专题训练(四) 特殊平行四边形的证明与计算
中考特殊平行四边形证明及计算经典习题及答案

中考特殊平行四边形证明及计算经典习题及答案金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一、解答题1、(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF 过点O,分别交AD,BC于点E,F、求证:AE=CF、(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I、求证:EI=FG、考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题)、分析:(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF、(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG、解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG、点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质、此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用、2、在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F、若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB、请直接应用上述信息解决下列问题:当点P分别在△ABC 内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明、考点:平行四边形的性质、专题:探究型、分析:在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF﹣PD=CF,即PF﹣PD+PE=AC=AB、解答:解:图2结论:PD+PE+PF=AB、证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM、∵四边形BDPM是平行四边形,∴MB=PD、∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB、图3结论:PE+PF﹣PD=AB、点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键、3、如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F、(1)若点D 是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由、考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质、专题:证明题、分析:(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC、解答:(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30,∵△AED是等边三角形,∴AD=AE,∠ADE=60,∴∠EDB=90﹣∠ADE=90﹣60=30,∵ED∥CF,∴∠FCB=∠EDB=30,∵∠ACB=60,∴∠ACF=∠ACB﹣∠FCB=30,∴∠ACF=∠BAD=30,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD、(2)解:△AEF和△ABC的面积比为:1:4;(3)解:成立、理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60+∠BCF,∠BDA=∠ADE+∠EDB=60+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF 中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC、点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握、此题涉及到的知识点较多,综合性较强,难度较大、4、如图,在菱形ABCD中,AB=10,∠BAD=60度、点M从点A 以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10)、(1)点N为BC边上任意一点,在点M 移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M 出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P、当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值、考点:菱形的性质;二次函数的最值;全等三角形的性质、专题:压轴题、分析:(1)菱形被分割成面积相等的两部分,那么分成的两个梯形的面积相等,而两个梯形的高相等,只需上下底的和相等即可、(2)易得菱形的高,那么用t表示出梯形的面积,用t的最值即可求得梯形的最大面积、(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可、解答:解:(1)设:BN=a,CN=10﹣a(0≤a≤10)因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)所以,AM=1t=t(0≤t≤10),MD=10﹣t (0≤t≤10)、所以,梯形AMNB的面积=(AM+BN)菱形高2=(t+a)菱形高2;梯形MNCD的面积=(MD+NC)菱形高2=[(10﹣t)+(10﹣a)]菱形高2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10,(0≤t≤10),(0≤a≤10)所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分、(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,因为AB=10,∠BAD=60,所以菱形高=5,AM=1t=t,BN=2t=2t、所以梯形ABNM的面积=(AM+BN)菱形高2=3t5=t(0≤t≤5)、所以当t=5时,梯形ABNM的面积最大,其数值为、(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25;因为要全等必有MN∥AC,∴N在C点外,所以不重合处面积为(at﹣10)2∴重合处为S=25﹣,当S=0时,即PM在CD上,∴a=2、点评:本题考查了菱形以及相应的三角函数的性质,注意使用两条平行线间的距离相等等条件、5、如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形、请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形)、(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系、考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理、分析:(1)①先证明是平行四边形,再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形,再根据对角线互相垂直证明是菱形;(2)先作一条对角线,在作出它的垂直平分线分别与矩形的边相交,连接四个交点即可、(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论、解答:解:(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵矩形ABCD,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90,∵E、F、G、H是中点,∴AE=BE=CG=DG,AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH 是菱形;若选(Ⅲ),证明如下∵EF垂直平分AC,∴FA=FC,EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴A F=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示:AH=CF,EG垂直平分对角线FH,四边形HEFG是菱形;(3)SABGH=a2 ,SEFGH=ab,S菱形AECF=,∵﹣a2==>0(b>a)∴S菱形AECF>SABGH、∵﹣ab===>0,∴S菱形AECF>SEFGH、∵a2 ﹣ab=a(a﹣b)∴当a>b,即0<b<2a时,S菱形ABGH>S菱形EFGH;当a=b,即b=2a 时,S菱形ABGH=S菱形EFGH;当a<b,即b>a时,S菱形ABGH<S菱形EFGH、综上所述:当O<b<2a时,SEFGH<SABGH<S菱形AECF、当b=2a时,SEFGH=SABGH<S菱形AECF、当b>2a时SABGH<SEFGH<S菱形AECF、点评:本题主要考查了菱形的判定与性质,三角形中位线定理,全等三角形的判定与性质以及矩形的性质等知识点、注意第(3)题需要分类讨论,以防错解、6、在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG、(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120,请直接写出∠BDG 的度数、考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质、分析:(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90可得到∠BDM的度数;(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形、由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案、解答:解:(1)证明:∵AF 平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形、(2)如图,连接BM,MC,∵∠ABC=90,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90,∴四边形ECFG为正方形、∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45,∴∠BEM=∠DCM=135,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME、∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90,∴△BMD是等腰直角三角形,∴∠BDM=45;(3)∠BDG=60,延长AB、FG交于H,连接HD、∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120,AF平分∠BAD,∴∠DAF=30,∠ADC=120,∠DFA=30,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD 为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60、点评:此题主要考查平行四边形的判定方法,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法、7、在△ABC中,∠BAC=90,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上,其他条件不变,写出∠AFC、∠ACB、∠DAC的关系,并结合图2给出证明;(2)若点D在CB 延长线上,其他条件不变,直接写出∠AFC、∠ACB、∠DAC的关系式、考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质、专题:几何综合题、分析:(1)∠AFC、∠ACB、∠DAC的关系为:∠AFC=∠ACB﹣∠DAC,理由为:由四边形ADEF为正方形,得到AD=AF,且∠FAD为直角,得到∠BAC=∠FAD,等式左右两边都加上∠CAD得到∠BAD=∠CAF,再由AB=AC,AD=AF,利用SAS可得出三角形ABD与三角形ACF全等,根据全等三角形的对应角相等可得出∠AFC=∠ADB,又∠ACB为三角形ACD的外角,利用外角的性质得到∠ACB=∠ADB+∠D AC,变形后等量代换即可得证;(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180,可以根据∠DAF=∠BAC=90,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180,等量代换可得证、解答:解:(1)关系:∠AFC=∠ACB﹣∠DAC,…(2分)证明:∵四边形ADEF为正方形,∴AD=AF,∠FAD=90,∵∠BAC=90,∠FAD=90,∴∠BAC+∠CAD=∠FAD+∠CAD,即∠BAD=∠CAF,…(3分)在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),…(4分)∴∠AFC=∠ADB,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADB+∠DAC,…(5分)∴∠ADB=∠ACB﹣∠DAC,∵∠ADB=∠AFC,∴∠AFC=∠ACB﹣∠DAC;…(6分)(2)∠AFC、∠ACB、∠DAC满足的关系式为:∠AFC+∠DAC+∠ACB=180,…(8分)证明:∵四边形ADEF为正方形,∴∠DAF=90,AD=AF,又∠BAC=90,∴∠DAF=∠BAC,∴∠DAF﹣∠BAF=∠BAC﹣∠BAF,即∠DAB=∠FAC,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,在△ADC中,∠ADB+∠ACB+∠DAC=180,则∠AFC+∠ACB+∠DAC=180、点评:此题考查了正方形的性质,全等三角形的判定与性质,三角形的内角和定理,以及三角形的外角性质,熟练掌握判定及性质是解本题的关键、8、已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON、(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系、考点:正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质、专题:代数几何综合题、分析:(1)根据正方形的性质得出DC=BC,∠DCB=∠CBN=90,求出∠CPD=∠DCN=∠CNB,证△DCP≌△C BN,求出CP=BN,证△OBN≌△OCP,推出ON=OP,∠BON=∠COP,求出∠PON=∠COB即可;(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可、解答:(1)证明:如图1,∵正方形ABCD,∴OC=OB,DC=BC,∠DCB=∠CBA=90,∠OCB=∠OBA=45,∠DOC=90,DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90,∴∠BCN+∠CPD=90,∠PCN+∠DCN=90,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中,∴△DCP≌△CBN,∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP,∴ON=OP,∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90,∴ON⊥OP,即ON=OP,ON⊥OP、(2)解:∵AB=4,四边形ABCD是正方形,∴O 到BC边的距离是2,图1中,S四边形OPBN=S△OBN+S△BOP,=(4﹣x)2+x2,=4(0<x<4),图2中,S四边形OBNP=S△POB+S△PBN=x2+(x﹣4)x=x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:、点评:本题考查了正方形性质,全等三角形的性质和判定,分段函数等知识点的应用,解(1)小题的关键是能运用性质进行推理,解(2)的关键是求出符合条件的所有情况,本题具有一定的代表性,是一道比较好的题目,注意:证明过程类似、9、如图,四边形ABCD是正方形,点E,K分别在BC,AB 上,点G在BA的延长线上,且CE=BK=AG、(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG (要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当时,请直接写出的值、考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图、分析:(1)由已知证明DE、DG所在的三角形全等,再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;(4)由已知表示出的值、解答:(1)证明:∵四边形ABCD 是正方形,∴DC=DA,∠DCE=∠DAG=90、又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90,∴∠ADE+∠GDA=90∴DE⊥DG、(2)解:如图、(3)解:四边形CEFK为平行四边形、证明:设CK、DE相交于M点∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD 是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90,∴∠KME+∠DEF=180,∴CK∥EF,∴四边形CEFK为平行四边形、(4)解:∵,∴设CE=x,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,∵BC2=n2x2,∴==、点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂、10、如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点、(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由、考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质、分析:(1)根据点P 在线段AO上时,利用三角形的全等判定可以得出PE⊥P D,PE=PD;(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要证PE⊥PD;从三方面分析,当点E在线段BC上(E与B、C不重合)时,当点E与点C重合时,点P恰好在AC中点处,当点E在BC的延长线上时,分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案、解答:解:(1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴P E=PD,过点P做PM⊥CD,于点M,作PN⊥BC,于点N,∵PB=PE,PN⊥BE,∴BN=NE,∵BN=DM,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE,NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90,∴∠DPE=90,故PE⊥PD,PE与PD 的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD、(i)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD、(ii)当点E在BC的延长线上时,如图、∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90,∴PE⊥PD、综合(i)(ii),PE⊥PD;(3)同理即可得出:PE⊥PD,PD=PE、点评:此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识,此题涉及到分类讨论思想,这是数学中常用思想同学们应有意识的应用、巩固训练:1、如图,矩形ABCD的对角线交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,连接AF,CE、(1)求证:四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G,则△ACG 是等腰三角形吗?并说明理由、考点:平行四边形的判定;全等三角形的判定;等腰三角形的判定;矩形的性质、专题:证明题;几何综合题;探究型、分析:(1)根据矩形的性质可知:AB=CD,∠ABE=∠CDF,∠AEB=∠CFD=90,得到△ABE≌△CDF,所以AE∥CF,AE=CF,可证四边形AECF为平行四边形;(2)因为AE∥FG,得到∠G=∠GAE、利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO、所以∠CAG=∠G,可得△CAG是等腰三角形、解答:(1)证明:∵矩形ABCD,∴AB∥CD,AB=CD、∴∠ABE=∠CDF,又∠AEB=∠CFD=90,∴AE∥CF,∴△ABE≌△CDF,∴AE=CF、∴四边形AECF为平行四边形、(2)解:△ACG是等腰三角形、理由如下:∵AE∥FG,∴∠G=∠GAE、∵AG平分∠BAD,∴∠BAG=∠DAG、又OA=AC=BD=OD,∴∠ODA=∠DAO、∵∠BAE与∠ABE互余,∠ADB与∠ABD互余,∴∠BAE=∠ADE、∴∠BAE=∠DAO,∴∠EAG=∠CAG,∴∠CAG=∠G,∴△CAG是等腰三角形、点评:本题考查三角形全等的性质和判定方法以及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL、判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件、2、如图,在Rt△ABC中,∠BAC=90,E,F 分别是BC,AC的中点,延长BA到点D,使AD=AB、连接DE,DF、(1)求证:AF与DE互相平分;(2)若BC=4,求DF的长、考点:平行四边形的判定、专题:计算题;证明题、分析:(1)连接EF、AE,证四边形AEFD是平行四边形即可、(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可、解答:(1)证明:连接EF,AE、∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB、又∵AD=AB,∴EF=AD、又∵EF∥AD,∴四边形AEFD是平行四边形、∴AF与DE互相平分、(2)解:在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2、又∵四边形AEFD是平行四边形,∴DF=AE=2、点评:本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半、3、如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF、请回答下列问题:(1)求证:四边形ADEF是平行四边形;(2)当△ABC满足什么条件时,四边形ADEF 是矩形、考点:平行四边形的判定;等边三角形的性质;矩形的判定、专题:证明题;探究型、分析:1、本题可根据三角形全等证得DE=AF,AD=EF,即可知四边形ADEF是平行四边形2、要使四边形ADEF是矩形,必须让∠FAD=90,则∠BAC=360﹣90﹣60﹣60=150解答:证明:(1)∵等边△ABD、△BCE、△ACF,∴DB=AB,BE=BC、又∠DBE=60﹣∠EBA,∠ABC=60﹣∠EBA,∴∠DBE=∠ABC、∴△DBE≌△CBA、∴DE=AC、又∵AC=AF,∴AF=DE、同理可证:△ABC≌△FCE,证得EF=AD、∴四边形ADEF是平行四边形、(2)假设四边形ABCD是矩形,∵四边形ADEF是矩形,∴∠DAF=90、又∵等边△ABD、△BCE、△ACF,∴∠DAB=∠FAC=60、∴∠BAC=360﹣∠DAF﹣∠FAC﹣∠DAB=150、当△ABC满足∠BAC=150时,四边形ADEF是矩形、点评:此题主要考查了等边三角形的性质和平行四边形的判定、4、已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点、(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上、设BM与EF相交于点N,求证:四边形ANGM是菱形;(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP 的长、考点:菱形的判定;矩形的性质、专题:计算题;证明题、分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD∥EF∥BC、∴MO:ON=AO:OG=1:1,∴MO=NO;(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=,求得PA=、解答:(1)证明:设AG交MN于O,则∵A、G关于BM对称,∴AO=GO,AG⊥MN、∵E、F分别是矩形ABCD中AB、CD的中点,∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC、∴MO:ON=AO:OG=1:1、∴MO=NO、∴AG与MN互相平分且互相垂直、∴四边形ANGM是菱形、(2)解:连接AF,∵AD∥EF∥BC,∴∠PAF=∠AFE,∠EFB=∠FBC、又∵EF⊥AB,AE=BE,∴AF=BF,∴∠AFE=∠EFB、∴∠PAF=∠AFE=∠EFB=∠FBC、∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC、∴∠PFA=∠FBC=∠PAF、∴PA=PF、∴在Rt△P FD中,根据勾股定理得:PA=PF=,解得:PA=、点评:本题主要考查菱形和平行四边形的识别及推理论证能力、对角线互相垂直平分的四边形是菱形、5、如图1,在△ABC中,AB=BC=5,AC=6、△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE 相交于点O、(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R、四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积、考点:菱形的判定与性质、专题:动点型;数形结合、分析:(1)利用平移的知识可得四边形ABCE是平行四边形,进而根据AB=BC可得该四边形为菱形;(2)利用证明三角形全等可得四边形PQED的面积为三角形BED的面积,所以不会改变;进而利用三角形的面积公式求解即可、解答:解:(1)四边形ABCE是菱形,证明如下:∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,∴四边形ABCE是平行四边形,(2分)又∵AB=BC,∴四边形ABCE是菱形、(4分)(2)由菱形的对称性知,△PBO≌△QEO,∴S△PBO=S△QEO(7分)∵△ECD是由△ABC平移得到的,∴ED∥AC,ED=AC=6,又∵BE⊥AC,∴BE⊥ED,(8分)∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED=BEED=86=24、(10分)点评:考查菱形的判定及相关性质;把不规则图形的面积转化为较简单的规则图形的面积是解决本题的关键、6、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点、(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由、考点:矩形的判定与性质;平行四边形的判定;菱形的判定、分析:(1)根据三角形的中位线的性质和平行四边形的判定定理可证明、(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值、(3)四边形PMEN是矩形的话,∠DPC必需为90,判断一下△DPC是不是直角三角形就行、解答:解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,∵PA=PB=5,AD=BC,∠A=∠B=90,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PMPD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)假设△DPC为直角三角形、设PA=x,PB=10﹣x,DP=,CP=、DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8、故当AP=2或AP=8时,能够构成直角三角形、点评:本题考查平行四边形的判定,菱形的判定定理,以及矩形的。
特殊平行四边形专题含答案

特殊平行四边形专题一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=______;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=_______;(2)求证:∠ADF=∠EDF;(3)求DE的长.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.特殊平行四边形专题参考答案与试题解析一.解答题(共20小题)1.如图,正方形ABCD,点E,F分别在AD,BD上,且DE=CF,AF,BE相交于点G,求证:BE⊥AF.解:∵四边形形ABCD是正方形,∴AB=AD=DC,∠BAD=∠D=90°,又∵DE=CF,∴AE=DF,∴在△BAE和△ADF中,,∴△BAE≌△ADF(SAS).∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AGB=90°,∴BE⊥AF.2.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.3.已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,又∵AE⊥BF,∴四边形ABEF是菱形;(2)解:∵菱形ABEF的周长为16,∴AB=BE=4,AB∥EF,∴∠ABE=180°﹣∠BEF=180°﹣120°=60°,∴△ABE是等边三角形,∴AE=AB=4.4.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.(1)求证:△BEF≌△DGF;(2)证明四边形DEBG是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FEB=∠FGD,∠FBE=∠FDG,∵F是BD的中点,∴BF=DF,在△BEF和△DGF中,,∴△BEF≌△DGF(AAS);(2)由(1)得:△BEF≌△DGF,∴BE=DG,∵BE∥DG,∴四边形DEBG是平行四边形,∵∠ADB=90°,E是AB的中点,∴DE=AB=BE,∴四边形DEBG是菱形.5.如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,可得BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.6.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.解:(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.7.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.解:(1)证明:∵正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BF A=90°=∠AED,∴△ABF≌△DAE(AAS),∴AF=DE,AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形不能是平行四边形.8.如图,四边形ABCD中,已知AB⊥BC,CD⊥BC,且AB=CD.(1)求证:四边形ABCD为矩形;(2)对角线AC,BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO 的面积.(1)证明:∵AB⊥BC,CD⊥BC,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD为矩形;(2)解:∵四边形ABCD为矩形,∴∠BAC=90°,∵AB=3,AD=4,∴BD=5,∵S△ABD=AB•AD=BD•AE,∴3×4=5AE,∴AE=,∵AC=BD=5,∴AO=AC=,∵AE⊥BD,∴OE===,∴△AEO的面积==.9.如图,矩形ABCD的对角线交于点O,点E是矩形外的一点,其中AE∥BD,BE∥AC.求证:四边形AEBO是菱形.证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴四边形AEBO是菱形.10.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO =BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:作OF⊥BC于F,如图所示.∵四边形ABCD是矩形,∴CD=AB=1,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=1,∴△OEC的面积=•EC•OF=.11.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,DO=BO,∴∠EDO=∠FBO,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵BO=DO,EF⊥BD,∴ED=EB,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.12.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.(1)求证:DE平分∠AEC;(2)若AD=,求出DG的长.解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥DC,∠ABC=90°,∵BC=BE,∴CE=BC,∵AB=BC,∴CD=CE,∴∠CDE=∠CED,∵AB∥CD,∴∠CDE=∠AED,∴∠AED=∠DEC,∴DE平分∠AEC;(2)∵BC=BE,∠CBE=90°,∴∠BCE=∠BEC=45°,∵CD∥AB,∴∠DCE=∠BEC=45°,∵DF⊥CE,∴∠CDF=45°,∴DF=CF,∴CD=DF,∵AB=CD,AB=,BC=BE,∴BE=DF=CF=BC,∵∠ADC=90°,∴∠FDG=45°,∴∠BEF=∠EDF,∵BC=CF,∠BCF=45°,∴∠CBF=∠CFB=67.5°,∴∠EBF=90°﹣67.5°=22.5°,∠DFG=180°﹣67.5°﹣90°=22.5°,∴∠EBF=∠DFG,在△DFG和△EBF中,∴△DFG≌△EBF(ASA),∴DG=EF,∵EF=CE﹣CF=AB﹣BC=,∴DG=2.13.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=5;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.解:(1)如图1,连接CG,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG===5;故答案为:5;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG==;(3)分三种情况:①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=,由勾股定理得:KG==,∴CE=KG=,此种情况不成立;②当点E在边CD上时,如图4,同理得:DE=;③当点E在DC的延长线上时,如图5,同理得CE=GK=,∴DE=5+=,综上,DE的长是或.14.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.(1)证明:∵△ADE为等边三角形,∴AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠AEB=(180°﹣150°)=15°.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.16.如图,矩形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE,OE.(1)求证:四边形ABDE是平行四边形;(2)若AD=DE=4,求OE的长.解:(1)∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵DE=CD,∴DE=AB,∴四边形ABDE是平行四边形.(2)∵AD=DE=4,∠ADE=90°,∴AE=4,∴BD=AE=4.在Rt△BAD中,O为BD中点,∴AO=BD=2.∵AD=CD,∴矩形ABCD是正方形,∴∠EAO=∠OAD+∠DAE=45°+45°=90°,∴OE=2.17.菱形ABCD中,AD=6,AE⊥BC,垂足为E,F为AB边中点,DF⊥EF.(1)直接写出结果:EF=3;(2)求证:∠ADF=∠EDF;(3)求DE的长.解:(1)∵AE⊥BC,∴∠AEB=90°,∵AD=6,F为AB边中点,∴EF=AB=AD=3.故答案为:3;(2)延长EF交DA于G,∵AD∥BC,∴∠G=∠FEB,∠GAB=∠B,∵AF=BF,∴△AGF≌△BEF(AAS),∴GF=EF,∵DF⊥EF,∴DG=DE,∴∠ADF=∠EDF;(3)设BE=x,则AG=x,则DE=DG=6+x,∵AE2=AB2﹣BE2=62﹣x2,AE2=DE2﹣AD2=(x+6)2﹣62,∴62﹣x2=(x+6)2﹣62,解得x=﹣3±3,∴BE=﹣3+3,∴DE═﹣3+3+6═3+3.18.如图,在▱ABCD中,对角线AC、BD相交于点O,AC⊥AB,∠AOB=60°.点E、点F分别是OB、OD的中点,连接AE、EC、CF、F A.(1)求证:四边形AECF为矩形;(2)若AB=3,求矩形AECF的面积.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、点F分别是OB、OD的中点,∴OE=OB,OF=OD,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥AB,∠AOB=60°,∴∠ABO=30°,∴OA=OB=OE,∴AC=EF,∴四边形AECF为矩形;(2)解:由(1)得:OA=OE=OC=OF,∠AOB=60°,∠ABO=30°,∴△OAE是等边三角形,∠OF A=∠OAF=30°=∠ABO,∴AE=OA,AF=AB=3,∵AC⊥AB,∴∠OAB=90°,∴AE=OA=AB=,∴矩形AECF的面积=AF×AE=3.19.如图,在△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,F为BC边的中点,连接EF,DF.(1)求证:EF=DF;(2)若BC=6.求△DEF的周长;(3)在(2)的条件下,若EC=BF,求四边形EFDA的面积.(1)证明:∵BD⊥AC于点D,CE⊥AB于点E,∴∠BDC=∠BEC=90°,∵BF=CF,∴DF=EF=BC.(2)解:∵FE=FB=FC=FD,∴∠FBE=∠FEB,∠FCD=∠FDC,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠DFC=180°﹣2∠ABC+180°﹣2∠ACB=120°,∴∠EFD=60°,∵EF=DF,∴△EFD是等边三角形,∵EF=BC=3,∴△DEF使得周长为9.(3)∵EC=BF,BF=CF,∴EC=BC,∴cos∠BCE=,∴∠ECB=45°,∵BC=6,∴EB=EC=3,∵∠A=60°,∠AEC=90°,∴AE=×3=,∴AB=BE+AE=3+,在Rt△ADB中,∵∠ABD=30°,∴AD=AB=,∴S四边形EFDA=S△EDF+S△ADE=×32+×××=3+.20.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.解:在正方形ABCD中,AB=CD=CD=AD,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.。
特殊平行四边形相关计算与证明(培优专用)

特殊平行四边形相关计算与证明常见题型矩形菱形正方形的性质和判定总表矩形菱形正方形性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。
·是矩形,且有一组邻边相等;·是菱形,且有一个角是直角。
对称性既是轴对称图形,又是中心对称图形专题一:特殊平行四边形的有关证明一. 矩形矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)性质1:矩形的四个角都是直角.性质2:矩形的对角线相等且互相平分.如右图,在矩形ABCD中,可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.矩形的判定方法:方法1:对角钱相等的平行四边形是矩形.方法2:有三个角是直角的四边形是矩形.方法3:有一个角是直角的平行四边形是矩形.方法4:对角线相等且互相平分的四边形是矩形.例1.如图,在矩形ABCD中,对角线AC,BD交于点O,已知0120AOD∠=,AB=2.5,则AC的长为。
例2. 如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.例3. 如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.4例4.已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A 到BD 的距离AE 的长.例5 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .例6.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.例7、如图,在 ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.FE DCBA例2B F CA H D E G二.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形. 菱形的性质性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,且每条对角线平分一组对角; 菱形的判定方法1:对角线互相垂直的平行四边形是菱形.方法2:四边都相等的四边形是菱形.例1. 已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( ) A .12cm 2 B . 24cm 2 C . 48cm 2 D . 96cm 2 例2 .若一个菱形的边长为2,则这个菱形两条对角线的平方和为( )A 16B 8C 4D 1例3如图,P 是菱形ABCD 对角线BD 上一点,PE ⊥AB 于点E ,PE =4cm ,则点P 到BC 的距离是_________cm.例4. 菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A . 32B .33C . 34D . 3 例5 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .例6已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例7、如图,在ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例8、如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上A BCD E FO12FA DE B C的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.三.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形)②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等......并且有一个角是直角.......的平行四边形.....叫做正方形.正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.正方形的判定方法:1)有一个角是直角的菱形是正方形;2)有一组邻边相等的矩形是正方形.例1. 如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ;例2. 如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2.例3如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cmA'NMCA DEAD FNMFEA题3图 5E DCBA 例4 已知:如图,正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG ⊥AE 于G ,DG 交OA 于F . 求证:OE=OF .例5 已知:如图,四边形ABCD 是正方形,分别过点A 、C 两点作l 1∥l 2,作BM ⊥l 1于M ,DN ⊥l 1于N ,直线MB 、DN 分别交l 2于Q 、P 点.求证:四边形PQMN 是正方形.例6、如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB .(1)求证:① PE=PD ; ② PE ⊥PD ; (2)设AP =x , △PBE 的面积为y .① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值.例7:如图,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E .(1)求证:梯形ABCD 是等腰梯形. (2)若∠BDC =30°,AD =5,求CD 的长.四边形动点专题:证明与计算与中点相关的证明,或构造平行四边形将条件集中,或构造出中位线等等。
特殊平行四边形:证明题

特殊平行四边形之证明题 题型一:菱形的证明1、如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A '.若四边形ADA E '是菱形,则下列说法正确的是( )A.DE 是△ABC 的中位线B.AA '是BC 边上的中线C.AA '是BC 边上的高D. AA '是△ABC 的角平分线2.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.3、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.ACDEA 'ADGCBFEA BCDEF D ′4.如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . (1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是.5.两个完全相同的矩形纸片ABCD 、BFDE 如图7放置,AB BF =,求证:四边形BNDM 为菱形.6.如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE.(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.7.如图,将矩形ABCD 沿对角线AC 剪开,再把ACD △沿CA 方向平移得到A C D '''△. (1)证明A AD CC B '''△≌△;(2)若30ACB ∠=°,试问当点C '在线段AC 上的什么位置时,四边形ABC D ''是菱形,并请说明理由.CDEMABFNDAENMOCBAD A 'C '(第19题)D '8.在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.点D 作DE AC ∥交BC 的延长线于点E . (1)求BDE △的周长; (2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =..9.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN的数量关系,并证明你的结论.10.如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.AQ DE B PCOB CA DM N11、如图,已知:在四边形ABFC 中,ACB ∠=90BC ,︒的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE(1) 试探究,四边形BECF 是什么特殊的四边形;(2) 当A ∠的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论. (特别提醒:表示角最好用数字)12、如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△; (2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.13、如图,四边形ABCD 中,AB CD ∥,AC 平分BAD ∠,CE AD ∥交AB 于E . (1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断ABC △的形状,并说明理由.FDOB EA14、如图8,在ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△.(2)若AD BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.15、如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
特殊四边形的证明与计算

特殊四边形的证明与计算1.如图,△ABC 是等边三角形,点E 在线段AC 上,连接BE ,以BE 为边作等边三角形BEF ,将线段CE 绕点C 顺时针旋转60°,得到线段CD ,连接AF 、AD 、ED .(1)求证:△BCE ≌△ACD ;(2)求证:四边形ADEF 是平行四边形.第1题图证明:(1)∵△ABC 是等边三角形,∴BC =AC ,∠BCE =60°,由题意得CE =CD ,∠ECD =60°.在△BCE 和△ACD 中,⎩⎪⎨⎪⎧BC =AC ∠BCE =∠ACD =60°CE =CD, ∴△BCE ≌△ACD (SAS);(2)∵△BCE ≌△ACD ,∴AD =BE ,∠DAE =∠CBE ,∵△BEF 是等边三角形,∴BE=EF=BF,∠EBF=60°,∴AD=EF,∵△ABC与△BEF均是等边三角形,∴∠BCE=∠BEF=60°,∵∠BCE+∠CBE=∠BEF+∠AEF,∴∠CBE=∠AEF,∴∠DAE=∠AEF,∴AD∥EF,∴四边形ADEF是平行四边形.2.如图,在△ABC中,点D是边BC的中点,点E在△ABC内,AE 平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.(1)求证:四边形BDEF是平行四边形;(2)线段BF、AB、AC之间具有怎样的数量关系?证明你所得到的结论.第2题图(1)证明:如解图,延长CE交AB于点G,第2题解图∵AE ⊥CE ,∴∠AEG =∠AEC =90°,∵AE 平分∠BAC ,∴∠GAE =∠CAE ,在△AGE 和△ACE 中,⎩⎪⎨⎪⎧∠GAE =∠CAE AE =AE∠AEG =∠AEC, ∴△AGE ≌△ACE (ASA),∴GE =EC .∵点D 是边BC 的中点,∴BD =CD ,DE 为△CGB 的中位线,∴DE ∥BF .又∵EF ∥BC ,∴四边形BDEF 是平行四边形;(2)解:BF =12(AB -AC ).理由如下:由(1)可知,△AGE ≌△ACE ,四边形BDEF 是平行四边形,∴AG =AC ,BF =DE =12BG ,∴BF =12BG =12(AB -AG )=12(AB -AC ).3.如图,已知边长为22的正方形ABCD中,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)设AE=x,四边形DEFG的面积为S,当x为何值时,S的值最小,求出最小值.第3题图(1)证明:如解图①,过点E作EM⊥BC于点M,EN⊥CD于点N,第3题解图①∴∠MEN=90°,∴∠MEF+∠FEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN+∠FEN=90°,∴∠DEN =∠MEF ,在△DEN 和△FEM 中,⎩⎪⎨⎪⎧∠DNE =∠FME =90°EN =EM∠DEN =∠FEM, ∴△DEN ≌△FEM (ASA),∴DE =EF ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)解:∵在正方形ABCD 中,AB =22,∴AC =4,∠DAE =45°,如解图②,过点E 作EH ⊥AD 于点H ,第3题解图②∵AE =x (0<x <4),∴AH =EH =22x ,在Rt △DHE 中,DH =AD -AH =22-22x ,EH =22x ,根据勾股定理得,DE2=DH2+EH2=(22-22x)2+(22x)2=x2-4x+8,∵四边形DEFG为正方形,∴S=DE2=x2-4x+8=(x-2)2+4,∴当x=2时,S有最小值,即为4.4.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB =CD,延长CA至点E,使AE=AC;延长CB至点F,使BF=BC,连接AD、AF、DF、EF.延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.第4题图(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=180°-∠ABC=135°,∵∠BCD=90°,∴∠ACD=90°+∠ACB=135°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF =CD ,在△ABF 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ∠ABF =∠ACD BF =CD,∴△ABF ≌△ACD (SAS),∴AD =AF ;(2)解:四边形ABNE 是正方形.理由如下:∵CD =CB ,∠BCD =90°,∴∠CBD =45°,∵∠ABC =45°,∴∠ABD =90°,∴∠ABN =90°,由(1)知△ABF ≌△ACD ,∴∠F AB =∠CAD ,∴∠F AB +∠BAD =∠CAD +∠BAD =90°,∵∠EAF +∠F AB =90°,∴∠EAF =∠BAD ,∵AB =AC =AE ,AF =AD ,∴△AEF ≌△ABD (SAS).∴∠AEF =∠ABD =90°,∵∠EAB=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.5.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB 的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论.(请先补全图形,再解答)第5题图(1)证明:∵四边形ABCD是平行四边形,AD=AC,AD⊥AC.∴AC=BC,AC⊥BC,如解图,连接CE,第5题解图∵E为AB的中点,∴AE =EC ,CE ⊥AB ,∴∠ACE =∠CAE =45°,∴∠DAE =∠ECF =135°,又∵∠AED +∠CED =∠CEF +∠CED =90°,∴∠AED =∠CEF ,∴△AED ≌△CEF (ASA),∴ED =EF ;(2)解:补全图形如解图,四边形ACPE 是平行四边形;证明:∵由(1)得△AED ≌△CEF ,∴AD =CF ,∴AC =CF ,又∵CP ∥AE ,∴CP 为△F AB 的中位线,∴CP =12AB =AE ,∵CP ∥AE ,∴四边形ACPE 是平行四边形.6.如图,已知Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE 、FG 相交于点H .(1)判断线段DE 、FG 的位置关系,并说明理由;(2)连接CG,求证:四边形CBEG是正方形.第6题图(1)解:FG⊥DE.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE,∴∠DEB=∠ACB,∵把△ABC沿射线AB平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠GFE+∠DEB=90°,∴∠FHE=90°,∴FG⊥DE;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG+∠CBE=180°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG 是正方形.7.如图①,BD 是矩形ABCD 的对角线,∠ABD =30°,AD =1.将△BCD 沿射线BD 方向平移到△B ′C ′D ′的位置,使B ′为BD 中点,连接AB ′,C ′D ,AD ′,BC ′.如图②.(1)求证:四边形AB ′C ′D 是菱形; (2)四边形ABC ′D ′的周长为________.第7题图(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,AD =BC .由平移性质可知AD ∥B ′C ′,AD =B ′C ′, ∴四边形AB ′C ′D 为平行四边形, ∵∠DAB =90°,∠ABD =30°, ∴AD =12BD . ∵B ′为BD 中点, ∴AB ′=12BD , ∴AD =AB ′,∴四边形AB ′C ′D 是菱形;(2)解:4 3.【解法提示】如解图,连接AC′交B′D于点O,第7题解图∵四边形AB′C′D是菱形,∴AC′⊥BD′,OA=OC′,OD=OB′,又∵BD=B′D′,∴BB′=DD′,∴OB=OD′,∴四边形ABC′D′是菱形,∴tan∠ABD=tan30°=33=ADAB=1AB,得AB=3,∴四边形ABC′D′的周长是4 3.8.边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P 与A、C不重合).连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP的延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=38BC;(3)猜想PF 与EQ 的数量关系,并证明你的结论.第8题图(1)证明:由题意知BP =BQ ,∠PBQ =90°, 在正方形ABCD 中,AB =CB ,∠ABC =90°, ∴∠ABC =∠PBQ ,∴∠ABC -∠PBC =∠PBQ -∠PBC ,即∠ABP =∠CBQ , 在△ABP 和△CBQ 中, ⎩⎪⎨⎪⎧AB =CB ∠ABP =∠CBQ BP =BQ, ∴△ABP ≌△CBQ (SAS), ∴CQ =AP ;(2)解:在正方形ABCD 中,AC 为对角线, ∴∠BAP =∠PCE =45°,由旋转可知△PBQ 为等腰直角三角形, ∴∠BPQ =∠PQB =45°,在△ABP 中,∠BPC =∠BAP +∠ABP =45°+∠ABP , 又∵∠BPC =∠BPQ +∠CPE =45°+∠CPE ,∴∠ABP =∠CPE , 又∵∠BAP =∠PCE , ∴△BAP ∽△PCE , ∴AB CP =AP CE ,在等腰直角△ABC 中,AB =22, ∴AC =4,又∵AP =x ,CE =y ,∴CP =4-x , ∴224-x=x y ,即y =-24x 2+2x ,(0<x <4) 当CE =38BC 时,即CE =y =38×22=324, ∴324=-24x 2+2x , 解得x 1=1,x 2=3,∴y =-24x 2+2x (0<x <4),当x =1或3时,CE =38BC ; (3)解:猜想:PF =EQ .证明:①当点F 在线段AD 上时,如解图①,在CE 上取一点H ,使HQ =EQ ,则∠QEH =∠QHE ,第8题解图①在正方形ABCD 中,∵AD ∥BC , ∴∠DFE =∠QEH , ∴∠DFE =∠QHE , ∴∠AFP =∠CHQ ,由(1)知△ABP ≌△CBQ ,AP =CQ ,∠BAP =∠BCQ =45°, ∴∠F AP =∠BAP =∠BCQ =45°, 在△AFP 和△CHQ 中, ⎩⎪⎨⎪⎧∠F AP =∠HCQ ∠AFP =∠CHQ AP =CQ, ∴△AFP ≌△CHQ (AAS), ∴PF =HQ , 又∵HQ =EQ , ∴PF =EQ ;②当点F 在线段AD 延长线上时,如解图②,在BE 上取一点H ,使HQ =EQ ,第8题解图②同理可证△AFP ≌△CHQ (AAS),得FP =HQ =EQ.9.如图,在△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG 沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE 和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.第9题图(1)证明:∵△AEB由△AEG翻折得到,∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,∵△AFD由△AFG翻折得到,∴∠ADF=∠AGF=90°,∠DAF=∠F AG,AD=AG,∵∠EAG+∠F AG=∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠ABE=∠AGE=∠BAD=∠ADC=90°,∴四边形ABCD是矩形,又∵AB=AG=AD,∴四边形ABCD是正方形;(2)解:MN 2=ND 2+DH 2, 理由:如解图,连接NH ,第9题解图∵△ADH 由△ABM 旋转得到, ∴△ABM ≌△ADH ,∴AM =AH ,∠BAM =∠DAH ,∠ADH =∠ABM =45°,∴∠HAN =∠DAH +∠DAN =∠BAM +∠DAN =∠EAG +∠F AG =∠EAF ,∵在△AMN 和△AHN 中, ⎩⎪⎨⎪⎧AM =AH ∠MAN =∠NAH AN =AN, ∴△AMN ≌△AHN (SAS), ∴MN =NH , 由(1)知∠ADB =45°,∴∠HDN =∠ADH +∠ADN =90°, ∴在Rt △DHN 中,DH 2+DN 2=NH 2,∴MN2=ND2+DH2.10.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD 于点E,N,M,连接EO.(1)已知EO=2,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.第10题图解:(1)∵正方形ABCD的对角线AC,BD相交于点O,∴O是线段AC的中点,∵CF=AC,∴△ACF是等腰三角形,又∵CE平分∠ACF,∴E是AF的中点,∴EO是△ACF的中位线,∴CF=2EO=22,∴AC=22,∵四边形ABCD是正方形,∴∠ACB=45°,∴在Rt △ABC 中,AB =AC ·sin45°=22×22=2, ∴正方形ABCD 的边长为2. (2)猜想:EM =12CN . 证明:如解图,连接BE ,第10题解图由(1)知,E 是AF 的中点, ∴在Rt △ABF 中,EB =AE =12AF , ∴∠ABE =∠BAF ,∵AC =CF ,CE 平分∠ACF , ∴CE ⊥AF ,∴∠F +∠BCN =90°, 又∵∠F +∠BAF =90°, ∴∠BCN =∠BAF ,∵AB =BC ,∠ABF =∠CBN =90°, ∴△ABF ≌△CBN (ASA), ∴AF =CN ,∴EB =12AF =12CN ,又∵∠EBM =∠ABE +∠ABO =∠BAF +∠OBC =∠BCE +∠OBC =∠EMB ,∴EB =EM ,∴EM =12CN .11.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD 交AD 于点E ,交BC 于点F ,连接BE ,DF ,且BE 平分∠ABD .求证:四边形BFDE 是菱形;(2)把(1)中菱形BFDE 进行分离研究,如图②,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH 并延长交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;第11题图(1)证明:如解图①,第11题解图①∵四边形ABCD 是矩形, ∴AD ∥BC ,OB =OD , ∴∠EDO =∠FBO , 在△DOE 和△BOF 中, ⎩⎪⎨⎪⎧∠EDO =∠FBO OD =OB∠EOD =∠BOF, ∴△DOE ≌△BOF (ASA), ∴EO =OF , ∵OB =OD ,∴四边形BFDE 是平行四边形, ∵EF ⊥BD ,∴四边形BFDE 是菱形; (2)解:IH =3FH .理由:如解图②,延长BE 到点M ,使得EM =EJ ,连接MJ .第11题解图②如解图①,∵四边形BFDE 是菱形, ∴∠EBO =∠FBO ,又∵BE 平分∠ABD , ∴∠ABE =∠EBO ,∴∠ABE =∠EBO =∠FBO =30°, ∴∠EBF =60°,如解图②,由四边形BFDE 是菱形可得EB =BF =ED ,DE ∥BF , ∴∠JDH =∠FGH , 在△DHJ 和△GHF 中, ⎩⎪⎨⎪⎧∠DHJ =∠GHF DH =GH∠JDH =∠FGH, ∴△DHJ ≌△GHF (ASA), ∴DJ =FG ,JH =HF , ∴EJ =BG =EM =BI , ∴BE =IM =BF , ∵∠MEJ =∠B =60°, ∴△MEJ 是等边三角形,∴MJ =EM =BI ,∠M =∠EBF =60°, 在△BIF 和△MJI 中, ⎩⎪⎨⎪⎧BI =MJ ∠B =∠M BF =IM, ∴△BIF ≌△MJI (SAS),∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴IH=3FH.12.如图①,两个全等的等边三角形纸片ABC和DEF,其中点C和点F重合,点A、D均在直线l上,且AB⊥l,DE⊥l.如图①,保持纸片DEF不动,将△ABC沿l向右平移,直到AB与DE重合时停止,如图②,设BC与EF相交于点G,AC与DF相交于点H.(1)证明:四边形CGFH是菱形;(2)当AD=AB时,直接写出S△AHD与S菱形CGFH的关系;第12题图(1)证明:根据平移性质可知,GF∥HC,GC∥FH,∴四边形CGFH是平行四边形,∵AB⊥l,DE⊥l,∴∠BAD=∠EDA=90°,∵△ABC和△DEF都是等边三角形,∴∠BAC=∠EDF=60°,∴∠CAD=∠FDA=30°,∴HA=HD,∵△ABC≌△DEF,∴AC=DF,∴AC-AH=DF-DH,∴HC=HF,∴四边形CGFH是菱形;(2)解:S菱形CGFH=(8-43)S△AHD.【解法提示】如解图,过点H作HM⊥AD于点M,连接GH,设AB=AD=6a,第12题解图∵HA=HD,HM⊥AD,∴AM=MD=3a,∵∠HAM=30°,∴HM=33AM=3a,AH=2HM=23a,∴HC =AC -AH =6a -23a , ∵∠C =60°,四边形CGFH 是菱形, ∴△CGH 和△FGH 都是等边三角形,∴S 菱形CGFH =2S △CHG =2×34CH 2=32(6a -23a )2=(243-36)a 2, ∵S △ADH =12AD ·HM =12·6a ·3a =33a 2, ∴S △AHDS 菱形CGFH =33a 2(243-36)a 2=18-43, 即S 菱形CGFH =(8-43)S △AHD .13.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△COD 关于CD 的对称图形为△CED . (1)求证:四边形OCED 是菱形;(2)连接AE ,若AB =6 cm ,BC = 5 cm.求sin ∠EAD 的值.第13题图(1)证明:∵四边形ABCD 是矩形, ∴AC =BD ,且AC 、BD 互相平分, ∴DO =CO .∵△COD 与△CED 关于CD 对称, ∴△COD ≌△CED ,∴CO=CE,DO=DE,∴CE=CO=DO=DE,∴四边形OCED是菱形;(2)解:如解图,连接EO交CD于点F,延长交AB于点H.第13题解图∵四边形ABCD是矩形,AB=6 cm,∴BC⊥CD,CD=AB=6 cm.∵四边形OCED是菱形,∴EO⊥CD,且EO、CD互相平分,∴EF=FO,DF=FC=3 cm,FO∥BC,即EH∥BC,又∵CE∥OB,∴四边形OBCE为平行四边形.又∵BC= 5 cm,∴EF=FO=12BC=52cm.∵FO∥BC,在矩形ABCD中,AB∥CD,∠ABC=90°,∴四边形FHBC是矩形,∴FH=BC= 5 cm,HB=FC=3 cm,∴AH=AB-HB=3 cm,EH=EF+FH=352cm.∵AB ∥CD ,EH ⊥CD , ∴EH ⊥AB ,∴在Rt △AEH 中,AE 2=AH 2+EH 2=32+(352)2=814 cm 2, ∴AE =92 cm ,∴sin ∠AEH =AH AE =392=23,∵EH ∥BC ,AD ∥BC ,∴AD ∥EH ,∴∠EAD =∠AEH ,∴sin ∠EAD =sin ∠AEH =23. 14.如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分∠DEB ,F 为CE 的中点,连接AF ,BF ,过点E 作EH ∥BC 分别交AF ,CD 于G ,H 两点. (1)求证:DE =DC ; (2)求证:AF ⊥BF ;(3)当AF ·GF =28时,请直接写出CE 的长.第14题图(1)证明:∵四边形ABCD 为矩形,∴AB ∥DC ,∴∠DCE =∠CEB , ∵EC 平分∠DEB , ∴∠DEC =∠CEB , ∴∠DEC =∠DCE , ∴DE =DC ;(2)证明:如解图,连接DF ,第14题解图∵DE =DC ,F 为CE 的中点, ∴DF ⊥EC , ∴∠DFC =90°, 在矩形ABCD 中, AB =DC ,∠ABC =90°, ∴BF =CF =EF =12EC , ∴∠ABF =∠CEB , ∵∠DCE =∠CEB , ∴∠ABF =∠DCE , ∴△ABF ≌△DCF (SAS),∴∠AFB =∠DFC =90°,∴AF ⊥BF ;(3)解:CE =47.【解法提示】∵∠AFB =90°,∴∠BAF +∠ABF =90°, ∵EH ∥BC ,∠ABC =90°,∴∠BEH =90°, ∴∠FEH +∠CEB =90°,∵∠ABF =∠CEB ,∴∠BAF =∠FEH , ∵∠EFG =∠AFE ,∴△EFG ∽△AFE , ∴EF AF =GFEF ,∴EF 2=AF ·GF ,∵AF ·GF =28,∴EF =28=27,∴CE =2EF =47.15.如图,四边形ABCD 是正方形,AB =4,E 是边CD 上的点,F 是DA 的延长线上的点,且CE =AF .将△BCE 沿BE 折叠,得到△BC ′E ,延长BC ′交AD 于点G . (1)求证:△BCE ≌△BAF ; (2)①若DG =1,求FG 的长;②若∠CBE =30°,点B 和点H 关于DF 对称,求证:四边形FHGB 是菱形.第15题图(1)证明:∵四边形ABCD 为正方形,∴AB=BC,∠F AB=∠C=90°,第15题解图又∵CE=AF,∴△BCE≌△BAF(SAS);(2)①解:如解图,连接EG,∵四边形ABCD为正方形,AB=4,∴AD=AB=BC=4,∴AG=AD-GD=3,在Rt△ABG中,依据勾股定理可知BG=5.由翻折的性质可知EC′=EC,BC′=BC=4,∴C′G=BG-BC′=1,∴C′G=DG=1.在Rt△C′GE和Rt△DGE中,C′G=DG,EG=EG,∴Rt△C′GE≌Rt△DGE(HL),∴C′E=DE,∴EC=DE=2,∴AF=CE=2,∴FG=AF+AG=2+3=5;②证明:由翻折的性质可知∠C ′BE =∠CBE =30°. ∵∠ABC =90°,∴∠ABG =30°,∴AG =AB ·tan30°=433.∵在Rt △BCE 中,∠EBC =30°,∴EC =BC ·tan30°=433,∴AG =CE ,又∵CE =AF ,∴AF =AG .又∵点B 和点H 关于DF 对称,∴BH ⊥FG ,AH =AB .∵AF =AG ,AH =AB ,∴四边形FHGB 是平行四边形,又∵BH ⊥FG ,∴四边形FHGB 是菱形.。
中考数学精英复习课件:专题四 特殊平行四边形的证明与计算

②连接 AF′,DF. 在 Rt△DE′F 中,E′F=1,DE′=3, ∴DF= 10.在 Rt△AEF′中,EF′=9,AE=3, ∴AF′=3 10.
3.(2017·宁波)在一次课题学习中,老师让同学们合作编题,某学习 小组受赵爽弦图的启发,编写了下面这道题,请你来解一解: 如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至E,F,G, H,使得AE平行四边形; (2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH =2,求AE的长.
解:(1)在矩形 ABCD 中,AD=BC,∠BAD=∠BCD=90°, 又∵BF=DH, ∴AD+DH=BC+BF 即 AH=CF. 在 Rt△AEH 中,EH= AE2+AH2.
在 Rt△CFG 中,FG= CG2+CF2. ∵AE=CG, ∴EH=FG. 同理得,EF=HG. ∴四边形 EFGH 为平行四边形.
2.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC, 垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边 形AEE′D,则四边形AEE′D的形状为______;
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF =4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D. ①求证:四边形AFF′D是菱形; ②求四边形AFF′D的两条对角线的长.
毕节地区
专题四 特殊平行四边形的证明与计算
数学
菱形的性质与判定
【例1】(2015·安顺)如图,已知点D在△ABC的BC边上,DE∥AC交 AB于点E,DF∥AB交AC于点F. (1)求证:AE=DF; (2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. 思路点拨:(1)证明四边形AEDF为平行四边形; (2)▱AEDF为菱形,证明∠DAF=∠FDA即可.
2020北京市中考数学专题复习---特殊四边形的相关证明与计算

2020北京市中考数学专题复习特殊四边形的相关证明与计算一、简单专题集训特殊四边形的相关证明与计算(连续7年考查)类型一与平行四边形有关(8 年 2 考:2016.19, 2013.19)1.(2019大兴区一模)如图,矩形救刀,延长G?到点E使得庞=8,连接月匕呵.(1)求证:四边形/L5%是平行四边形:3⑵若tanZDBC=-. CD=d求期磁的而积.第1题图2.已知:如图,在期BCD中,ZADC. ZDAB的平分线DF、AE分别与线段BC相交于点氏E, DF 与AE 相交于点G.(1)求证:AE丄DF;(2)若AD=\0. AB=6, AE=4,求DF 的长.D第2题图类型二与菱形有关(8 年 4 考:2019.20、2018.21. 2017.22、2014.19)4・如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE(1)求证:BD=EC;(2)若ZE=57°,求ZBAO的大小.第1题图2. (2019海淀区一模)如图,在四边形ABCD中,AB//CD, AB=BC=2CD,£为对角线AC的中点, 为边BC 的中点,连接D£, EF.⑴求证:四边形CDEF为菱形;⑵连接DF交EC于点G,若DF=2, CD=|,求AD的长.第2题图3.(2019门头沟一模)如图,/£AABD中,ZABD = ZADB.分别以点B, D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,连接BC, DC和AC, AC与交于点O.(1)用尺规补全图形,并证明四边形ABCD为菱形;3(2)如果AB=5. cosZABD=j.求BD 的长.第3题图4.(2020原创)在平而内,给定不在同一直线的四点A、B、C、D,如图所示.若四点构成的四边形ABCD中,四条边均相等,对角线AC、BD相交于点O, E、F分别是AB. AD的中点,连接OE、°F、EF.⑴求证:ZAFE= ZOFE;⑵若AC=6,求ZkOEF的周长•.4C第4题图类型三与矩形有关(仅2015.22考查)1.(2019西城区二模)如图,在四边形ABCD中,AB=DC. AD=BC, AD丄CD点E在对角线CA的延长线上,连接BD, BE.(1)求证:AC=BD;7(2)若BC=2, BE=Vl3, tanZABE=y求EC 的长.5第I题图2.(2019昌平区二模)如图,在菱形ABCD中,对角线AC、BD交于点0,过点A作AE丄BC于点& 延长BC至点F,使CF=BE.连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8, DF=4,求CD 的长.类型一与平行四边形有关1.(1)证明:•・•四边形ABCD是矩形,:.AB=DC, AB//CD・•••延长CD 到点E, DE=CD,:.AB=DE. AB//DE ・・•.四边形ABDE是平行四边形:(2)解:•••四边形ABCD是矩形,••• Z BCD=90° ・CD 3*•* tan ZDBC= pc =彳9CD=6、:.BC=8.•••AD=BC, AD//BC,•••AD=8, ZADE=90°./• S 二ABDE=DE・AD=6 X 8=48 ・2.(1)证明:在“BCD中,AB//CD,••• ZADC+ZDAB= 180° ・•: DF、A£分别是A ADC. ZDAB的平分线,••• ZADF=ZCDF三ZADC.ZDAE= ZBAE=* ZDAB.:.ZADF+ ZDAE=^(ZADC+ ZDAB)=90Q.:.ZAGD=90°.:.AE±DF;(2)解:如解图,过点£>作DH//AE.交BC的延长线于点则四边形AEHD是平行四边形,且FD丄DH.:.DH=AE=4. EH=AD=\O・在WCD 中,AD//BC,•••/ADF=ZCFD, ZDAE= ZBEA・:.ZCDF=ZCFD9 ZBAE=ZBEA・:・DC=FC、AB=EB・又•••AD=BC=10, AB=DC=6,:・CF=BE=6, BF=BC-CF=10—6=4.•••FE=BE-BF=6—4=2,:・FH=FE+EH=\2,在RtAFDH 中,DF=y)FH2-DH2 =^/122-42 =8^/2 ・:.DF的长是8迈.类型二与菱形有关1.(1)证明:•・•四边形ABCD是菱形,•••AB = CD, AB//CD.又•••BE=AB,:・BE=CD, BE//CD.・•.四边形BECD是平行四边形,•••BD=EC;(2)解:•.•四边形BECD是平行四边形,:.BD//CE,:.ZABO=ZE=51Q・又•・•菱形ABCD,VAC丄BD,:.ZAOB=90。
八年级数学下册四边形小专题(五)特殊平行四边形的计算与证明课时作业(新版)沪科版

小专题(五)特殊平行四边形的计算与证明特殊平行四边形具有平行四边形的所有性质,而且在边、角、对角线方面有其独有的性质,能得到相等的角和相等的线段,为几何图形的计算和证明提供了重要的依据,是近几年全国各省市中考的必考内容.类型1特殊平行四边形的计算1.(淮安中考)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是(B)A.3B.6C.4D.52.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为(A)A.3.5B.3C.5D.2.53.如图,在矩形AOBC中,O为坐标原点,OA,OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(A)A. B.C. D.-4.如图,菱形ABCD的周长为40,E是AB的中点,∠D=120°,P是对角线AC上的动点,则PE+PB的最小值是(B)A.5B.5C.10D.105.如图,正方形ABCD中,点E,F分别在边BC,CD上,△AEF是等边三角形,连接AC交EF于点G,过点G作GH⊥CE于点H.若S△EGH=3,则S△ADF=(A)A.6B.4C.3D.26.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB 的平分线垂直于AD,垂足为P.若BC=10,则PQ的长为3.7.如图,在矩形ABCD中,∠DAC=65°,E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C'处,则∠AFC'=40°.8.(沈阳中考)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长.(2)如图2,当点E在线段AD上时,AE=1.①求点F到AD的距离;②求BF的长.(3)若BF=3,请直接写出此时AE的长.解:(1)BF=4.(2)①如图,过点F作FH⊥AD交AD的延长线于点H.∵四边形CEFG是正方形,∴EC=EF,∠FEC=90°,∴∠DEC+∠FEH=90°,又∵四边形ABCD是正方形,∴∠ADC=90°,∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH,又∵∠EDC=∠FHE=90°,且EF=EC,∴△ECD≌△FEH,∴FH=ED.∵AD=4,AE=1,∴ED=AD-AE=4-1=3,∴FH=3,即点F到AD的距离为3.②如图,延长FH交BC的延长线于点K.∵∠DHK=∠HDC=∠DCK=90°,∴四边形CDHK为矩形,∴HK=CD=4,∴FK=FH+HK=3+4=7.由①知△ECD≌△FEH,∴EH=CD=AD=4,∴CK=1,∴BK=BC+CK=4+1=5,∴在Rt△BFK中,BF=.(3)AE=2+或AE=1.9.如图,▱ABCD的对角线AC,BD相交于点O,点E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴四边形EBFD是平行四边形.∵EF=BD,∴平行四边形EBFD是矩形.类型2特殊平行四边形的证明10.如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:BC=DE;(2)连接AD,BE,若要使四边形DBEA是矩形,则需给△ABC的边添加什么条件,为什么?解:(1)∵E是AC的中点,∴EC=AC.∵DB=AC,∴DB=EC,又∵DB∥EC,∴四边形DBCE是平行四边形,∴BC=DE.(2)△ABC满足AB=BC时,四边形DBEA是矩形.理由:∵DB=EC=AE,DB∥AC,∴四边形DBEA是平行四边形,∵BC=DE,AB=BC,∴AB=DE,∴▱DBEA是矩形.11.(娄底中考)如图,已知四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD,过O点作EF⊥BD,分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)判断四边形BEDF的形状,并说明理由.解:(1)∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∠∠在△AOE和△COF中,∠∠∴△AOE≌△COF(ASA).(2)四边形BEDF是菱形.理由:∵△AOE≌△COF,∴AE=CF,∵AD=BC,∴DE=BF,∵DE∥BF,∴四边形BEDF是平行四边形.∵OB=OD,EF⊥BD,∴平行四边形BEDF是菱形.类型3特殊平行四边形计算与证明的综合12.将两张完全相同的矩形纸片ABCD,FBED按如图方式放置,BD为重合的对角线,重叠部分为四边形DHBG.(1)试判断四边形DHBG为哪种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.解:(1)四边形DHBG是菱形.理由:∵四边形ABCD,FBED是完全相同的矩形,∴∠A=∠E=90°,AD=ED,AB=EB,在△DAB和△DEB中,∠∠∴△DAB≌△DEB(SAS),∴∠ABD=∠EBD.∵AB∥CD,DF∥BE,∴四边形DHBG是平行四边形,∠HDB=∠EBD,∴∠HDB=∠ABD,∴DH=BH,∴▱DHBG是菱形.(2)设DH=BH=x,则AH=8-x,在Rt△ADH中,AD2+AH2=DH2,即42+(8-x)2=x2,解得x=5,即BH=5,∴菱形DHBG的面积为BH·AD=5×4=20.13.在直角三角形ABC中,∠C=90°,点E,F分别在边AB,AC上,将△ABC沿着直线EF折叠,使得A点恰好落在BC边上的D点处,且ED⊥BC.(1)求证:四边形AFDE是菱形;(2)若CD=2,AC=6,求线段ED的长度.解:(1)∵ED⊥BC,∴∠EDB=90°.又∵∠C=90°,∴∠EDB=∠C,∴AC∥ED,∴∠CFD=∠FDE.由折叠知∠A=∠FDE,∴∠A=∠CFD,∴DF∥AE,∴四边形AFDE是平行四边形.由折叠可得AF=DF,∴平行四边形AFDE是菱形.(2)设CF=x,则由折叠可得DF=AF=6-x.在Rt△CDF中,DF2=CF2+CD2,即(6-x)2=x2+22,解得x=,∴DF=6-x=,∴ED=DF=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.(2017·六盘水)如图,在正方形ABCD中,等边三角形AEF的顶点E, 75° . F分别在边BC和CD上,则∠AEB=_____ 13 .(2017·绍兴) 如图为某城市部分街道示意图,四边形ABCD 为正方形, 点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1 500 m,小敏行走的路线 为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3 4600 100 m,则小聪行走的路程为_______m.
5.(导学号 69654100)(2017· 苏州)如图,在菱形 ABCD 中,∠A=60° , AD=8,F 是 AB 的中点.过点 F 作 FE⊥AD,垂足为点 E. 将△AEF 沿点 A 到点 B 的方向平移,得到△A′E′F′. 设 P,P′分别是 EF,E′F′的中点,当点 A′与点 B 重合时, 四边形 PP′CD 的面积为( A ) A.28 3 C.32 3 B.24 3 D.32 3-8
ቤተ መጻሕፍቲ ባይዱ
(2)作 AH⊥BD 于点 H,由题意知∠AGB=60° ,∠ABG=45° , ∴△ABH 为等腰直角三角形,△AGH 为含 30° 角的直角三角形. 2 6 2 6 ∵AB=1,∴AH=BH= 2 ,HG= 6 .∴BG= 2 + 6 .
解:(1)证明:如图①,根据折叠,∠DBC=∠DBE. 又AD∥BC,∴∠DBC=∠ADB.∴∠DBE=∠ADB. ∴DF=BF.∴△BDF是等腰三角形. (2)①∵四边形ABCD是矩形,∴AD∥BC.∴FD∥BG.又DG∥BE, ∴四边形BFDG是平行四边形.∵DF=BF,∴四边形BFDG是菱形.
解: (1)AG2 = GE2 + GF2. 证明:连接 GC ,由正方形的性质知 AD = CD ,
∠ADG=∠CDG.又GD=GD,∴△ADG≌△CDG(SAS).∴AG=CG.
由题意知∠GEC=∠GFC=∠DCB=90°,∴四边形GFCE是矩形.∴GF
=EC.在Rt△GEC中,根据勾股定理,得GC2=GE2+EC2.∴AG2=GE2+GF2.
10.(2016·青岛)如图,在正方形ABCD中,对角线AC与BD相交于点O, E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18, 7 则OF的长为____. 2
11.(导学号69654103)如图,边长为4的正方形ABCD,点P是对角线BD上 5 . 一动点,点E在边CD上,EC=1,则PC+PE的最小值是____
1 ②∵AB=6,AD=8,∴BD=10.∴OB=2BD=5.设 DF=BF=x, ∴AF=AD-DF=8-x.∴在直角△ABF 中,AB2+AF2=BF2, 25 25 即 6 +(8-x) =x ,解得 x= 4 ,即 BF= 4 .
2 2 2
∴FO= BF2-OB2=
25 15 15 ( 4 )2-52= 4 .∴FG=2FO= 2 .
14.(导学号69654104)(2017·杭州)如图,在正方形ABCD中,点G在对角 线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG. (1)写出线段AG,GE,GF长度之间的数量关系,并说明理由; (2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
4.(导学号69654099)(2017·兰州)如图①,将一张矩形纸片ABCD沿着对角 线BD向上折叠,顶点C落到点E处,BE交AD于点F. (1)求证:△BDF是等腰三角形; (2)如图②,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
若OE=,则CE的长为____________. 4 3或 2 3
8.(2017·广东)如图所示,已知四边形ABCD,ADEF都是菱形, ∠BAD=∠FAD,∠BAD为锐角. (1)求证:AD⊥BF; (2)若BF=BC,求∠ADC的度数.
解:(1)证明:如图,连接DB,DF.∵四边形ABCD,ADEF都是菱形, ∴AB=BC=CD=DA,AD=DE=EF=FA.∴AB=AF.又∠BAD=∠FAD, AD=AD,∴△BAD≌△FAD(SAS).∴DB=DF. ∴D在线段BF的垂直平分线上.∵AB=AF, ∴A在线段BF的垂直平分线上.∴AD是线段BF的垂直平分线.∴AD⊥BF. (2)∵BF=BC,BC=AB=AF,∴BF=AB=AF.
6.(导学号69654101)(2017·孝感)如图,四边形ABCD是菱形, 50 AC=24,BD=10,DH⊥AB于点H,则线段BH的长为____ 13 .
7.(导学号69654102)(2017·哈尔滨)四边形ABCD是菱形, ∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,
解:(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD, AC=BD,∠ABC=90°.∵BE=DF,∴OE=OF. 又∠AOE=∠COF,∴△AOE≌△COF.∴AE=CF.
(2)∵OA=OC, OB=OD, AC=BD, ∴OA=OB.∵∠AOB=∠COD=60° , ∴△AOB 是等边三角形.∴OA=AB=6.∴AC=2OA=12. 在 Rt△ABC 中,BC= AC2-AB2=6 3. ∴矩形 ABCD 的面积=AB· BC=6×6 3=36 3.
2.(导学号 69654098)(2016· 威海)如图,在矩形 ABCD 中,AB=4, BC=6,点 E 为 BC 的中点,将△ABE 沿 AE 折叠, 使点 B 落在矩形内点 F 处,连接 CF,则 CF 的长为(D ) 9 12 16 18 A.5 B. 5 C. 5 D. 5
3.(2017·南宁)如图,矩形ABCD的对角线AC,BD相交于点O, 点E,F在BD上,BE=DF. (1)求证:AE=CF; (2)若AB=6,∠COD=60°,求矩形ABCD的面积.
∴△ABF为等边三角形.∴∠BAF=60°.又AD⊥BF,
∴∠BAD=∠FAD=30°.∵AB∥CD,∴∠ADC=150°.
9.(2017· 青海)如图,正方形 ABCD 的对角线相交于点 O,Rt△OEF 绕点 O 旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的( A ) 1 1 1 A.4 B.3 C.2 3 D.4
八年级下册数学(人教版)
第十八章 平行四边形
专题训练(四) 特殊平行四边形 的证明与计算
类型一
矩形的证明与计算
1.(2017· 绵阳)如图,矩形 ABCD 的对角线 AC 与 BD 交于点 O, 过点 O 作 BD 的垂线分别交 AD,BC 于 E,F 两点. 若 AC=2 3,∠AEO=120° ,则 FC 的长度为( A ) A.1 B.2 C. 2 D. 3