结构力学-第三章-静定桁架
合集下载
第三章—静定梁和静定刚架

q
图(1) 图(2)
M
N
Q
P P
P
M
N
Q
FBX FBY
FAX FAY
P
FN 3 FN 2 FN1
§3-1 静定梁的内力计算的回顾
三.荷载与内力之间的微分关系
qy
由平衡条件可导出 微分关系如下:
M
N
qx
O
Q dx y
M dM
N dN x
Q dQ
dN dx
qx
dQ dx
qy
dM dx
FQ
BC
Q C
MC 0 Y 0
MC 26KN m QC 9KN
M E 16KN m
G EF
QE
7kN
ME 0 Y 0
M E 30 KN m QE 7KN
§3-2 分段叠加法作弯矩图
MG 0 Y 0
MG 0 QG 7KN
MG
G
QG
7kN
Step3: 绘制内力图 A BC D E F G
§3-3 静定多跨梁
【例3.2】 试求图示梁的内力图
解: Step1: 分层求支反力
ABC部分:
MB 0 Y 0
RC 0.5P RB 1.5P
P
A BC
RB
RC
DE RD
CDE部分:
M D 0 RE 0.25 P Y 0 RD 0.75P
P
AB
a 2a
P
AB
RE
F MF
RF
C D EF
a 2a a
C D
E F
EF部分:
ME 0 Y 0
M F 0.25Pa RF 0.25P
§3-3 静定多跨梁
图(1) 图(2)
M
N
Q
P P
P
M
N
Q
FBX FBY
FAX FAY
P
FN 3 FN 2 FN1
§3-1 静定梁的内力计算的回顾
三.荷载与内力之间的微分关系
qy
由平衡条件可导出 微分关系如下:
M
N
qx
O
Q dx y
M dM
N dN x
Q dQ
dN dx
qx
dQ dx
qy
dM dx
FQ
BC
Q C
MC 0 Y 0
MC 26KN m QC 9KN
M E 16KN m
G EF
QE
7kN
ME 0 Y 0
M E 30 KN m QE 7KN
§3-2 分段叠加法作弯矩图
MG 0 Y 0
MG 0 QG 7KN
MG
G
QG
7kN
Step3: 绘制内力图 A BC D E F G
§3-3 静定多跨梁
【例3.2】 试求图示梁的内力图
解: Step1: 分层求支反力
ABC部分:
MB 0 Y 0
RC 0.5P RB 1.5P
P
A BC
RB
RC
DE RD
CDE部分:
M D 0 RE 0.25 P Y 0 RD 0.75P
P
AB
a 2a
P
AB
RE
F MF
RF
C D EF
a 2a a
C D
E F
EF部分:
ME 0 Y 0
M F 0.25Pa RF 0.25P
§3-3 静定多跨梁
结构力学I-第三章 静定结构的受力分析(梁、刚架)

14:32
LOGO
梁的内力计算的回顾
FQ FN M0 Fx O FQ+ ΔFQ FN+ ΔFN M+ ΔM δ(x) x
直杆增量关系
增量关系
FN Fx FQ Fy M M 0
*另一种表述
M
Fy
y
dFN qx dx dFQ qy dx dM FQ dx
MA
FB=12 kN
ME m, 20KN
q
M D 18KN m,
M E 26KN m, 区段叠加法,
L M并可求出: 。 B 16KN m
MF
M F 18KN m,
F sE 3. 作弯矩图以及剪力图
L MG 6KN m,
Page 21
R MG 4KN m,
绘制: 1 由内力方程式画出图形; 2 利用微分关系画出图形。
直杆微分关系
dFN qx dx dFQ q y dx dM FQ m dx
FQ FN
qy FQ+ dFQ
m qx O FN+ dFN M+ dM x
M
y
dx
集中力怎么办?
Page 14
计算思路:从刚片出发、从结点出发;
平面几何不变体系的组成规律 三角形规律:二元体(两杆一铰)、两刚片、三刚片; 灵活运用 撤去二元体,几何不变—>大刚片,虚铰选择,三刚片选择
Page 1
LOGO
第二章 结构的几何构造分析
回顾
灵活应用:虚铰、刚片的选择、无穷远处虚铰特性;
无多不变
3 能否运用三刚片规则?
工程力学32 静定平面桁架结构的内力计算

定
12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:
结
(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。
内
力
计
算
2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法
力
以一个结点为隔离体,用汇交力系的平衡方程求解
学
各杆的内力的方法。
静
12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架
静
定
结
构
的
主桁架
内
力
计
算
2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:
定
结
(1)所有的结点都是无摩擦的理想铰结点;
构
(2)各杆的轴线都是直线,并通过铰的中心;
的
(3)荷载和支座反力都作用在结点上。
结构力学——静定桁架

静定桁架的稳定性分析方法
静定桁架的稳定性分析原理
静定桁架的稳定性分析方法: 能量法、力法、位移法等
静定桁架的定义和分类
静定桁架的稳定性提高静定桁架稳定性的措施
增加桁架的刚度:通过增加桁架的截面尺寸、材料强度等方法提高桁架的刚度,从而提高桁架的 稳定性。
静定桁架的杆 件受力可以分 为轴向力、剪 力和弯矩三种, 其中轴向力和 剪力是主要的
受力形式。
静定桁架的受 力特性还与桁 架的支座条件 有关,不同的 支座条件会影 响桁架的受力 分布和变形情
况。
03
静定桁架的组成与分类
静定桁架的基本组成
桁架:由杆件组成的结构,用于 承受荷载
荷载:施加在桁架上的力,包括 集中荷载和分布荷载
优化桁架制造工艺:通过优化桁架的制造工艺,提高桁架 的质量和生产效率
优化桁架安装工艺:通过优化桁架的安装工艺,提高桁架 的安装质量和效率
THNK YOU
汇报人:XX
静定桁架的应力计算方法: 截面法、图乘法、矩阵位移 法等
矩阵位移法:利用矩阵位移 法计算桁架的位移和内力,
适用于复杂桁架结构
静定桁架的变形计算
变形计算的基本原理:利用静定桁架的平衡条件求解 变形计算的方法:图乘法、解析法、有限元法等 变形计算的应用:预测桁架的变形情况,优化桁架设计 变形计算的注意事项:考虑桁架的材质、截面尺寸、载荷等因素的影响
静定桁架的内力分布规律
桁架的内力主要由轴力和剪力组成
轴力沿桁架的轴线方向分布,剪力沿桁架的横截面方向分布
桁架的内力分布与桁架的杆件布置、荷载分布等因素有关
通过静定桁架的内力分析,可以确定桁架各杆件的内力大小和方向,为桁架的设计和优 化提供依据
内力分析中的注意事项
结构力学第三章静定结构的受力分析

例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA
结构力学静定桁架

N1=0 N1 N2=N1 N3
N4
N2=0 N1=N2
N3
P
N2=P N3=0
β
N1
β
N2=-N1 N2 N4=N3
5、对称结构在对称荷载作用下
对称轴上的K型结点无外力作用时, 其两斜杆轴力为零。 (注意:4、5、仅用于桁架结点)
6、对称结构在反对称荷载作用下内力
•与对称轴垂直贯穿的杆轴力为零 •与对称轴重合的杆轴力为零。
A K P I a cb d C 4a H G F
0
0
D
0 0
a E
0
M
K
Nd a
P 4
4a 0
B
Nd P
K K
Na a P 4
P 4 0, Yc P 4
M
P 4
C
2a 0
A
Na
I Na a b Ncc Nd d B
H
G
F
0
0
C 4a
0 0 0 a
Y2 P ,
2×3m
0
1
0 0 0
2
③1-1以右
M
0
2A
0
C P E 2 4×4m 1 D P B
N CE 6 4 P 0 , 2 N CE P 3
F
④2-2以下
F N1
N CE 2 3 P
P
NCE
C P
X N CE X 1 0 , 2 X 1 P, 3 5 N1 P 6
1、桁架的基本假定: 1)结点都是光滑的铰结点; 2)各杆都是直杆且通过铰 的中心; 3)荷载和支座反力都 用在结点上。 2、结点法:取单结点为分离体,得一平面汇交力系,
N4
N2=0 N1=N2
N3
P
N2=P N3=0
β
N1
β
N2=-N1 N2 N4=N3
5、对称结构在对称荷载作用下
对称轴上的K型结点无外力作用时, 其两斜杆轴力为零。 (注意:4、5、仅用于桁架结点)
6、对称结构在反对称荷载作用下内力
•与对称轴垂直贯穿的杆轴力为零 •与对称轴重合的杆轴力为零。
A K P I a cb d C 4a H G F
0
0
D
0 0
a E
0
M
K
Nd a
P 4
4a 0
B
Nd P
K K
Na a P 4
P 4 0, Yc P 4
M
P 4
C
2a 0
A
Na
I Na a b Ncc Nd d B
H
G
F
0
0
C 4a
0 0 0 a
Y2 P ,
2×3m
0
1
0 0 0
2
③1-1以右
M
0
2A
0
C P E 2 4×4m 1 D P B
N CE 6 4 P 0 , 2 N CE P 3
F
④2-2以下
F N1
N CE 2 3 P
P
NCE
C P
X N CE X 1 0 , 2 X 1 P, 3 5 N1 P 6
1、桁架的基本假定: 1)结点都是光滑的铰结点; 2)各杆都是直杆且通过铰 的中心; 3)荷载和支座反力都 用在结点上。 2、结点法:取单结点为分离体,得一平面汇交力系,
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)

FNEC FNED 33.54 kN
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
结构力学:静定桁架和组合结构

( FyDF 10kN )
结点C
20kN
Y 0
NCF 20 40 0 NCF 20kN (拉)
20 5
C
20 5
NCF
例6-2 用结点法求AC、AB杆轴力。
P
D C E G 2m 4m
FP
P
A
3m
B F
3m
4m
H 2m
解: 取结点A,将NAC延伸到C分解,将NAB延伸到 P B分解。 A NAC 5 1 NAB FxAC C FxAB 2 B 13 3 FyAB F
结点A
Y 0
A
FyAD
NAD FxAD
FyAD 30kN FxAD FyAD (lx l y ) 30(2 1) 60kN N AD FyAD (l l y ) 30( 5 1) 67.08kN (压)
NAE
30kN
5
2
X 0
N AE FxAD 60kN (拉)
1
结点E
X 0
NEF 60kN (拉)
60kN
0 E
NEF
结点D 将NDF延伸到F结点分解为FxDF及FyDF
1
5
2
M
C
0
FxDF 2 20 2 0
FxDF 20kN
FyDF FxDF (l y / lx ) 20(1/ 2) 10kN N DF FxDF (l / lx ) 20( 5 / 2) 10 5 22.36kN (压)
5
1
2
13 3
2
M
B
0
FyAC ( P 2) / 4 0.5P FxAC FyAC (2 /1) P N AC FyAC (l / l y ) 0.5P( 5 /1) 1.118P(拉)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FN1 FN3
FN2
FN1 = FN2 FN3 = 0
17
§3-5 静定桁架
结点法计算简化的途径
• (3) 四杆交于一点,其中两两共线,若结点无荷载,则在同一直线 上的两杆内力大小相等,且性质相同。 • 推论,若将其中一杆换成外力F,则与F 在同一直线上的杆的内力 大小为F ,性质与F 相同。
取结点为隔离体,建立(汇交力系)平衡方程求解。 每个点上有2个独立平衡方程。一般表示为: ∑FX=0 ∑FY=0
结构独立方程的总数为结点数的2倍。对于静定结构,
恰好等于未知力(杆件)总数,所以通过联列方程, 计算出全部内力和反力。
通常假定未知的轴力为拉力,计算结果得负值表示轴力为压力。
11
§3-5 静定桁架
K2 FyA 4、求杆2轴力FN2
Y2 2
FN2
选取FN1和FN3延长线的交点K2作为取矩点。 由于FN2 的力臂不易确定,将FN2 其在2点处分解为水平和竖向分 量。对K2点取矩,由∑Mk2 = 0 ,从而其竖向分量FyN2 。
杆2轴力FN2
32
§3-5 静定桁架
力矩法
Y3
N3
X3
5、求杆3轴力FN3
l
N
NX
NY
lY
12
§3-5 静定桁架
例5-1 试用结点法求三角形桁架各杆轴力。
10 kN 5 kN 2m
10 kN C
10 kN F 5 kN
E G D 2 m 4=8 m H
A 20 kN
B 20 kN
解: (1) 求支座反力。
FxA 0
FyA 20 kN FyB 20 kN
(↑) (↑)
类型
按外形分类
1. 平行弦桁架
2. 三角形桁架
3. 抛物线桁架
7
§3-5 静定桁架
类型
按几何组成分类
1. 简单桁架 (simple truss)
2. 联合桁架 (combined truss)
3. 复杂桁架(complicated truss)
8
§3-5 静定桁架
类型
按受力特点分类
P
0 0
• 练习: 试指出零杆
0
0
P
P
20
§3-5 静定桁架
练习:指出零杆
0 0
P
P
0
0
P
P
21
§3-5 静定桁架
练习:指出零杆
0 0 0
P
0
P
P P P P P
22
§3-5 静定桁架
练习:指出零杆
P P
23
§3-5 静定桁架
对称性的利用
下图示对称结构在正对称荷载作用下,若A点无外荷载,则位于对称 轴上的杆1、2都是零杆。
投影法
例:求图示桁架a杆的轴力. P
P
m
m
FNa
作m-m截面,截开a 杆,取截面以上为隔离体。其上共有四个 未知力。
43
§3-5 静定桁架
投影法
P
Fya 当隔离体上除所求未知力FNa外,其余未知力均相互平行且都
Fxa FNa
在竖直方向上。
将FNa 分解为水平和竖向分量Fxa 、Fya。
建立水平投影方程∑FX=0,可求出 Fxa =- P 由比例关系得到 FNa 。
44
§3-5 静定桁架
示例
例3. 试求图示桁架a、b杆的内力
Ⅰ
Ⅰ
2l
Ⅱ
3l
Ⅱ
45
§3-5 静定桁架
截面法技巧
截面单杆: 用截面切开后,通过一个方程 可求出内力的杆.
截面上被切断的未知轴力的 杆件只有三个,三杆均为单杆. 截面上被切断的未知轴力的 杆件除一个外交于一点,该杆 为单杆.
结点法的要点
应尽量避免求解联列方程。当隔离体上未知力不超过2个
时,一般可以用平衡方程确定各杆轴力。所以,为避免 求解联列方程,应从未知数不多于2个的结点开始计算。 在建立平衡方程时,对斜杆宜采用水平和竖向分量列方 N 程,避免采用三角函数。 分量间的比例关系:
N Nx N y l lx ly
1. 梁式桁架
2. 拱式桁架
竖向荷载下将产生水 平反力
9
§3-5 静定桁架
桁架的内力求解方法
结点法
• 如果隔离体中只有一个结点,则该法称为结点法; • 最适用于计算简单桁架
截面法
• 如果隔离体中包含二个以上结点,则该法称为截面法 • 常用于联合桁架和桁架
10
§3-5 静定桁架
结点法的要点
(2) 依次截取结点A,G,E,C,画出受力图,由平衡条件求其未 知轴力。
13
§3-5 静定桁架
5 kN A
10 kN
10 kN C
10 kN F 5 kN
FNAE FNAG
5 kN 2m
E G D 2 m 4=8 m H
20 kN
A 20 kN
B 20 kN
取A点为隔离体,由
X 0
FxNAE FNAG 0
接判断该结点的某些杆件的内力为零。
•
零杆
(1) 两杆交于一点,若结点无荷载,则两杆的内力都为零。
FN1
F N2
FN1 = F N2= 0
16
§3-5 静定桁架
结点法计算简化的途径
• (2) 三杆交于一点,其中两杆共线,若结点无荷载,则第三
杆是零杆,而在直线上的两杆内力大小相等,且性质相同 (同为拉力或压力)。
FyA
K3
选取FN1和FN2延长线的交点K3作为取矩点。 对K3点取矩,由∑Mk3 = 0,从而求出所求未知力的水平分量 FxN3 。
杆3轴力FN3
33
§3-5 静定桁架
力矩法的计算要点
欲求某指定杆内力,则作一截面,截开待求杆;
隔离体上除所求未知力外,其余未知力的延长线均交于某一
点K。
对K点取矩,从而求出所求未知力 。 (1)选择其余未知力延长线的交点K作为取矩点,从而用 ∑MK=0,求出指定杆内力。
各杆的轴线都是直线,而且处在同一平面内,并且通过铰的几何中心 荷载和支座反力都作用在结点上,其作用线都在桁架平面内
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
竖杆Vertical chard
腹杆
下弦杆 Bottom chard
d
跨度 节间
桁高
经抽象简化后,杆轴交于一点,且“只受结点荷载作用的直杆、铰结 体系”的工程结构—桁架
15kN
15×4+ FN1 ×3-10×2=0
所以 FN1 =-13.3kN
36
§3-5 静定桁架
示例
Ⅰ
FyN2
Ⅰ 15kN
由I-I截面,取右半为隔离体. 有∑FY =0,即: 15+FyN2-10=0 所以 FyN2=-5kN ,
FN 2
32 2 2 5 5 13 kN 3 3 37
FN1 FN1 FN3 FN3
F N4 F N4 FN1 F N2 F N2
FN1 FN3
F
F F N2 F N2
FN3
= F N2 FN1 FN1 = F N2 FN4 N3 = FN4 FN3 = F
F N1 = F N2 FN1 = F N2 FN3= F FN3= F
18
§3-5 静定桁架
结点法计算简化的途径
• (4) 四杆中两杆共线,而另外两杆在此直线同侧且夹角相等, 若结点无荷载,则在非共线的两杆内力大小相等,符号相反。
FN 3
FN 1
θ
FxN1 FxN 2
FN 3 FN 4
θ
FN 4
FN 2
19
§3-5 静定桁架
结点法计算简化的途径
• 零杆: 轴力为零的杆
§3-5 静定桁架
示例
例2. 求图示桁架杆件a、b、c的轴力
90kN
30kN
38
解:先根据整体平衡条件求出桁架支座反力如图示。
§3-5 静定桁架
示例
m
m
作m—m截面,取右半为隔离体。
39
§3-5 静定桁架
示例
FNa
求FNa时,对另外两个未知 力的交点C取矩, 由 ΣMC=0,得
C
FNa ×4+30×8=0
∑FY = 0
∑M = 0
截面法又分为力矩法和投影法。
计算要点:尽量使一个方程解一个未知数,避免求解联立 方程。
28
§3-5 静定桁架
力矩法
例:求图示桁架1、2、3杆的轴力。
FyA
解:1、求支座反力 由整体平衡条件求得支座反力 FyA= FyB FyA= 0
FyB
29
§3-5 静定桁架
桁架是由杆件相互连接组成的格构状体系,它的结点均为完全铰结的结点 ,它受力合理用料省,在土木工程中得到广泛的应用。
3
§3-5 静定桁架
横梁 主桁架 纵梁
荷载传递: 轨枕-> 纵梁-> 结点横梁-> 主桁架
4
§3-5 静定桁架
桁架计算简图假定:
各杆在两端用绝对光滑而无摩擦的铰(理想铰)相互联结
(2)将斜杆的内力放在某一个合适的点上分解,使其一个
分力通过取矩点K。
34
§3-5 静定桁架
示例
例1. 求图示桁架1、2杆的轴力
15kN
解:先根据整体平衡条件求出桁架支座反力.