·庐江期末) 等腰三角形一底角为30°,底边上的高为9cm,则这个等腰三角形的腰长为________cm.15. (1分)(2016·广东) 如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是________cm(计算结果保留π).16. (1分) (2016八下·饶平期末) 若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1________y2(选择“>”、“<”、=”填空).17. (1分) (2017八下·徐州期中) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,AB=4,BC=6,则DE 的长为________.18. (1分)(2018·铜仁模拟) 如图△AB C中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC= ,则BC的长为________.三、解答题 (共8题;共82分)19. (5分)是否存在实数x,使得代数式﹣与代数式1+的值相等.20. (10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.21. (11分) (2018九上·灌南期末) 为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了________名市民;(2)补全条形统计图;并在条形图上方写上数据;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22. (10分)(2020·郑州模拟) 如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.23. (11分)(2018·扬州) 问题呈现如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中 .问题解决(1)直接写出图1中的值为________;(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.24. (5分)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.25. (15分)(2012·北海) 如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.26. (15分)(2013·绵阳) 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5、答案:略6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、25-1、25-2、25-3、26-1、26-2、。

云南省2021年中考数学试卷及答案解析(word版)

云南省2021年中考数学试卷及答案解析(word版)

2021年云南省中考数学试卷一、填空题〔本大题共6个小题,每题3分,总分值18分〕1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,假设∠1=60°,那么∠2=.3.因式分解:x2﹣1=.4.假设一个多边形的边数为6,那么这个多边形的内角和为720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题〔本大题共8小题,每题只有一个正确选项,每题4分,总分值32分〕7.据?云南省生物物种名录〔2021版〕的?介绍,在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为〔〕A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为〔〕A.x>2 B.x<2 C.x≤2 D.x≠29.假设一个几何体的主视图、左视图、俯视图是半径相等的圆,那么这个几何体是〔〕A.圆柱B.圆锥C.球D.正方体10.以下计算,正确的选项是〔〕A.〔﹣2〕﹣2=4 B.C.46÷〔﹣2〕6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,那么k=〔〕A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2021年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩〔分〕46 47 48 49 50人数〔人〕 1 2 1 2 4以下说法正确的选项是〔〕A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.以下交通标志中,是轴对称图形但不是中心对称图形的是〔〕A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为〔〕A.15 B.10 C.D.5三.解答题〔共9个小题,共70分〕15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品平安是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需参加同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.〔1〕求tan∠DBC的值;〔2〕求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了局部同学就兴趣爱好进行调查,将收集的数据整理并绘制成以下两幅统计图,请根据图中的信息,完成以下问题:〔1〕设学校这次调查共抽取了n名学生,直接写出n的值;〔2〕请你补全条形统计图;〔3〕设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.〔1〕求证:DE是⊙O的切线;〔2〕假设AE=6,∠D=30°,求图中阴影局部的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的时机,抽奖规那么如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,假设两次所得的数字之和为8,那么可获得50元代金券一张;假设所得的数字之和为6,那么可获得30元代金券一张;假设所得的数字之和为5,那么可获得15元代金券一张;其他情况都不中奖.〔1〕请用列表或树状图〔树状图也称树形图〕的方法〔选其中一种即可〕,把抽奖一次可能出现的结果表示出来;〔2〕假设你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售本钱为每千克20元的草莓,规定试销期间销售单价不低于本钱单价,也不高于每千克40元,经试销发现,销售量y〔千克〕与销售单价x〔元〕符合一次函数关系,如图是y与x的函数关系图象.〔1〕求y与x的函数解析式〔也称关系式〕〔2〕设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.〔12分〕〔2021•云南〕有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第〔n+1〕个数的和等于.〔1〕经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;〔2〕请你观察第1个数、第2个数、第3个数,猜测这列数的第n个数〔即用正整数n表示第n数〕,并且证明你的猜测满足“第n个数与第〔n+1〕个数的和等于〞;〔3〕设M表示,,,…,,这2021个数的和,即,求证:.2021年云南省中考数学试卷参考答案与试题解析一、填空题〔本大题共6个小题,每题3分,总分值18分〕1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,假设∠1=60°,那么∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】此题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=〔x+1〕〔x﹣1〕.【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=〔x+1〕〔x﹣1〕.故答案为:〔x+1〕〔x﹣1〕.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解此题的关键.4.假设一个多边形的边数为6,那么这个多边形的内角和为720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°〔6﹣2〕=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解此题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4〔a+2〕=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】此题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×〔〕2×16π=π××16π=144;②底面周长为16π高为6,π×〔〕2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】此题考查了展开图折叠成几何体,此题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题〔本大题共8小题,每题只有一个正确选项,每题4分,总分值32分〕7.据?云南省生物物种名录〔2021版〕的?介绍,在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为〔〕A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国〞之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,应选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为〔〕A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.应选D.【点评】此题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.假设一个几何体的主视图、左视图、俯视图是半径相等的圆,那么这个几何体是〔〕A.圆柱B.圆锥C.球D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,那么可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.应选C.【点评】此题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.以下计算,正确的选项是〔〕A.〔﹣2〕﹣2=4 B.C.46÷〔﹣2〕6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、〔﹣2〕﹣2=,所以A错误,B、=2,所以B错误,C、46÷〔﹣2〕6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,应选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解此题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,那么k=〔〕A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.假设EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,应选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2021年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩〔分〕46 47 48 49 50人数〔人〕 1 2 1 2 4以下说法正确的选项是〔〕A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[〔46﹣48.6〕2+2×〔47﹣48.6〕2+〔48﹣48.6〕2+2×〔49﹣48.6〕2+4×〔50﹣48.6〕2]≠50;∴选项A正确,B、C、D错误;应选:A.【点评】此题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答此题的关键.13.以下交通标志中,是轴对称图形但不是中心对称图形的是〔〕A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.应选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为〔〕A.15 B.10 C.D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.应选D.【点评】此题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题〔共9个小题,共70分〕15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2〔x+3〕>10和2x+1>x,然后取得这两个不等式解的公共局部即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】此题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】此题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品平安是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需参加同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A 种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】此题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是此题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.〔1〕求tan∠DBC的值;〔2〕求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】〔1〕由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;〔2〕由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】〔1〕解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,那么tan∠DBC=tan30°=;〔2〕证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,那么四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解此题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了局部同学就兴趣爱好进行调查,将收集的数据整理并绘制成以下两幅统计图,请根据图中的信息,完成以下问题:〔1〕设学校这次调查共抽取了n名学生,直接写出n的值;〔2〕请你补全条形统计图;〔3〕设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】〔1〕根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;〔2〕根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;〔3〕求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:〔1〕∵喜欢篮球的人数有25人,占总人数的25%,∴=100〔人〕;〔2〕∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;〔3〕由得,1200×20%=240〔人〕.答;该校约有240人喜欢跳绳.【点评】此题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比拟是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.〔1〕求证:DE是⊙O的切线;〔2〕假设AE=6,∠D=30°,求图中阴影局部的面积.【考点】切线的判定;扇形面积的计算.【分析】〔1〕连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O的切线;〔2〕分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:〔1〕连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;〔2〕在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影局部的面积为8﹣.【点评】此题主要考查了切线的判定以及扇形的面积计算,解〔1〕的关键是证明OC ⊥DE ,解〔2〕的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的时机,抽奖规那么如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,假设两次所得的数字之和为8,那么可获得50元代金券一张;假设所得的数字之和为6,那么可获得30元代金券一张;假设所得的数字之和为5,那么可获得15元代金券一张;其他情况都不中奖.〔1〕请用列表或树状图〔树状图也称树形图〕的方法〔选其中一种即可〕,把抽奖一次可能出现的结果表示出来;〔2〕假设你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P . 【考点】列表法与树状图法.【分析】〔1〕首先根据题意画出表格,然后由表格求得所有等可能的结果;〔2〕根据概率公式进行解答即可.【解答】解:〔1〕列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8〔2〕由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售本钱为每千克20元的草莓,规定试销期间销售单价不低于本钱单价,也不高于每千克40元,经试销发现,销售量y〔千克〕与销售单价x〔元〕符合一次函数关系,如图是y与x的函数关系图象.〔1〕求y与x的函数解析式〔也称关系式〕〔2〕设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】〔1〕待定系数法求解可得;〔2〕根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:〔1〕设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,〔20≤x≤40〕.〔2〕由得:W=〔x﹣20〕〔﹣2x+340〕=﹣2x2+380x﹣6800=﹣2〔x﹣95〕2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2〔40﹣95〕2+11250=5200元.【点评】此题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.〔12分〕〔2021•云南〕有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第〔n+1〕个数的和等于.〔1〕经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;〔2〕请你观察第1个数、第2个数、第3个数,猜测这列数的第n个数〔即用正整数n表示第n数〕,并且证明你的猜测满足“第n个数与第〔n+1〕个数的和等于〞;〔3〕设M表示,,,…,,这2021个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】〔1〕由规律可得;〔2〕先根据规律写出第n、n+1个数,再根据分式的运算化简可得;〔3〕将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:〔1〕由题意知第5个数a==﹣;〔2〕∵第n个数为,第〔n+1〕个数为,∴+=〔+〕=×=×=,即第n个数与第〔n+1〕个数的和等于;〔3〕∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】此题主要考查分式的混合运算及数字的变化规律,根据规律=﹣得到﹣=<<=﹣是解题的关键.第21页〔共21页〕。

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018八上·宁城期末) 在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A . 21:02B . 21:05C . 20:15D . 20:052. (1分)下列方程是一元二次方程的有()A . x(2x+1)=2x(x﹣3)﹣2B . x2+y=3C . ax2+bx+c=0D . x2=03. (1分)用配方法将二次三项式a2-4a+5变形,结果为()A . (a-2)2+1B . (a+2)2+1C . (a-2)2-1D . (a+2)2-14. (1分) (2017九上·柳江期中) 若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A . y=(x+2)2+3B . y=(x﹣2)2+3C . y=(x+2)2﹣3D . y=(x﹣2)2﹣35. (1分)(2017·海珠模拟) 已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A . b2>4acB . ax2+bx+c≤6C . 若点(2,m)(5,n)在抛物线上,则m>nD . 8a+b=06. (1分)设m、n是方程x2+x-2012=0的两个实数根,则m2+2m+n的值为()A . 2008B . 2009C . 2010D . 20117. (1分) (2018九上·扬州期末) 已知二次函数y=ax2+bx+c中,自变量x与函数y之间的部分对应值如下表:在该函数的图象上有A(x1 , y1)和B(x2 , y2)两点,且-1<x1<0,3<x2<4,y1与y2的大小关系正确的是()A . y1≥y2B . y1>y2C . y1≤y2D . y1<y28. (1分) (2017九上·北海期末) 已知关于x的一元二次方程(m﹣2)x2+x+ =0有两个不等的实数根,则实数m的取值范围为()A .B .C . 且m≠2D . 且m≠29. (1分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A . 12B . 10C . 13D . 12或1310. (1分)(2017·玉林) 对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A . 开口向下B . 对称轴是x=mC . 最大值为0D . 与y轴不相交二、填空题 (共8题;共8分)11. (1分)方程的解是________12. (1分) (2020九上·常州期末) 关于x的一元二次方程(2-k) x2-2x+1=0有两个不相等的实数根,则整数k的最小值是________.13. (1分)(2019·渝中模拟) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和C(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④ ;⑤b<c.其中含所有正确结论的选项是________.14. (1分) (2017九上·黑龙江月考) 已知点A(2m,﹣3)与B(6,1﹣n)关于原点对称,则m+n=________.15. (1分) (2019八上·西安月考) 如图,在四边形 ABCD 中,∠BAD=90°,AB=AD.连接 AC,若 AC= 5 ,则 CD+CB的最小值为 ________ .16. (1分)如图,在等腰△ABC中,AD是角平分线,E是AB的中点,已知AB=AC=15cm.BC=18cm,则△ADE的周长是________ cm.17. (1分)已知x=﹣1是关于x的方程2x2+ax﹣2=0的一个根,则a=________.18. (1分)抛物线y=x2-4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是________三、解答题 (共8题;共15分)19. (1分)如图,△ABC与△A′B′C′关于某一点成中心对称,画出对称中心.20. (3分)(2017·郑州模拟) 先化简,再求值:1﹣÷ ,其中a是方程a2﹣a﹣6=0的一个根.21. (1分)如图,顶点M(0,﹣1)在y轴上的抛物线与直线y=x+1相交于A,B两点,且点A在x轴上,连结AM,BM.(1)求点A的坐标和这个抛物线所表示的二次函数的表达式;(2)求点B的坐标;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m 满足什么条件时,平移后的抛物线总有不动点?22. (1分) (2018九上·宁县期中) 画出函数的图像,观察函数图像,请直接写出方程的根.23. (1分)(2019·涡阳模拟) 一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.24. (3分) (2018九上·晋江期中) 如图△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,DF交BC于点H.(1) PH=________cm.(2)△ABC与△DEF重叠部分的面积为________cm2.25. (2分) (2016九上·鄂托克旗期末) 某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40 元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.26. (3分)(2017·陕西模拟) 如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD 边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共15分)19-1、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷

云南省楚雄彝族自治州2021版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·徐汇月考) 在圆、长方形、等腰梯形、等边三角形、平行四边形中,既是轴对称图形又是中心对称图形的有()A . 2个B . 3个C . 4个D . 5个2. (2分)方程2x2-3x+1=0经过配方化为(x+a)2=b的形式,正确的是()A . =16B . 2=C . =D . 以上都不对3. (2分)(2020·贵港) 一元二次方程x2-x-3=0的根的情况为()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根4. (2分)(2020·红花岗模拟) 如图,抛物线y=﹣x2+2x+c+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①抛物线的对称轴是直线x=1;②若OC=OB,则c=2;③若M(x0 ,y0)是x轴上方抛物线上一点,则(x0﹣a)(x0﹣b)<0;④抛物线上有两点P(x1 , y1)和Q(x2 , y2),若x1<1<x2 ,且x1+x2>2,则y1>y2.其中真命题个数是()A . 1B . 2C . 3D . 45. (2分)根据下表中的二次函数y=ax2+bx+c的自变量X与函数Y的对应值,可判断该二次函数的图象与x 轴().A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点6. (2分) (2019九上·宝安期末) 已知是一元二次方程的一个根,则的值是A .B . 0C . 1D . 无法确定7. (2分)(2020·嘉兴·舟山) 如图,在等腰△ABC中, AB=AC=2 ,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于 AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点0;③以点为圆心,线段OA长为半径作圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省楚雄彝族自治州2021版中考数学试卷A卷
姓名:________ 班级:________ 成绩:________
一、选择题: (共12题;共24分)
1. (2分) (2019七上·港南期中) 如果把向东走3km记作+3km ,那么-2km表示的实际意义是()
A . 向东走2km
B . 向西走2km
C . 向南走2km
D . 向北走2km
2. (2分) (2020八上·嘉陵期末) 图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()。

A .
B .
C .
D .
3. (2分) (2017七下·江阴期中) 下列计算正确的是()
A .
B .
C .
D .
4. (2分)如果梯形的面积为144,且两底长的比为4:5,高为16,那么两底长为()
A . 4,10
B . 6,7.5
C . 8,10
D . 10,12.5
5. (2分)(2013·宜宾) 要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()
A . 方差
B . 众数
C . 平均数
D . 中位数
6. (2分) (2017七下·淅川期末) 若关于x的方程x﹣2+3k= 的解是正数,则k的取值范围是()
A . k>
B . k≥
C . k<
D . k≤
7. (2分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是().
A . 2.25
B . 2.5
C . 2.95
D . 3
8. (2分)(2017·中山模拟) 函数y= 中,自变量x的取值范围是()
A . x>1
B . x≥1
C . x<1
D . x≤1
9. (2分)已知二次函数的图像如图所示,那么a、b、c的符号为()
A . +、+、+
B . +、-、+
C . -、-、+
D . -、-、-
10. (2分)下列命题正确的个数有()
①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边
形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.
A . 0 个
B . 1 个
C . 2 个
D . 3 个
11. (2分)(2016·济宁) 如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()
A .
B .
C .
D .
12. (2分)(2017·深圳模拟) 下列说法正确的是().
A . 将抛物线 = 向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是.
B . 方程有两个不相等的实数根.
C . 平行四边形既是中心对称图形又是轴对称图形.
D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.
二、填空题 (共8题;共9分)
13. (1分) 2014年底我县人口约370000人,将370000用科学记数法表示为________.
14. (1分) (2019八上·大洼月考) 计算的结果为________.
15. (2分)最大的负整数是________ ;小于3的非负整数有________ .
16. (1分) (2017八下·河东期中) 如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=________度.
17. (1分) (2020八上·乌拉特前旗期末) 如果关于x的分式方程 =3的解是正数,则m的取值范围为________.
18. (1分)(2017·沭阳模拟) 如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;
③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)
19. (1分)如图是一盘中国象棋残局的一部分,以“帅”为原点建立坐标系,知道“兵”所在位置的坐标是(2,3),则“炮”所在位置的坐标是________.
20. (1分)如果正整数n使得++++=69,则n为________ 。

(其中[x]表示不超过x的最大整数)
三、解答题 (共6题;共67分)
21. (5分) (2016九上·宁波期末) 计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°.
22. (10分) (2016九上·肇庆期末) 如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,
∠EAC=∠D=60°.
(1)求证:AE是⊙O的切线;
(2)当BC=4时求劣弧AC的长.
23. (12分)(2017·谷城模拟) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;
(2)请补全条形统计图;
(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
24. (10分)(2017·百色) 某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.
(1)
九年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)
该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?
25. (15分) (2017九上·重庆期中) 如图,已知二次函数的图象与x轴交于点 A、点B,交 y 轴于点 C.
(1)求直线 BC的函数表达式;
(2)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)在(2)的条件下,在轴上是否存在一点M使△CPM的周长最小,若存直接写出周长的最小值;若不存在,请说明理由.
26. (15分)(2020·广西模拟) 如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M,N两点.
(1)求一次函数的表达式;
(2)根据图象直接写出kx+b- >0中x的取值范围;
(3)求△AOB的面积.
参考答案一、选择题: (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共8题;共9分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共6题;共67分) 21-1、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、
25-1、
25-2、
25-3、
26-1、
26-2、
26-3、。

相关文档
最新文档