ansys学习-非线性静态分析实例

合集下载

ANSYS非线性分析指南

ANSYS非线性分析指南

非线性结构分析非线性结构的定义在日常生活中,会经常遇到结构非线性。

例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。

(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。

(看图1─1(b))。

当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。

(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性.图1─1 非线性结构行为的普通例子非线性行为的原因引起结构非线性的原因很多,它可以被分成三种主要类型:状态变化(包括接触)许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。

轴承套可能是接触的,也可能是不接触的,冻土可能是冻结的,也可能是融化的。

这些系统的刚度由于系统状态的改变在不同的值之间突然变化。

状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。

ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。

接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。

几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。

一个例的垂向刚性)。

随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。

图1─2 钓鱼杆示范几何非线性材料非线性非线性的应力──应变关系是结构非线性名的常见原因。

许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。

牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。

然而,非线性结构的行为不能直接用这样一系列的线性方程表示。

需要一系列的带校正的线性近似来求解非线性问题。

基于ANSYS的武汉长江二桥非线性有限元分析

基于ANSYS的武汉长江二桥非线性有限元分析
收 稿 日 期 !" # # $ % # & % ’ " (
6 ;B SE N 进行 求解 索 力迭 代 ( 从计 算结果 中提 取斜 拉索 索力 , ( T 初始 索力 + 是 否小于 允许 值 ( 若大 于允 许值 , 则将 ) 计算 所 得的 索 力 作 为成 桥 索 力 , 修改 斜 拉 索单 元
第" 卷增刊 " / 年 ’ " # # $ "月


科 技 大 学 学 报) 城市科学版 + V (W X Y96 K() 9F Z [ G6 \ ] ^ G \ ^E _ ] I ] W G +
SW ‘ ( " /6 a b ( " A ^ \ ( " # # $
基 于
0 1 2 3 2的
武 汉 长 江 二 桥 非 线 性 有 限 元 分 析
斜拉 桥主要 的组 成构 件是 梁 8 索和 塔 , 理 想的 受力 状 态是 斜 拉 索受 拉 , 主 梁 和 索塔 尽 可 能地 承 受压 力 而不 承 受 弯矩 作 用 ( 因 而 斜拉 桥 的 结构 表 现出 以 下一 些 特 点 ! 利用 一 系 列 拉索 代 替 相应 的 支承 结 构 , 大 大减 少 了 主 梁的 弯 矩 , 降 低梁 高 , 节 省了 材料 可以 人为 地对 拉索 索力 进行 调整 , 达到 改变 全桥 受力状 态使 其最 大限 度满 足设 计者 期望 的受 力状 态 斜 拉桥 是一 种自 锚体 系 , 下 部结 构比 较经 济 ( 因 此, 在 跨径 . 斜 # # < ’= # #> 的范 围内 , 拉桥 为 最常 见 的 桥梁 结 构 形 式 ( 作为 一 种 高次 超 静定 结 构 , 其计 算 分 析的 精 确 程 度直 接 关 系到 设 计的 优 劣与 施 工 过程 中 的 安 全 ( 斜拉 桥 跨 度不 断 增大 , 整 体 结构 在 恒 载及 拉 索 张 拉力 作 用 下表 现 出明显的非线性特征! 斜 拉 索 垂 度 效 应梁柱效 应大 位移 效应 ( 在总 结 前 人经 验 的 基 础上 , 提 出 了 一套 全 面 考虑 斜 拉桥 几 何 非线 性 因 素 的有 限 元 方法 , 综合 考虑 了梁 索塔三 者联 结的 边界 条件 以及 它们 的受 力特 点 , 特 别是 预应 力筋 的作 用 8 拉 索初 始张 力等 因素 , 应用 大 型 通 用 有 限 元软 件 456 76对 其 进 行了 详细 的空间 有限 元非 线性 分析 (

ANSYS非线性命令解析

ANSYS非线性命令解析

ANSYS非线性命令解析〔1ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。

如果用户对这些设置不满意,还可以手工设置。

下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。

参见《ANSYS Commands Reference》。

如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。

参见SOLCONTROL 命令的详细描述。

ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意-- 本章后面讨论的求解控制对话框,不能对热分析做设置。

用户必须应用标准的ANSYS求解命令或GUI来设置。

2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。

只是在非线形分析的过程中,添加了需要的非线形特性。

非线性静态分析是静态分析的一种特殊形式。

如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。

2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。

如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实<或对数>应变表示。

【ANSYS非线性分析】4-非线性分析方法

【ANSYS非线性分析】4-非线性分析方法

01112121222y y d N d d R d M d d R ελφ⎧⎫
⎧⎫⎡⎤⎧⎫=∆+⎨⎬⎨⎬⎨⎬⎢⎥
⎣⎦⎩⎭
⎩⎭⎩⎭ 改写为,
11112021222y y d N R d d d d M R d d εφλ-⎡⎤⎧⎫⎧⎫
⎧⎫=-⎨⎬⎨⎬⎨⎬⎢⎥
-⎩⎭⎩⎭⎩⎭
⎣⎦ 求解过程中,可控制d φy 的值,求出相应的0d ε及荷载增量比例因子d λ。

由于ij d 与截面应变平面有关,需要迭代才能使截面补平衡力12,R R 趋近于零。

图4-9 位移控制法 在结构分析中控制指定位移增量,则P —δ曲线的下降段不难求得。

将底端固定顶端自由的柱,在柱顶端施加水平荷载,将柱的加载点处换为支座,而分析时控制该支座位移并求出该支座的反力,图4—9表示了得到的全过程分析P-δ曲线。

对于一般结构,将刚度矩阵重新排列,使得选择的控制位移排到最后,将原矩阵分块表示成以下形式,
111211121
22222K K du P R K K du P R ⎡⎤⎧⎫⎧⎫⎧⎫=∆+⎨⎬⎨⎬⎨⎬⎢⎥⎣⎦⎩⎭⎩⎭⎩⎭
λ 改写方程为,
11
11121221
2222K P R K du du K P R K -⎡⎤⎧⎫⎧⎫⎧⎫
=-⎨⎬⎨⎬⎨⎬⎢⎥-∆⎩⎭⎣⎦⎩⎭⎩⎭
λ 需要指出的是,改写以后的系数矩阵是不对称的,也不是带状的,求解时需要较多的存储单元。

§4.5.4 修正完善后的弧长法 1.弧长法的基本原理
仍从结构增量平衡方程:{}{}{}11i i i i K w P g --=-∆∆λ∆。

ANSYS非线性分析(控制选项)

ANSYS非线性分析(控制选项)

ANSYS非线性分析(控制选项)1、非线性分析(1)牛顿-拉普森选项(NROPT)仅在非线性分析中使用这个选项,。

这个选项制定在求解期间每隔多长时间修正一次正切矩阵。

可以指定下列值中的一个: 程序选择(NROPT,AUTO)。

程序根据模型中存在的非线性种类自动选用这些选项中的一个。

在需要时牛顿-拉普森方法将自动激活自适应下降。

完全牛顿-拉普森选项(NROPT,FULL)。

程序使用完全的牛顿-拉普森处理方法,在这种处理方法中每进行一次平衡迭代都修改刚度矩阵一次。

如果自适应下降是关闭的,程序每一次平衡迭代都使用正切刚度矩阵。

如果自适应下降是打开的,只要迭代保持稳定,程序仅适用正切刚度矩阵。

如果在某一次迭代过程中检测到发散倾向,程序将抛弃发散的迭代并重新开始求解,此时应用正切和正割刚度矩阵的加权组合。

当迭代重新回到收敛模式是程序将重新开始使用正切刚度矩阵。

对复杂的非线性问题自适应下降统称能提高程序获得收敛的能力。

修正牛顿-拉普森选项(NROPT,MODL)。

程序使用修正的牛顿-拉普森方法,在这种方法中正切刚度矩阵在每一步中都被修正,在一个子步的平衡迭代期间矩阵不被改变。

这个选项不适应于大变形分析,而且无法使用自适应下降。

初始刚度(NROPT,INIT)。

程序在每一次平衡迭代中都使用初始刚度矩阵,该选项可以使迭代过程更容易收敛,但需要更多迭代次数得到收敛。

该选项不适用于大变形分析,求自适应下降不可用。

(2)指定载荷步选项这些选项可以在任何载荷中改变。

下列选项适用于非线性分析:l 普通选项在普通选项包括:Time(TIME)。

ANSYS程序借助在每一个载荷步末端指定TIME参数识别出载荷步和子步。

使用TIME命令可以用来定义受某些实际物理量限制的TIME值。

程序通过这个选项来指定载荷步的末端时间。

时间步的数目(NSUBST)和时间步长(DELTIM)。

非线性分析要求在每一个载荷步内有多个子步或时间步,从而ANSYS可以逐渐施加所给定的载荷,逐步得到精确解。

Ansys Workbench非线性分析 牛顿辛普森法过程

Ansys Workbench非线性分析 牛顿辛普森法过程
什么是非线性? 17世纪, 罗伯特虎克发现力(F) 和位移(u) 之间存在一个简单的 线性关系, 称为虎克定律: F = Ku – 常数 K为结构的刚度. 线性 结构服从此线性关系. 普通的例子是一个弹簧: F K u F K u 线性结构非常适合基于线性矩阵代数的有限元分析
然而, 相当多的结构在力和位移之间没有线性关系 因为此类结构的 F-u 图不是直线, 这样的结构称为非线性结构 . – 刚度不再是一个常数K; 它成为施加载荷的函数, KT (切 线刚度). 普通的例子是韧性金属的拉伸试验:
载荷位移曲线
Fa Fnr
R
下一次迭代用刚度矩阵
u0 △ u u1
u0: 所设初始位移值
u
位移
KT :切向刚度
u1: 下次迭代位移值
R F a F nr
收敛: Newton-Raphson法需要一个收敛的度量以决定 何时结束迭代。给定节点Fa,节点力Fnr ,在一个体 中,节点载荷必须与节点力平衡
高级接触选项包括: 自动探测尺寸 Auto detection dimension and slider 非对称接触Asymmetric contact 接触结果工具Contact results tool 接触算法contact formulations Pinball 控制
膜片弹簧接触设置
带支撑环的膜片弹簧边界条件及求解设置
3 2 F1 269.991 2981 1 9238 1
膜片弹簧大端载荷-位移曲线
3 2 F1 269.991 2981 1 9238 1
注:膜片弹簧载荷挠度曲线为非线性,是由于大变形引起 的几何非线性,但材料始终发生的是弹性变形,没有发生 塑性变形
回忆材料力学中低碳钢力学性能试验

ansys非线性分析例子

ansys非线性分析例子


4.9 选择Main Menu>Solution>Load Step Opts>Write LS File,在对话框中输入 3,单击OK,如下图所 示
4.10 选择Main Menu>Solution>Solve >From LS Files,弹 出如下对话框,并进 行如下设置单击ok


5.1 选择Main Menu>General Postproc>Read Results>First Set,读取第一个载荷步的求解结果 5.2 Main Menu>General Postproc>plot Results>Contour Plot>Nodal Solu,弹出如下对 话框,并进行如下页的设置





/GO D,P51X, , , , , ,ALL, , , , , FLST,2,1,1,ORDE,1 FITEM,2,10 !* /GO F,P51X,FY,-12 FLST,2,1,1,ORDE,1 FITEM,2,10 !* /GO F,P51X,FX,0.05 LSWRITE,1, FLST,2,1,1,ORDE,1 FITEM,2,10 !* /GO F,P51X,FY,-13 FLST,2,1,1,ORDE,1 FITEM,2,10 !* /GO F,P51X,FX,0.05 LSWRITE,2, FLST,2,1,1,ORDE,1 FITEM,2,10 !*

1.1 单击 开始>所有 程序 >ansys12.1>mench anical APDL Product Launcher窗口如左图。 在working Directory 栏中设置工作目录, 在job name中输入如 左图所示的工作名。 单击Run,进入ansys。

ANSYS非线性分析

ANSYS非线性分析
荷步选项。在作非线性结构静力分析时,可以应用求解控 制对话框来设置。该对话框对许多非线性静力分析提供了 缺省设置。求解控制对话框是非线性静力分析的推荐工具 ,我们在下面将详细论述。
16
11.2 结构非线性分析
• 1.进入求解控制对话框 ➢ GUI:【Main Menu】/【Solution】/【Analysis Type】/
表11-3 Advanced NL标签选项
选项 Termination Criteria Arc-length options
用途 终止分析结束准则 激活和终止弧长法控制
28
11.2 结构非线性分析
图11-5 Advanced NL标签界面
29
11.2 结构非线性分析
➢ 11.2.1.3 设置其它求解选项 • 其他求解选项很少使用,并且其默认值设置都很少改变,
33
11.2 结构非线性分析
➢ (3) 预应力效应计算 • 这一选项用来在同一模型中执行预应力分析,如预应力模
型的分析。缺省值为 OFF。应力刚度效应和预应力效应计 算二者都控制应力刚度矩阵的生成,因此在一个分析中不 以同时应用。如二者都指定,则最后选项将覆盖前者。 ➢ 命令:PSTRES ➢ GUI:【Main Menu】/【Solution】/【Unabridged Menu】/【Analysis Options】
32
11.2 结构非线性分析
➢ (2)Newton-Raphson选项 • 这一选项只能用于非线性分析中,它说明在求解时切线矩
阵如何修正。在存在非线性时,ANSYS的自动求解控制 将应用自适应下降关闭的完全牛顿-拉普森选项。但在应 用节点-节点,节点-面接触单元的有摩擦接触分析中,自 适应下降功能是自动打开的。 ➢ 命令:NROPT ➢ GUI:【Main Menu】/【Solution】/【Unabridged Menu】/【Analysis Options】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys学习-非线性静态分析实例问题描述一个子弹以给定的速度射向壁面。

壁面假定是刚性的和无摩擦的。

将研究子弹和壁面接触后达80微秒长的现象。

目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。

求解使用SI单位。

用轴对称单元模拟棒。

求解最好能通过单一载荷步实现。

在这个载荷步中,将同时施加初始速度和约束。

将圆柱体末端的节点Y方向约束住以模拟一固壁面。

打开自动时间分步来允许ANSYS 确定时间步长。

定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。

问题详细说明下列材料性质应用于这个问题:EX=117.0E09 (杨氏模量)DENS=8930.0 (密度)NUXY=0.35(泊松比)Yield Strength=400.0OE06(屈服强度)Tangent Modulus (剪切模量)下列尺寸应用于这个问题:长=32.4E-3m直径=6.4E-3m对于这个问题的初始速度是227.0。

图1铜圆柱体图解求解步骤:步骤一:设置分析标题1、选择菜单路径:Utility Menn>File>ChangeTitle。

2、键入文字“Coppery Cylinder Impacting a Rigid Wall”3、单击OK。

步骤二:定义单元类型1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。

2、单击Add。

Library of Element Types(单元类型库)对话框出现。

3、在靠近左边的列表中,单击“Visio Solid”仅一次。

4、选靠近右边的列表中,单击“4node Plas 106”仅一次。

5、单击OK。

Library of Element Types 对话框关闭。

6、单击Options (选项)。

VISCO106 element type Options(visco106单元类型选项)对话框出现。

7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。

8、单击OK。

9、单击Element Types (单元类型)对话框中的Close。

步骤三:定义材料性质1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。

2、单击OK来指定材料号为1。

另一个I sotropic Material Properties对话框出现。

3、对杨氏模量(EX)键入117.0E094、对密度(DENS)键入8930。

5、对泊松比(NUXY)键入0.35。

6、单击OK。

步骤四:定义双线性各向同性强化数据表(BISO)1、选择菜单路径Main Menu>Preprocessor>Matersal Props>DataTables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。

2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。

3、对material reference number(材料参考号)健入1。

4、对number of temperatures(温度数)键入1和单击OK。

5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。

6、对YLD Strs(屈服应力)键入400.0e06。

7、对 Tang Mod(剪切模量)键入100.0e06。

8、选择File>Apply & Quit。

9、选择菜单路径Main Menu>Preprosessor>Material Porps>Data Tables>Graph. Graph Data Tables(图形表示数据表)对话框出现。

10、单击OK接受绘制BISO表的缺省。

一个BISO表的标绘图出现在ANSYS图形窗口中。

11、在ANSYS TooLbar上单击SAVE_DB。

步骤五、产生矩形在这一步中,你产生一个代表柱体半横截面积的矩形。

1、选择菜单路径Main Menu>Preprocessor>-Modeling-Create>-Area-Rectangle>By Dimensions. Create Rectanyle by Dimensions(依据尺寸产生矩形)对话框出现。

2、对X_坐标键入0,.0032。

3、对Y_坐标键入0,.0324然后单击OK。

一个矩形出现在ANSYS图形窗口中。

4、选择菜单路径Utility Menu>Plot>lines.步骤六:设置单元尺寸1、选择菜单路径Main Menu>Preprocessor>-Meshing-Shape&Size>-Lines-Picked Lines. Element Size On Picked Lines(关于挑选出的线的单元尺寸)选择菜单出现。

2、在长线中的一条上单击一次然后单击OK。

Element Sizes on Picked Lines 对话框出现。

3、对number of element divisions(单元划分的数目)键入20然后单击OK。

4、重复步骤1和2,次选择短线中的一条。

但这5、对number of element divisions键入4然后单击OK。

步骤七:设置网格单元形状且对矩形划分网格1、选择菜单路径Main Menu>Preprocessor>-Mesh Tool2、选择“quad”和“Map”,然后单击“Mesh”3、在拾取菜单出现后,选择面,然后单击“OK”4、在ANSYS Toolbar上单击SAVE_DB。

5、选择菜单路径Main Menu>Preprocessor>-Meshing-Mesh>-Area-Mapped>3 or 4 Sided. Mesh Areas(对面积划分网格)选择菜单出现。

6、单击Pick All。

7、单击ANSYS Toolbar上的SAVE_DB。

步骤八:定义分析类型和选项1、选择菜单路径Main Menu>Solution>-Analysis Type-New Analysis.2、单击“Transient”来选中它然后单击OK。

3、选择菜单路径Main Menu>Solution>Analysis Options.Transient Analysis(瞬态过程分析)对话框出现。

4、单击OK接受完全求解方法的缺省。

Full Transient Analysis对话框出现。

5、单击Large deform effects option(大变型效应选项)使之为ON(开)状态然后单击OK。

步骤九:定义弹的初始速度1、选择菜单路径Main Menu>Solution>-Loads-Apply>Initial Condit'n>Define. Define Initial Condition(定义初始条件)选择菜单出现。

2、单击Pick All. Define Initial Conditions 对话框出现。

3、在关于DOF to be Specified(要被指定的DOF)的卷动框中,卷动到“UY”且选中它。

4、对initial velocity(初始速度)键入-227然后单击OK。

5、单击ANSYS Toolbar上的SAVE_DB。

步骤十:施加约束1、选择菜单路径Main Menu>Solution>-Loads-Apply>-Structural-Displacement> On Nodes.Apply。

U,ROT on Nodes选择菜单出现。

2、单击Pick All., Apply U, ROT on Nodes 对话框出现。

3、对于DOFs to be Constrained (要被约束的DOFs)单击“UY”,然后单击Apply.4、在选择菜单中,单击“BOX”作为选择方法。

5、当你拖鼠标沿X=0.1的结点周围(沿矩形左边的第一个结点集)形成一个矩形柜时要按下且保持鼠标左键。

6、单击Apply.7、在对话框中,对于DOFs to be constrained单击“UX”。

你需要单击“UY”一次以去除它。

8、单击Apply.9、在选择菜单中,单击“BOX”选择方法。

10、当你拖鼠标沿Y=O的结点周围(沿矩形底边的第一个结点集)形成一个矩形框时按下且保鼠标左键。

11、单击OK。

12、在对话框中,单击“UY”来选中它,你需要单击“UX”仅一次来淘汰它。

13、单击OK。

现在在ANSYS图形窗口中位移符号沿矩形的左边和底边产生。

步骤十一:设置载荷步选项1、选择菜单路径Main Menu>Solution>-Load Step Options-Time/Frequenc> time&Time Step. Time&Time Step Option(时间和时间步选项)对话框出现。

2、对time at end of Load Step(载荷步终止时间)键入8e-5。

3、对time step size (时间步长)键入4.4e-7。

4、单击“Stepped”来选中它。

5、单击automatic time stepping option(自动时间分步选项)使之为ON(开)状态然后单击OK。

6、选择菜单路径Main Menu>Solution>-Load Step Options-Output Ctrls> DB/Results File。

Controls for Database and Results File Writing (对数据库和结果文件写入的控制)对话框出现。

7、单击“Every Nth substep”(“每隔N个子步”)且选中它。

8、对于Value of N (N的值)键入4然后单击OK。

9、单击ANSTS Toolbar上的SAVE_DB。

步骤十二:求解问题1、选择菜单路径Main Menu>Solution>-Solve-Current LS。

相关文档
最新文档