PID控制器设计及其参数整定

合集下载

pid参数的整定过程

pid参数的整定过程

pid参数的整定过程
PID(比例-积分-微分)控制器是一种常用的反馈控制器,用于调节和稳定系统。

PID控制器的参数整定过程通常包括以下几个步骤:
1.初始参数设定:根据系统的性质和需求,设置PID控制器的初
始参数。

通常情况下,可以将三个参数(比例增益Kp、积分时
间Ti、微分时间Td)都设为一个较小的初始值。

2.比例增益调整:从零开始逐步增加比例增益Kp的数值,观察
系统响应的变化。

如果Kp过小,系统响应可能过慢;如果Kp
过大,系统可能会出现超调或不稳定的情况。

通过不断调整Kp
的数值,直到找到一个合适的值,使得系统响应快速且稳定。

3.积分时间调整:在找到合适的Kp之后,开始调整积分时间Ti
的数值。

增大Ti会增加积分作用的影响,降低控制器对于持续
偏差的敏感度。

然而,过大的Ti可能导致系统响应的延迟和振
荡。

通过逐步调整Ti的数值,找到一个使系统响应稳定且快速
的值。

4.微分时间调整:在完成比例增益和积分时间的调整后,可以开
始调整微分时间Td的数值。

微分作用可以抑制系统响应中的
过冲和振荡,并提高系统的稳定性。

然而,过大的Td可能会引
入噪声的放大。

通过逐步调整Td的数值,找到一个能够平衡系
统响应速度和稳定性的值。

5.反复迭代:整定PID参数是一个迭代的过程。

一旦完成了上述
步骤,需要对整个系统进行测试和观察,以确定参数的最佳组合。

如果发现系统仍然存在问题,可以根据实际情况再次进行参数调整,直到达到满意的控制效果。

PID控制器的参数整定

PID控制器的参数整定

PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。

PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。

下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。

一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。

经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。

该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。

2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。

该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。

然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。

3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。

该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。

4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。

通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。

该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。

5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。

该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。

自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。

二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。

PID控制原理及参数设定

PID控制原理及参数设定

PID控制原理及参数设定PID控制是一种常用的自动控制算法,它通过反馈控制的方式,根据控制对象的输出与期望目标的差异来调整输入信号,实现对控制对象的稳定控制。

PID控制由比例(P)、积分(I)和微分(D)三部分组成,分别对应了不同的控制机制。

P(比例)控制是指控制信号与误差的线性比例关系,P控制主要用于快速响应系统,能够快速减小误差,但不能完全消除误差。

P控制的公式为:u(t)=Kp*e(t),其中u(t)表示控制信号,Kp为比例增益,e(t)为误差。

通过调节比例增益Kp的大小,可以控制系统的响应速度。

I(积分)控制是指控制信号与误差的累积关系,I控制主要用于消除系统的稳态误差。

I控制的公式为:u(t) = Ki * ∫e(t)dt,其中Ki为积分增益。

通过调节积分增益Ki的大小,可以控制系统的稳态误差。

D(微分)控制是指控制信号与误差的变化率关系,D控制主要用于抑制系统的超调和震荡。

D控制的公式为:u(t) = Kd * de(t)/dt,其中Kd为微分增益,de(t)/dt为误差的变化率。

通过调节微分增益Kd的大小,可以控制系统的稳定性和响应速度。

根据PID控制的原理,控制信号可以表示为:u(t) = Kp * e(t) +Ki * ∫e(t)dt + Kd * de(t)/dt。

其中,e(t)为误差,t为时间。

在实际应用中,PID控制器还需要设置参数,包括比例增益Kp、积分增益Ki和微分增益Kd。

如何设置这些参数是设计一个有效的PID控制器的关键。

参数设定方法有很多种,常用的方法包括经验法、试验法和自整定法等。

经验法是一种基于经验规则的参数设定方法,它根据控制对象的特性和应用经验来选取参数。

经验法比较简单易用,但通常需要根据实际情况进行适当的调整。

试验法是通过试验分析控制对象的动态响应来选取参数,常用的试验方法有阶跃响应法、脉冲响应法和频率响应法等。

试验法的参数设定相对准确,但需要进行一定的试验工作,并且需要对试验数据进行分析。

PID控制器的参数整定及优化设计

PID控制器的参数整定及优化设计

PID控制器的参数整定及优化设计PID控制器的参数整定一般包括三个部分:比例增益(Proportional Gain),积分时间(Integral Time)和微分时间(Derivative Time)。

这些参数的选择直接影响到控制系统的稳定性和响应速度。

首先,比例增益决定了输入量和误差之间的线性关系,过大的比例增益会导致系统过冲和震荡,而过小的比例增益则会导致响应速度慢。

通常情况下,可以通过试探法或经验法来选择一个适当的比例增益值,再根据实际应用中的需求进行微调。

其次,积分时间决定了积分作用对系统稳态误差的补偿能力,即消除系统的偏差。

过大的积分时间会导致系统响应迟缓和过调,而过小的积分时间则不能有效地消除稳态误差。

一种常用的方法是通过Ziegler-Nichols方法或Chien-Hrones-Reswick方法来确定适当的积分时间。

最后,微分时间决定了微分作用对系统输出量变化率的补偿能力,即消除系统的震荡。

过大的微分时间可能会导致系统过调和震荡,而过小的微分时间则不能有效地补偿系统的变化率。

一般可以通过试探法或经验法来选择一个合适的微分时间值,再根据实际情况进行调整。

除了参数整定,优化设计也是提高PID控制器性能的关键。

常见的优化方法包括模型优化、校正和自适应控制。

模型优化是指根据系统的建模结果,对PID控制器的参数进行优化。

可以通过系统的频域响应或时域响应等方法,确定最佳的参数取值。

校正是通过实时监测系统的输出值和理论值的差异,对PID控制器的参数进行在线调整。

自适应控制是指根据系统的实时状态变化,自动调整PID控制器的参数,使其能够适应不同的工作条件。

综上所述,PID控制器的参数整定及优化设计是提高控制系统性能的重要步骤。

通过适当选择比例增益、积分时间和微分时间,并利用模型优化、校正和自适应控制等方法,可以使PID控制器在不同的工作条件下具有更好的响应速度、稳定性和鲁棒性。

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法

PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。

它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。

PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。

下面将详细介绍PID控制的原理和参数整定方法。

一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。

当偏差较大时,调节量增大;当偏差较小时,调节量减小。

此项控制可以使系统快速响应,并减小系统稳态误差。

2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。

积分控制的作用主要是消除系统的稳态误差。

当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。

3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。

当偏差的变化率较大时,微分量会增大,以提前调整控制量。

微分控制可以减小系统的超调和振荡。

综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。

二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。

它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。

2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。

在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。

根据振荡周期和振荡增益的比值来确定P、I和D的参数值。

3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。

通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。

4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。

该方法可以通过在线自整定或离线自整定来实现。

智能PID控制器的参数整定及实现

智能PID控制器的参数整定及实现

智能PID控制器的参数整定及实现智能PID控制器是一种能够自动调整PID控制器参数的控制器,它利用智能算法来优化PID参数,以获得更好的控制效果。

在实际应用中,智能PID控制器的参数整定是非常重要的环节,下文将详细介绍智能PID控制器参数整定的方法和实现。

一、智能PID控制器参数整定方法1.基于经验的整定方法:这种方法主要是根据经验和实际应用中的知识来进行PID参数的选择。

可以通过试错法、查找表、经验公式等手段来完成。

2.系统辨识法:这种方法是通过对控制对象进行实验,获取系统的动态响应曲线,然后通过辨识技术来确定PID参数。

常用的系统辨识方法包括阶跃法、脉冲法等。

3.优化算法:这种方法是利用优化算法来优化PID参数,以使控制系统性能指标达到最优。

常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。

二、智能PID控制器参数整定实现1.系统建模:首先需要对控制对象进行建模,获取系统的数学模型。

可以通过物理建模、经验建模等方法得到系统的传递函数或差分方程。

2.参数初始化:为了使智能PID控制器正常运行,需要对PID参数进行初始化。

一般情况下,可以根据系统经验和控制要求来设置初始值。

3.优化算法选择:根据实际情况选择合适的优化算法,并确定相应的目标函数和约束条件。

优化算法的选择应考虑算法的收敛性、计算效率和适应性等因素。

4.参数优化:根据所选的优化算法,对PID参数进行优化。

通过迭代的方式,不断调整参数,直至达到最优的控制效果。

5.参数调整策略:根据实际应用需求,制定合适的参数调整策略。

可以选择周期性调整策略、事件触发调整策略等,以保持参数的稳定性和稳定性。

6.参数验证:对优化后的参数进行仿真或实验验证,检验参数是否满足控制要求。

如果不满足要求,可以调整参数初始化值,并重新进行优化。

7.参数更新:如果控制对象存在变化或外界环境影响,需要及时更新PID参数。

可以采用在线优化算法来实现参数的动态更新。

通过以上步骤,智能PID控制器的参数整定可以得到满足实际应用需求的参数设置。

PID控制器设计与参数整定方法综述

PID控制器设计与参数整定方法综述

PID控制器设计与参数整定方法综述一、本文概述本文旨在全面综述PID(比例-积分-微分)控制器的设计与参数整定方法。

PID控制器作为一种广泛应用的工业控制策略,其设计的优劣直接影响到控制系统的性能和稳定性。

因此,深入理解并掌握PID控制器的设计原则与参数整定方法,对于提高控制系统的性能具有非常重要的意义。

本文将首先介绍PID控制器的基本原理和组成结构,包括比例、积分和微分三个基本环节的作用和特点。

在此基础上,详细阐述PID控制器设计的一般步骤和方法,包括确定控制目标、选择控制算法、设定PID参数等。

本文还将重点介绍几种常用的PID参数整定方法,如Ziegler-Nichols法、Cohen-Coon法以及基于优化算法的参数整定方法等,并对这些方法的优缺点进行比较分析。

本文将结合具体的应用实例,展示PID控制器设计与参数整定方法在实际工程中的应用效果,以期为读者提供有益的参考和借鉴。

通过本文的阅读,读者将能够全面了解PID控制器的设计与参数整定方法,掌握其在实际应用中的技巧和注意事项,为提高控制系统的性能和稳定性提供有力的支持。

二、PID控制器的基本原理PID(比例-积分-微分)控制器是一种广泛应用于工业控制系统的基本控制策略。

它的基本工作原理是基于系统的误差信号(即期望输出与实际输出之间的差值)来调整系统的控制变量,以实现对系统的有效控制。

PID控制器的核心在于其通过调整比例、积分和微分三个环节的参数,即比例系数Kp、积分系数Ki和微分系数Kd,来优化系统的动态性能和稳态精度。

比例环节(P)根据误差信号的大小成比例地调整控制变量,从而直接减少误差。

积分环节(I)则是对误差信号进行积分,以消除系统的静态误差,提高系统的稳态精度。

微分环节(D)则根据误差信号的变化趋势进行预测,提前调整控制变量,以改善系统的动态性能,抑制过冲和振荡。

PID控制器的这三个环节可以单独使用,也可以组合使用,以满足不同系统的控制需求。

PID参数的整定方法

PID参数的整定方法

PID参数的整定方法PID控制器是目前最常用的控制算法之一,其调节参数(也称为PID 参数)的合理设置对控制系统的性能起着关键作用。

下面将介绍几种常用的PID参数整定方法。

1.经验法:经验法是最为简单直接的方法,通常由经验工程师根据自身经验来设定PID参数。

这种方法适用于一些简单的控制系统,但是对于复杂的系统来说,由于经验法不能提供具体的参数值,容易出现性能较差的情况。

2. Ziegler-Nichols 整定法:Ziegler-Nichols 整定法是PID参数整定中较为经典的方法,其步骤如下:-首先将PID控制器的I和D参数设置为零。

-逐渐增大比例参数(P)直到系统出现持续且稳定的振荡。

-记录此时的比例参数为Ku。

- 根据不同的控制对象类型,Ziegler-Nichols方法会有不同的参数整定公式,常见的有:-P型系统:Kp=0.50Ku,Ti=0.50Tu,Td=0.125Tu-PI型系统:Kp=0.45Ku,Ti=0.83Tu,Td=0.125Tu-PID型系统:Kp=0.60Ku,Ti=0.50Tu,Td=0.125Tu其中Ku为临界增益值,Tu为临界周期。

3. Chien-Hrones-Reswick (CHR) 整定法:CHR整定法基于频域设计方法,通过系统的频率响应曲线来确定PID参数。

其步骤如下:-绘制系统的频率响应曲线(一些软件和仪器可以直接测量)。

-根据曲线的特征,确定比较慢的过程的时间常数τ和极点频率ωp。

-根据以下公式得到PID参数:-P参数:Kp=2/(ωpτ)-I参数:Ti=τ/2-D参数:Td=τ/8不能掉进方法的误区,如超调范围不合适,调节周期过大或周期过小时,传递函数为微分型等。

4.设计优化法:设计优化法是基于性能指标的优化算法,通过对系统的模型进行优化,得出最佳的PID参数。

这种方法较复杂,通常使用数学工具或计算机软件进行参数优化。

常见的优化算法有遗传算法、粒子群算法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、绪论
PID 参数的整定就是合理的选取PID 三个参数。

从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作用如下:
比例调节作用:成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。

随着P K 增大,系统的响应速度加快,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。

比例调节的显著特点是有差调节。

积分调节作用:消除系统的稳态误差,提高系统的误差度。

积分作用的强弱取决于积分时间常数i T ,i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。

当然i T 也不能过小。

积分调节的特点是误差调节。

微分调节作用:微分作用参数d T 的作用是改善系统的动态性能,在d T 选择合适情况下,可以减小超调,减小调节时间,允许加大比例控制,使稳态误差减小,提高控制精度。

因此,可以改善系统的动态性能,得到比较满意的过渡过程。

微分作用特点是不能单独使用,通常与另外两种调节规律相结合组成PD 或PID 控制器。

二、设计内容
1. 设计P 控制器
控制器为P 控制器时,改变比例系数p K 大小。

P 控制器的传递函数为:()P P K s G =,改变比例系数p K 大小,得到系统的阶跃响应曲线

K=1时,
P

K=10时,
P
K=50时,当
P
当P K =100时,
p K 超调量σ% 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 1 49.8044 0.5582 0.2702 3.7870 0.9615 10 56.5638 0.5809 0.1229 3.6983 0.7143 50 66.4205 0.3317 0.1689 3.6652 0.3333 100
70.7148
0.2506
0.0744
3.6410
0.2002
仿真结果表明:随着P K 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。

P K 偏大,则振荡次数加多,调节时间加长。

随着P K 增大,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。

2. 设计PI 控制器
控制器为PI 控制器时,改变积分时间常数i T 大小(50=P K 为定值)
PI 控制器的传递函数为: 11
()PI P I G s K T s
=+⋅ ,改变积分时间常数i T 大小,得到系统的阶跃响应曲线

T=0.1时
i

T=0.05时
i
当i T =0.02时
当i T =0.01时
i T 超调量 % 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 0.1 25.0898 0.3371 0.0953 8.5782 0.0872 0.05 20.1818 0.3431 0.0972 7.4914 0.0226 0.02 26.7428 0.3568 0.1845 5.8607 0 0.01 37.1752
1.1114 0.1975 9.5197 -0.0090
仿真结果表明:P K =50,当i T 的值逐渐减小时,系统的超调量增大,系统的响应速度加快。

相反,随着i T 值的加大,系统的超调量减小,系统响应速度略微变慢。

i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。

PI 控制可以消除系统的稳态误差,提高系统的误差度。

3.设计PID 控制器
控制器为PID 控制器时,改变微分时间常数d T 大小(50=P K ,02.0=i T )
PID 控制器的传递函数为:11
()PID P D I G s K T s T s
=+⋅+⋅,改变微分时间常数d T 大小,得到系统的阶跃响应曲线
当d T =0.1时,

T=1时,
d
T=10时,当
d
T=20时,当
d
d T 超调量σ%
峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e
0.1 26.4746 0.3733 0.1874 5.2193 0 1 18.2833 0.3916 0.1857 4.2724 0 10 0 10 1.3134 3.4000 0 20
0 10 1.0040 2.1713
仿真结果表明:P K =50、i T =10,随着d T 值的增大,闭环系统的超调量减小,响应速度加快,调节时间和上升时间减小。

加入微分控制后,相当于系统增加了零点并且加大了系统的阻尼比,提高了系统的稳定性和快速性。

4.选定合适的控制器参数,设计PID 控制器
根据上述分析,当P K =50,i T =0.0125,d T =15,可使系统性能指标达到设计要求。

经计算,超调量%200.23%%<=σ,过渡过程时间)(2)(1s s T s <=满足设计要求。

系统的阶跃响应曲线如下图:
三、设计总结
这次课程设计,使我认识了自动控制领域最常用的PID控制,基本掌握了PID控制的基本规律,同时也认识到自动控制系统的复杂性。

在利用MATLAB软件时经常会碰到一些新问题,而我们手头的资料有限,时间和精力有限,并不能解决所有问题。

比如在PID控制时,一旦选定了Ki和Kd后,超调量随Kp的变化并不明显,这是我无法理解的,当Kp增加时,系统仅仅提高了响应的快速性,而超调量并没有显著的变化。

又如,在PD控制时,当Kd和Kp取值足够大时,便可以使响应曲线完全理想化,即响应时间趋于0,超调量趋于0,在本系统中也满足足够的稳态精度,所以我认为,并不是所有系统采用PID控制效果一定比其他控制效果要好,等等。

所有这些问题将在今后的学习和实验中寻求答案。

四、参考文献。

相关文档
最新文档