第一章整式的运算
整式的运算(总结)教案

第一章 整式的运算, 回顾与思考(1)教学目标:1.知识目标: ①整式的概念及其加减混合运算, ②幂的运算性质, ③整式的乘法, ④整式的除法教学难点:形成知识体系, 灵活运用所学知识解决问题教学过程: 一、本章知识结构框架图1、引导学生回忆本章的内容, 初步组成框架图2.教师用多媒体显示框架图现实世界其他学科数学中的问题情境 ①整式的概念及其运算②整式及其运算解决问题二、根据知识结构框架图, 复习相应概念法则1.请学生看书P3并回答下列问题例1(多媒体显示)在代数式中, a, -b , , 3 , , 5中哪些是单项式?哪些是多项式?若是单项式, 请说出它的系数和次数, 若是多项式, 请说出它是几次几项式?2.请学生计算例2 (2x2y+3xy2)-(6x2y-3xy2)答案: 6xy2-4x2y并回答如何进行整式的加减运算? 整式加减的一般步骤是什么?3、进行幂的运算法则是什么?有哪些条件限制?小级讨论合作回答: ①n m n m a a a +=⋅(m 、n 为正整数)②mn n m a a =)((m 、n 为正整数)③n n n b a ab =)((m 、n 为正整数)④ (a ≠0, m 、n 为自然数, m>n )⑤a 0=1(a ≠0)⑥a-p= (a ≠0, P 为自然数)例3:计算, 并指出运用什么运算法则①x 5·x 4·x 3 ②(21)m ·(0.5)n ③(-2a 2b 3c)2 ④(-9)3·(31)3·(-32)3⑤b n+5÷b n-2⑥(27a 3b 2)÷(9a 2b)·(-31b)-14.整式的乘法:例4: 计算 ①(31a 2b 3)·(-15a 2b 2) ②(21x 2y-2xy+y 2)·2xy ③(2x+3)(3x+4) ④(3x+7y)(3x-7y)⑤(x-3y)2 ⑥(x+5y)2答案:①-5a 4b 5 ②x 3y 2-4x 2y 2+2xy 3 ③6x 2+17x+12 ④9x 2-49y 2 ⑤x 2-6xy+9y 2 ⑥x 2+10xy+25y 2学生演算后并回答是用的什么运算法则或乘法公式5.整式的除法复习单项式除以单项式, 多项式除以单项式的运算法则例5: ①(a2b2c2d )÷( ab2c) ②(4a3b-6a2b2+2ab2)÷(-2ab)解: ①原式=2acd ②原式=-2a2+3ab-b三、小结:回到框架图, 并讨论它们之间的联系四、作业P 44复习题A 部分习题第一章 整式的运算, 回顾与思考(2)教学目标:1.知识点①整式的混合运算, ②整式的综合应用, ③进一步加强对全章知识体系的认识。
整式(单项式、多项式)

第一章整式的运算一、知识点讲解:1、单项式: 。
2、多项式: 。
3、整式: 。
4、一个单项式中,所有字母的 叫单项式的次数,它只与 有关,与单项式的系数 ;一个多项式中, 的次数叫多项式的次数。
5、同类项的定义:所含字母 ,并且相同字母的次数也 的项叫做同类项。
6、合并同类项法则:系数相 ,字母及其指数 。
7、去括号法则:括号前是“+”号时,去掉括号和“+”号后括号里的各项符号都 ;括号前是“-”号时,去掉括号和“-”号后括号里的各项符号都 ;8、整式的加减法的步骤:(1) ;(2) 。
二、经典题型讲解:例1、下列代数式中那些是单项式,那些是多项式?若是单项式,请指出它的系数和次数;若是多项式,请指出它是几次几项式。
变式练习:其中单项式有 个,多项式有 个,次数为2的整式有 个。
54,14532,,1,5,3,1,3523222ab ab ab b a m x x x x x x ππ--+-+--+xx x x y x mn ab a ab 1,145,),(21,1,1,51222--+--π次单项的是关于)、已知(例y x y x a b 5,2223+-?m ,5)2(4xy 2=--+-的三次二项式,则是关于变式练习:若y x xy m m 的值为多少?是同类项,则与、单项式例b y x y x a b a ---+a 331321?a 34.5a 02==y xb b x y 的和是单项式,则与变式练习:若.3,31a ,3])23(22[a 342222=-=++---b ab ab b a ab ab b 其中,先化简,再求值:例的值。
)求代数式()(])2[(,3,2xy x y xy y x xy y x -----+=-=+的值。
时,多项式答案,并求出当的请你帮他正确地算出结果求出的答案是看成误将”时,试求,其中和“两个多项式:小强在做一道数学题B A x B A x x B A B A B A x x B B --=-+-+--+--=1,523.,254A 522三、课堂练习:1、受季节的影响,某种商品每年按原价降低10%后,有降价a 元,现在每件售价b 元,那么该商品的值。
七年级数学下第一章整式的运算试题

2、在代数式:x5+5,-1,x2-3x,π,,x+整式的有()
A.3个B.4个C.5个D.6个
3.若5x|m|y2—(m-2)xy-3x是四次三项式,则m=___
4、计算:
5.已知a=,b=,c=,求1234a+2468b+
617c的值.
6.已知:A=2x2+3ax-2x-1, B=-x2+ax-1且
(4)运算结果不是最简形式运算结果中有同类项时,要合并同类项,化成最简形式.
(5)忽略符号而致错在运算过程中和计算结果中最容易忽略“一”号而致错.
二、经典考题剖析:
【考题2-1】(2004、鹿泉,2分)下列计算中,正确的是()
A.2a+3b=5ab B.a·a3=a3
C、a6÷a2=a3D、(-ab)2=a2b2
a b2c,-,-a3b2
12.若出为互为相反数,求多项式a+2a+3a+…+
100a+100b+99b+…+2b+b的值.
13.已知代数式2x2+3x+7的值是8,则代数式4x2
+ 6x+ 200=___________
14.证明代数式16+a-{8a-[a-9-(3-6a〕}的值与a的取值无关.
(2)按题目要求写出一个与上述不同的代数恒.等式,画出与所写代数恒等生对应的平面几何图形即可(答案不唯一).
点拨:本题是一道阅读理解题,是中考的热点题型.
三、针对性训练:( 30分钟) (答案:219 )
1、下列两个多项式相乘,可用平方差公式().
(1)(2a-3b)(3b-2a);
【中考-章节复习五】 第一章 整式的运算

提高复习效 率,你一定 行!
知识点:
, a 2 h 等,都是数与字母的乘积,这 样的代数式叫做单顶式.几个单项式的和叫做多 π 1 1 项式,例如 ab - 16 b , 2 ab - 2 mn 等.单顶式和多项式 统称整式. 一个单项式中,所有字母的指数和叫做这个
2
π 2 3 像 16 b , 5 x
计算下列各式:
1 1 2 2 3 2 (1) (2xy ) • ( xy) = (2 × ) • ( xx) • ( y y ) = x y 3 3 3 2 3 [(-2) ×(-3)](a 2a) • b 3 = 6a 3b 3 (2) (-2a b ) • (-3a ) =
2
(3) ( 4 ×10 ) • (5 ×10 ) 5 4 9 10 = (4 ×5) • (10 ×10 ) = 20 ×10 = 2 ×10
幂 的 乘 方
?
(2 ) = 2
3 6
(2) 8 = 8×8×8×8×8×8
= (2 )
3 6
?个2 3
(2 ) = 2
?
即
(a ) = a
m n
mn
(m,n都是正整数)
不变 相乘 幂的乘方,底数_____,指数_____.
------ 幂的乘方运算法则 2.如果甲球的半径是乙球的n倍,那么甲球的体 3 积是乙球的 n 倍. 地球、木星、太阳可以近似地看做是球体,木 星、太阳的半径分别约是地球的10倍和 10 2 倍, 3 (10 2 ) 3 = 10 6 它们的体积分别约是地球的____、_________倍. 10
= 20 ×10 = 2 ×10 2 12 答:它工作 5 ×10 秒可做 2 ×10 次运算.
数学天地

第一章整式的运算1)整式。
①单项式:1.由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
2.单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
3.一个单项式中,所有字母的指数和叫做这个单项式的次数。
②多项式:1.几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项。
其中,不含字母的项叫做常数项。
一个多项式中,次数最高项的次数,叫做这个多项式的次数。
2.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。
多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。
多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
③整式单项式和多项式统称为整式。
2)整式的加减。
①整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
③括号前面是“-”号,去括号时,括号内各项要变号。
3)同底数幂的乘法。
同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)4)幂的乘方与积的乘方。
①幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
②底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底。
③底数有时形式不同,但可以化成相同。
第一章 整式的运算回顾与思考

[]235223636532633224424432432153232333)().(102010.9.8)()().(76)2.(6)()().(5)(.4)(.3)(.22.1m m m a a a a y x x y y x xx a a a b b b x x x x x x x a a a m m m m m -=-÷--===÷-=-⋅--=-====-=-⋅-=-=-⋅=⋅-÷⨯⨯++学习目标:1.梳理全章内容,建立知识体系;熟练运用幂的运算法则、整式乘除法进行运算.2.让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力.一、自主预习合作探究:1、快速判断以下各题是否正确2、计算3、如图,一块直径为a+b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,求剩下的钢板的面积.二、课后练习:一、选择题(共30分,每题3分)1.多项式322431x x y xy -+-的项数、次数分别是( ).A .3、4 B .4、4 C .3、3 D .4、32.若0.5a 2b y 与34a x b 的和仍是单项式,则正确的是 ( ) A .x =2,y =0B .x =-2,y =0C .x =-2,y =1D .x =2,y =1 3.减去-2x 后,等于4x 2-3x -5的代数式是 ( )A .4x 2-5x -5B .-4x 2+5x +5C .4x 2-x -5D .4x 2-54.下列计算中正确的是 ( )A .a n ·a 2=a 2nB .(a 3)2=a 5C .x 4·x 3·x =x 7D .a 2n -3÷a 3-n =a 3n -6 5.x 2m +1可写作( ) A .(x 2)m +1 B .(x m )2+1 C .x ·x 2m D .(x m )m +16.如果x 2-kx -ab =(x -a )(x +b ),则k 应为( )A .a +bB .a -bC .b -aD .-a -b 7.()2a b --等于( ).A .22a b +B .22a b - C .222a ab b ++ D .222a ab b -+8.若a ≠b ,下列各式中成立的是( )A .(a +b )2=(-a +b )2B .(a +b )(a -b )=(b +a )(b -a ) ))-031)2010(231()2(-+----π)(2()1(22c a ab -⋅-()⎪⎭⎫ ⎝⎛÷+-223431963)4(a a a a )2)(4)(2()5(22a b ba b a ++-()()224232)3(b ab a ab --)2)((4)2()6(2y x y x y x +---C .(a -b )2n =(b -a )2nD .(a -b )3=(b -a )39.若a +b=-1,则a 2+b 2+2ab 的值为 ( ) A .1 B .-1 C .3 D .-310.两个连续奇数的平方差是 ( )A .6的倍数B .8的倍数C .12的倍数D .16的倍数二、填空题11.一个十位数字是a ,个位数学是b 的两位数表示为10a +b ,交换这个两位数的十位数字和个位数字,又得一个新的两位数,前后两个数的差是 .12. x +y =-3,则5-2x -2y =_____.13. 已知(9n )2=38,则n =_____.14.若(x +5)(x -7)=x 2+mx +n ,则m =____,n =______.15.(2a -b )( )=b 2-4a 2.16.(x -2y +1)(x -2y -1)2=( )2-( )2=_______.17.若m 2+m -1=0,则m 3+2m 2+2008= .三、计算题(共30分,每题5分)18.(2a -3b )2(2a +3b )2; 19.(2x +5y )(2x -5y )(-4x 2-25y 2);20.(x -3)(2x +1)-3(2x -1)2 21. 4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);22.(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );23.已知a 3=5,b 9=10,求b a 23+.四、解答题19.已知多项式32241x x --除以一个多项式A ,得商式为2x ,余式为1x -。
北师大版七年级数学下册知识点梳理

北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
第一章 整式

第一章:整式知识要求:1、理解、掌握整式的有关概念2、牢固地掌握幂的运算性质和整式乘除的运算法则,理解、掌握乘法公式;3、加强运算能力,以及分析问题、解决问题的能力知识重点:整式的乘法及乘法公式,幂的相关运算性质。
知识难点:熟练掌握整式的有关计算及相关运用:幂的运算,整式乘法,整式除法。
知识点:一、整式的有关概念1、整式:可以看成是分母不含有字母的代数式,要注意两点:一是字母不含有字母但可以是数字,二要是代数式不能含有等号等表示数量关系的符号。
2、整式:分为单项式和多项式。
3、单项式:只含有数字与字母的乘积的整式叫单项式,单独的一个数字和单独的一个字母也可以看成是单项式。
一个单项式中所有字母的指数和叫这个单项式的次数。
一个单项式中的数字因数叫做这个单项式的系数。
4、多项式:几个单项式的和叫做多项式。
一个多项式中,次数最高的项的次数叫这个多项式的次数。
注意:单项式的系数是单项式中的数字因数,不要忘记符号和分母的数字。
不要把多项式的次数与单项式的次数搞混。
二、整式的有关基本计算1、整式的加减:整式的加减实质上就是合并同类项,基本步骤为:(1)去括号;(2)合并同类项。
要注意去括号法则、乘法分配律和合并同类项的法则。
若要求代数式的值要先代简再代入求值。
2、同底数幂的乘法:两个同底数幂相乘,底数不变,指数相加。
n m n m aa a +=⋅,计算时要注意符号和与整式加法的区别。
3、幂的乘法与积的乘方:幂的乘方,底数不变,指数相乘,n m n m aa ∙=)(。
积的乘方,等于各个因式的乘方的积,()n n nb a ab =。
计算时要注意符号以及与同底数幂乘法、去括号的区别,切记法则的条件不要把计算法则乱串。
4、同底数幂的除法:同底数幂相除,底数不变,指数相减,n m n m a a a -=÷。
负指数和零指数的意义:10=a ,)0(≠a ;p p aa 1=-,)0(≠a 。
要注意底数不能为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的运算
1.宇宙空间的年龄通常以光年作单位,1光年是光在一年内通过的距离,如果光的速度为每秒3×107千米,一年约为3.2×107秒,那么1光年约为多少千米?
2.在航天飞行中,通常把卫星绕地球的速度称为第一宇宙速度,第一宇宙速度为7.9×103米/秒,求卫星绕地球运行24小时(一天)所走的路程是多少千米?
3.小明和小刚在一次赛跑比赛中,小明的速度与小刚速度之比为3:2,若小明的速度为b 米/秒,则小刚的速度应为 米/秒。
4
)。
a.19个
b.190个
c.380个
d.400个
5.以x 的多项式表示下图的面积。
6.求下面图形的总面积
a
a 3a
7.在括号中填入适当的数或式子。
78)()(x y y x -=--( )=7)(y x -( )
8.四个连续整数的积加1,一定是某个整数的平方。
你相信吗?试说明你信或不信的理由。
9.下列代数式中哪些是整式?哪些是单项式?哪些是多项式?
3
,121,,,41,41,54,31,42323222x y x y x x b a x x a y x b a x --+---+-- 10.下列单项式是几次单项式?它们的系数各是什么?
225,3
4
,103,,mnp xy t x a --⨯- 11.如果圆的直径用d 表示,写出表示圆的周长和面积的两个单项式。
12.已知48,32,1532
2=+-=+-=C p B p p A ,求(B-C)-[A-(B+C)]。
13.在括号里填入适当的代数式:
2-[2(x+3y)-3( )]=x+2
14.计算:
1.)32(2472222b ab a b ab a +---+
2.)2()252(2222y xy x y xy x ++-+-,其中x=-1,y =2
3.)3()75()753(323+---++-+-a a a a a a a
15.三角形的长分别是(2x+1)cm ,(x 2-2)cm ,(x 2-2x+1)cm ,这个三角形的周长是 cm ,如果x =3,那么三角形的周长是 cm 。
16.计算:
(1))()(42x x x -∙-∙-
(2))13
1035()51(232+-∙-y x y x xy (3)1212)2()
2(-+-∙-n n a b b a (n 是正整数)
【答案】
1. 因为1年=3.2×107,光速为3×107千米/秒
所以1光年约为3.2×107×3×107=9.6×1014(千米)
2.8.64×104×7.9×103≈6.83×108
3.32b
米/秒
4.b
5.x x 242+
6.16a 2
7.)(),(y x x y ----
8.略
9.单项式:x 4-,y x 254
,x ,3x -
多项式:121,,41,31
232322-+-
-+-y x y x x b a a
b a 整式:x 4-,y x 254
,x ,3x
-,121
,,41,31
232322-+--+
-y x y x x b a a
b a 10.
1次,系数是1;
1次, -1;
1次, 3×105;
3次, 34
-;
5次, -1。
11.24
,d d π
π 12.5572++-p p
13.y x 2+
14.(1)22555b ab a -+
(2)13
(3)4823+--a a
15.22x ,18
16.略。