废水的生化处理方法

合集下载

废水生化处理的原理与工艺

废水生化处理的原理与工艺

废水生化处理的原理与工艺废水生化处理是处理工业废水的一种有效方法,它通过利用微生物对有机物质进行降解和转化来使废水达到排放标准。

废水生化处理一般包括通气池、曝气系统、污泥回流系统、污泥浓缩系统和沉淀系统等组成,下面将详细介绍废水生化处理的原理和工艺。

废水生化处理的原理主要涉及废水中有机物的降解过程。

在传统的废水处理过程中,有机物质的去除主要通过物理和化学方法,但这些方法存在着技术操作复杂、投入较大等问题。

而废水生化处理则利用微生物类群的特性和代谢活动,将有机物质转化为微生物生物质、水和CO2等无害物质,从而实现废水的处理和净化。

废水生化处理的工艺主要包括进水预处理、生物处理和污泥处理等环节。

进水预处理是为了将废水中的杂质去除或减少,以减少对生物处理工艺的干扰。

主要操作包括除砂、除油、除渣等,常用的预处理设备有格栅、沉砂池和油水分离器等。

预处理后的废水进入生物处理系统。

生物处理是废水生化处理的核心环节,主要通过微生物代谢来降解和转化有机物质。

生物处理系统包括通气池(活性污泥池)、曝气系统和污泥回流系统。

通气池内有大量自由悬浮菌群和被吸附在污泥团聚体上的微生物,在有机物质的作用下进行吸附、降解和转化。

曝气系统通过气体进入废水中,增加氧气供应,促进微生物的生长和代谢活动。

污泥回流系统是为了维持生物处理系统内微生物的浓度和代谢状态,提高处理效果。

废水生化处理过程中,微生物对有机物质的降解可以分为两个阶段:废水中的有机物质首先由外源菌降解为简单有机物,然后被内源菌进一步降解为微生物生物质、水和CO2等无害物质。

在这个过程中,微生物的降解能力和代谢效率起着至关重要的作用。

因此,为了提高废水生化处理的效果,需要选择适宜的菌种和提供合适的环境条件,包括温度、pH值、溶解氧浓度、COD/N的比值等。

废水生化处理过程中产生的污泥需要进行处理和回收利用。

常用的污泥处理方法有浓缩、脱水和干化等。

污泥浓缩可以通过重力沉淀、离心沉淀或压滤等方式进行;脱水可以利用压力过滤、离心脱水或浓缩沉降等方法进行;污泥干化可以通过压榨、高温干燥等方式进行。

污水生化处理

污水生化处理

污水生化处理污水生化处理是一种通过生物学方法处理污水的技术。

它利用微生物降解有机物质,将污水中的有害物质转化为无害物质,从而净化水体。

一、污水生化处理的原理污水生化处理的核心原理是利用微生物的代谢活动将有机物质降解为无机物质。

这一过程主要包括以下几个步骤:1. 污水进入生化处理池:污水首先进入生化处理池,污水中的有机物质被微生物吸附和降解。

2. 微生物降解有机物质:在生化处理池中,存在大量的微生物,它们通过吸附和分解有机物质来生存。

微生物通过分泌酶类将有机物质降解为小份子有机物,并将其吸收为能量来源。

3. 溶解氧供给:在生化处理过程中,溶解氧是微生物生存所必需的。

因此,需要提供足够的溶解氧以满足微生物的需求。

通常会通过增氧设备或者搅拌设备来提供溶解氧。

4. 混合与沉淀:经过一段时间的生化处理,污水中的有机物质已经被微生物降解为无机物质。

此时,需要进行混合与沉淀,以便将微生物和无机物质从水中分离出来。

5. 净化水体:经过生化处理后,污水中的有机物质已经被有效降解,水质得到了明显改善。

处理后的水体可以进一步经过物理和化学处理,以达到排放标准。

二、污水生化处理的设备和工艺1. 生化处理池:生化处理池是污水生化处理的核心设备,通常采用圆形或者长方形的混合式生化池。

污水在生化处理池中停留的时间较长,以便微生物有足够的时间降解有机物质。

2. 增氧设备:增氧设备是为了提供足够的溶解氧,以满足微生物的需求。

常见的增氧设备包括曝气系统和搅拌系统。

3. 混合与沉淀设备:混合与沉淀设备用于将微生物和无机物质从水中分离出来。

常见的设备包括沉淀池和澄清池。

4. 进水和出水设备:进水设备用于将污水引入生化处理系统,出水设备用于将处理后的水体排放或者回用。

三、污水生化处理的优势和应用领域1. 优势:- 生化处理过程中产生的污泥可以通过进一步处理转化为有机肥料或者能源,实现资源化利用。

- 生化处理技术相对成本较低,操作简单,维护方便。

污水的生化处理工艺

污水的生化处理工艺

污水的生化处理工艺
污水的生化处理工艺主要包括生物膜反应器、曝气法、好氧/厌氧处理法等。

1. 生物膜反应器(MBBR)
生物膜反应器是一种基于移动床生物反应器和生物过滤器的组合系统。

它利用生物膜将废水中的有机物质降解成二氧化碳和水。

该工艺的优点是处理效率高、反应器设计灵活、占地面积小等。

2. 曝气法
曝气法是利用氧气和微生物将有机物氧化成二氧化碳和水的方法。

在曝气池中通过注入高压氧气来增加水的氧含量,进而促进微生物分解有机物所利用的生物膜的生长和微生物的代谢活动。

该工艺的缺点是能耗高、占地面积大。

3. 好氧/厌氧处理法
好氧/厌氧处理法是通过好氧阶段和厌氧阶段的交替来处理污水。

在好氧条件下,微生物通过对氧气的利用将污水中的有机物分解成二氧化碳和水,而在厌氧条件下,微生物缩合有机物,进而将有机物完全氧化成水和二氧化碳。

该工艺的优点是处理效率高,但是需要多阶段反应器,这就要求系统的设计和管理较为复杂。

污水生化处理

污水生化处理

污水生化处理污水生化处理是一种通过生物学方法将污水中的有机物质降解为无机物质的过程。

这种处理方法主要依靠微生物的活动来完成,通过调节水体中的氧气、温度、pH值等环境条件,促进微生物的生长和代谢活动,从而有效地降解污水中的有机物质。

污水生化处理的标准流程包括进水处理、生化池处理和出水处理三个阶段。

1. 进水处理阶段:在进水处理阶段,首先需要对进水进行初步处理,以去除大颗粒悬浮物和沉淀物。

常用的处理方法包括格栅过滤和沉砂池沉淀。

格栅过滤可以去除进水中的大颗粒悬浮物,而沉砂池沉淀则可以使进水中的沉淀物沉淀到池底。

2. 生化池处理阶段:在生化池处理阶段,进水经过初步处理后进入生化池。

生化池是污水生化处理的核心部份,其中包含了大量的微生物。

这些微生物通过吸附、降解和转化等作用,将污水中的有机物质降解为无机物质。

为了维持微生物的活性,需要控制生化池中的氧气供应、温度和pH值等环境条件。

常用的生化池类型包括活性污泥法、固定床生物反应器和浮床法等。

3. 出水处理阶段:在生化池处理后,污水中的有机物质已经被大部份降解为无机物质。

然而,出水中仍然可能存在一定量的微生物和残留的有机物质。

因此,需要对出水进行进一步的处理,以达到排放标准。

常用的出水处理方法包括沉淀、过滤和消毒等。

沉淀可以使微生物和残留的有机物质沉淀到池底,过滤则可以去除弱小的悬浮物,消毒则可以杀灭残留的微生物。

污水生化处理的效果可以通过多种指标来评价,如COD(化学需氧量)、BOD(生化需氧量)、氨氮、总磷和总氮等。

这些指标可以反映污水中有机物质和营养物质的含量。

通过对这些指标的监测和分析,可以评估污水生化处理的效果,并进行相应的调整和改进。

总的来说,污水生化处理是一种高效、环保的污水处理方法,可以有效地降解污水中的有机物质,减少对环境的污染。

在实际应用中,需要根据不同的污水特性和处理要求,选择合适的生化处理工艺和操作条件,以达到最佳的处理效果。

污水生化处理

污水生化处理

污水生化处理污水生化处理是一种有效的污水处理方法,通过生物学的方式去除水中的有机物和污染物,使污水得到有效处理和净化。

本文将从污水生化处理的原理、工艺流程、优势、应用范围和发展趋势五个方面进行详细介绍。

一、原理1.1 污水生化处理原理是利用微生物对有机物进行降解和转化,将有机物分解为无害物质。

1.2 微生物在生化处理过程中通过吸附、吸收、分解和转化等作用,去除水中的有机物和污染物。

1.3 生化处理过程中,微生物通过呼吸作用将有机物氧化为二氧化碳和水,完成有机物的降解。

二、工艺流程2.1 污水生化处理的工艺流程包括曝气池、沉淀池、生物滤池等单元,通过不同单元的协同作用完成污水处理。

2.2 曝气池中通过加氧设备向水体注入氧气,促进微生物的生长和代谢,加速有机物的降解。

2.3 沉淀池中通过重力沉降将悬浮物和生物团聚物沉淀到底部,净化水质。

三、优势3.1 污水生化处理具有处理效率高、运行成本低的优势,可以有效净化水质。

3.2 生化处理过程中不需要添加化学药剂,对环境友好,减少对水资源的消耗和污染。

3.3 生化处理可以适用于不同规模的污水处理厂,具有灵活性和通用性。

四、应用范围4.1 污水生化处理广泛应用于城市污水处理厂、工业废水处理厂等各类污水处理设施。

4.2 生化处理可以有效处理生活污水、工业废水、农村污水等不同来源的污水。

4.3 污水生化处理还可以应用于水体净化、水质改善等领域,对提高水环境质量有积极作用。

五、发展趋势5.1 随着环保意识的提高和技术的不断进步,污水生化处理技术将不断完善和发展。

5.2 未来污水生化处理将更加注重能源利用和资源回收,实现污水处理的可持续发展。

5.3 污水生化处理技术将逐渐向智能化、自动化方向发展,提高处理效率和运行稳定性。

总结:污水生化处理是一种有效的污水处理方法,具有处理效率高、运行成本低、环保等优势。

随着技术的不断发展和完善,污水生化处理将在未来得到更广泛的应用和推广。

废水的生化处理方法

废水的生化处理方法

废水的生化处理方法一、专业术语1.化学需氧量(COD cr)化学需氧量是指在规定条件下用化学氧化剂(K2Cr2O7或KMnO4)氧化分解水中有机物时,与消耗的氧化剂当量相等的氧量(mg/L)。

当氧化剂用重铬酸钾(K2Cr2O7)时,由于重铬酸钾氧化作用很强,所以能够较完全地氧化水中大部分有机物(除苯、甲苯等芳香烃类化合物以外)和无机性还原物质(但不包括硝化所需的氧量),此时化学需氧量用COD Cr,或COD表示;如采用高锰酸钾(KMnO4)作为氧化剂时,则称为高锰酸指数,写作COD Mn。

与BOD5相比,COD Cr能够在较短的时间内(规定为2小时)较精确地测出废水中耗氧物质的含量,不受水质限制,因此得到了广泛的应用。

缺点是不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧,造成一定误差。

如果废水中各种成分相对稳定,那么COD与BOD之间应有一定的比例关系。

一般说来,COD Cr>BOD20>BOD5>COD Mn,其中BOD5/COD Cr可作为废水是否适宜生化法处理的一个衡量指标。

比值越大,该废水越容易被生化处理。

—般认为BOD5/COD Cr大于0.3的废水才适宜采用生化处理。

2.五日生化需氧量(BOD5)生化需氧量(BOD)是表示在有氧条件下,温度为20℃时,由于微生物(主要是细菌)的活动,使单位体积污水中可降解的有机物氧化达到稳定状态时所需氧的量(mg/L)。

BOD的值越高,表示需氧有机物越多。

20℃时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成在第一阶段的氧化分解过程(完成过程的99%)。

就是说,测定第一阶段的生化需氧量,需要20天,这在实际工作中是难以做到的。

为此又规定一个标准时间,一般以5日作为测定BOD的标准时间,因而称之为五日生化需氧量,以BOD5表示之。

BOD5约为BOD20的70%左右。

3.氨氮(NH3-N)氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。

污水生化处理

污水生化处理

污水生化处理标题:污水生化处理引言概述:污水生化处理是一种通过生物活性污泥将有机物质转化为无害物质的技术。

它是一种环保的处理方式,能够有效减少污水对环境的污染,保护水资源。

本文将详细介绍污水生化处理的原理、流程、设备、优缺点以及应用范围。

一、原理1.1 生物降解:污水中的有机物质通过微生物降解为无害物质。

1.2 氧化还原反应:微生物在氧气的作用下将有机物质氧化为二氧化碳和水。

1.3 生物膜反应:微生物在生物膜表面形成生物膜反应,加速有机物质的降解。

二、流程2.1 初级处理:去除污水中的大颗粒物质,如砂石、油脂等。

2.2 生化处理:将污水送入生化池中,通过微生物的作用将有机物质降解。

2.3 二次处理:进一步去除残留的有机物质和氮、磷等营养物质。

三、设备3.1 生化池:主要用于微生物的生长和降解有机物质。

3.2 曝气设备:提供氧气供给微生物进行氧化反应。

3.3 污泥处理设备:用于处理生化池中产生的污泥,减少废物排放。

四、优缺点4.1 优点:处理效果好,能够有效降解有机物质;运行成本低,操作简单。

4.2 缺点:对水质要求高,易受外界环境影响;处理效率受生物活性影响。

4.3 应用范围:适用于城市污水处理厂、工业废水处理等领域。

五、应用范围5.1 城市污水处理厂:用于处理城市生活污水,减少对水环境的污染。

5.2 工业废水处理:适用于处理工业废水中的有机废物,达到排放标准。

5.3 农村污水处理:用于农村地区的污水处理,改善环境卫生状况。

结语:污水生化处理技术在环境保护领域具有重要意义,通过生物降解有机物质,能够有效减少污水对环境的影响。

随着技术的不断进步,污水生化处理将在更广泛的领域得到应用,为人类创造更清洁的生活环境。

污水生化处理

污水生化处理

污水生化处理污水生化处理是一种通过生物学方法将污水中的有机物质进行降解和转化的技术。

该技术主要包括生物接触氧化法、活性污泥法、生物膜法等多种处理方法。

以下是对这些处理方法的详细介绍。

1. 生物接触氧化法:生物接触氧化法是一种将污水与微生物接触的方法,通过微生物的代谢活动将有机物质降解为无机物质。

该方法主要包括生物滤池法和生物接触氧化池法。

生物滤池法是将污水通过滤池,利用滤料表面附着的微生物对污水进行降解处理。

生物接触氧化池法是将污水与微生物接触的同时,通过曝气设备提供氧气,促进微生物的代谢活动。

2. 活性污泥法:活性污泥法是一种利用活性污泥对污水进行处理的方法。

该方法主要包括常规活性污泥法和序批式活性污泥法。

常规活性污泥法是将污水与活性污泥混合,通过曝气设备提供氧气,使活性污泥中的微生物进行降解有机物质的代谢活动。

序批式活性污泥法是将污水与活性污泥交替注入反应池中,通过控制进水、停水、排水等操作过程,使活性污泥对污水进行降解处理。

3. 生物膜法:生物膜法是一种利用生物膜对污水进行处理的方法。

该方法主要包括生物滤膜法和生物接触氧化膜法。

生物滤膜法是将污水通过滤膜,利用滤膜表面附着的微生物对污水进行降解处理。

生物接触氧化膜法是将污水与生物膜接触的同时,通过曝气设备提供氧气,促进微生物的代谢活动。

污水生化处理的工艺流程普通包括进水处理、生化处理和出水处理三个步骤。

进水处理阶段主要是对进入处理系统的污水进行初步处理,包括预处理和除磷除氮等工艺。

预处理主要是通过格栅、沉砂池等设备去除污水中的大颗粒杂质和沉积物。

除磷除氮工艺主要是通过添加化学药剂或者利用生物反应器中的特定微生物对污水中的磷和氮进行去除。

生化处理阶段是污水生化处理的核心步骤,主要是利用生物反应器中的微生物对污水中的有机物质进行降解和转化。

根据不同的处理方法,可以采用不同的反应器结构,如生物滤池、活性污泥池、生物膜反应器等。

出水处理阶段是对生化处理后的污水进行进一步的处理,以达到排放标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水的生化处理方法废水生物处理是19世纪末出现的治理污水的技术,发展至今已成为世界各国处理城市生活污水和工业废水的主要手段。

目前,国内己有近万座污水生物处理厂(站)投入运行。

生物化学处理法简称生化法,是利用自然环境中的微生物,并通过微生物体内的生物化学作用来分解废水中的有机物和某些无机毒物(如氰化物、硫化物),使之转化为稳定、无害物质的一种水处理方法。

1916年在英国出现了第一座人工处理的曝气池,利用人工培养的微生物来处理城市生活污水,开始了生化处理的新时代。

由于生化法处理废水效率高、成本低、投资省、操作简单,因此在城市污水和工业废水的处理中都得到广泛的应用。

生化法的缺点是有时会产生污泥膨胀和上浮,影响处理效果;该法对要处理水的水质也有一定要求,如废水成份、pH值、水温等,因而限制了它的使用范围,另外,生化法占地面积也较大。

属于生化处理法的有活性污泥法、生物过滤法、生物膜法、生物塘法和厌氧生物法等。

一、微生物及其生化特性迄今为止,已知的环境污染物达数十万种之多,其中大量的是有机物。

所有的有机污染物,可根据微生物对它们的降解性,分成可生物降解、难生物降解和不可生物降解三大类。

废水的生物处理就是利用微生物的新陈代谢作用处理废水的一种方法。

微生物与其它生物一样,为了进行自身的生理活动,必须从周围环境中摄取营养物质并加以利用。

这些营养物质在微生物体内,通过一系列的生物化学反应,使微生物获得需要的能量,同时微生物本身也得到繁殖、数量得到增加。

在废水中存在着各种有机物和无机物。

这些物质大部分都可以被微生物作为营养物质而加以利用。

废水的生物处理实质就是将废水中含有的污染物质作为微生物生长的营养物质被微生物代谢、利用、转化,将原有的高分子有机物转化为简单有机物或无机物,使得废水得到净化。

作为一个整体,微生物分解有机物的能力是惊人的。

可以说,凡自然界存在的有机物,几乎都能被微生物所分解。

有些种类,如葱头假单胞菌甚至能降解90种以上的有机物,它能利用其中任何一种作为唯一的碳源和能源进行代谢。

有毒的氰(腈)化物、酚类化合物等,也能被不少微生物作为营养物质利用、分解。

半个多世纪以来,人工合成的有机物大量问世,如杀虫剂、除草剂、洗涤剂、增塑剂等,它们都是地球化学物质家族中的新成员。

尤其是不少合成有机物的研制开发时的目的之一,就是要求它们具有化学稳定性。

因此,微生物一接触这些陌生的物质,开始时难以降解也是不足为怪的。

但由于微生物具有极其多样的代谢类型和很强的变异性,近年来的研究,已发现许多微生物能降解人工合成的有机物,甚至原以为不可生物降解的合成有机物,也找到了能降解它们的微生物。

因此,通过研究,有可能使不可降解的或难降解的污染物转变为能降解的,甚至能使它们迅速、高效地去除。

化学结构与生物降解的相关性归纳起来主要有以下几点:(1)烃类化合物一般是链烃比环烃易分解,直链烃比支链烃易分解,不饱和烃比饱和烃易分解。

(2)主要分子链主要分子链上的C被其他元素取代时,对生物氧化的阻抗就会增强,也就是说,主链上的其他原子常比碳原子的生物利用度低,其中氧的影响最显着(如醚类化合物较难生物降解),其次是s和N。

(3)碳氢键每个C原子上至少保持一个氢碳键的有机化合物,对生物氧化的阻抗较小,而当C原子上的H都被烷基或芳基所取代时,就会形成生物氧化的阻抗物质。

(4)官能团的性质及数量官能团的性质及数量对有机物的可生化性影响很大。

例如,苯环上的氢被羟基或氨基取代,形成苯酚或苯胺时,它们的生物降解性将比原来的苯提高。

卤代作用则使生物降解性降低,尤其是间位取代的苯环,其抗生物降解更明显。

(5)分子量大小对生物降解性的影响很大高分子化合物,由于微生物及其酶难以扩散到化合物内部,袭击其中最敏感的反应键,因此使生物可降解性降低。

由于废水中污染物的种类繁多,相互间的影响错综复杂,所以一般应通过实验来评价废水的可生化性,判断采用生化处理的可能性和合理性。

二、有机污染物生物降解性的评定方法1.BOD5/COD值法BOD5和COD是废水生物处理过程中常用的两个水质指标,用BOD5/COD值评价废水的可生化性是广泛采用的一种最为简易的方法。

在一股情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。

综合国内外的研究结果,可参照表8-4中所列数据评价废水的可生化性。

①某些废水中含有的悬浮性有机固体容易在COD的测定中被重铬酸钾氧化,并以COD的形式表现出来。

但在BOD反应瓶中受物理形态限制,BOD数值较低,致使BOD5/COD值减小。

而实际上悬浮有机固体可通过生物絮凝作用去除,继之可经胞外酶水解后进入细胞内被氧化,其BOD5/COD值虽小,可生物处理性却不差。

②COD测定值中包含了废水中某些无机还原性物质(如硫化物、亚硫酸盐、亚硝酸盐、亚铁离子等)所消耗的氧量,BOD5测定值中也包括硫化物、亚硫酸盐、亚铁离子所消耗的氧量。

但由于COD与BOD5测定方法不同,这些无机还原性物质在测定时的终态浓度及状态都不尽相同,亦即在两种测定方法中所消耗的氧量不同,从而直接影响BOD5和COD的测定值及其比值。

重铬酸钾在酸性条件下的氧化能力很强,在大多数情况下,COD值可近似代表废水中全部有机物的含量。

但有些化合物如吡啶不被重铬酸钾氧化,不能以COD 的形式表现出需氧量,但却可能在微生物作用下被氧化,以BOD5的形式表现出需氧量,因此对BOD5/COD值产生很大影响。

综上所述,废水BOD5/COD值不可能直接等于可生物降解的有机物占全部有机物的百分数,所以,用BOD5/COD值来评价废水的生物处理可行性尽管方便,但比较粗糙,欲做出准确的结论,还应辅以生物处理的模型实验。

2.BOD5/TOD值法对于同一废水或同种化合物,COD值一般总是小于或等于TOD值,不同化合物的COD/TOD值变化很大,如吡啶为2%,甲苯为45%,甲醇为100%,因此,以TOD代表废水中的总有机物含量要比COD准确,即用BOD5/TOD值来评价废水的可生化性能得到更好的相关性。

通常,废水的TOD由两部分组成,其一是可生物降解的TOD(以TOD B表示),其二是不可生物降解的TOD(以TOD NB表示),即:TOD=TOD B+TOD NB(12-19)在微生物的代谢作用下,TOD B中的一部分氧化分解为CO2和H2O,一部分合成为新的细胞物质。

合成的细胞物质将在内源呼吸过程中被分解,并有一些细胞残骸最终要剩下来。

采用BOD5/TOD值评价废水可生化性时,有些研究者推荐采用表8-5所列标准。

表8-5 废水可生化性评价参考数据生物处理法在城市污水的处理中使用得比较广泛。

城市污水的处理分为三个级别,分别称为污水一级处理、污水二级处理和污水三级处理。

污水一级处理就是使用物理处理方法,如格栅、沉淀池等去除水中不溶解的污染物。

二级处理应用生物处理法,通过微生物的代谢作用进行物质的转化,将废水中的复杂有机构氧化降解为简单的物质。

三级处理是用生物法、离子交换法等去除水中的氮和磷,并用臭氧氧化、活性炭吸附等去除难降解有机物,用反渗透法去除盐类物质,用氯化法对水进行消毒。

我国目前正在努力普及二级处理,而二级处理中生物处理是最常采用的方法。

不同的细菌对氧的反应变化很大,一些细菌只能在有氧存在的环境中生长,称需氧细菌(或称好氧细菌),利用此类微生物的作用来处理废水称为好氧生物处理法。

另一些细菌只能在无氧的环境中生长,叫厌氧细菌,相应的处理方法叫厌氧生物处理。

介于两者之间的还有兼性微生物(在有氧或无氧的环境中均可生长),但它们在废水处理中不起主要作用。

按微生物的代谢形式,生化法可分为好氧法和厌氧法两大类;按微生物的生长方式可分为悬浮生物法和生物膜法,现归纳如下:图8-16 生物处理方法分类(一)废水的好氧生物处理在充分供氧的条件下,利用好氧微生物的生命活动过程,将有机污染物氧化分解成较稳定的无机物的处理方法,在工程上称为废水的好氧生物处理。

微生物对有机污染物进行好氧分解的过程如下:溶解态的有机物可以直接透过细菌的细胞壁进入细胞内。

固体或胶体的有机物先被细菌吸附,靠细菌所分泌的外酶作用,分解成溶解性的物质,然后,再渗入细菌细胞内,通过细菌自身的生命活动,在内酶的作用下,进行氧化、还原和合成过程。

一部分被吸收的有机物氧化分解成简单的无机物,如有机物中的碳被氧化成二氧化碳,氢与氧化合成水,氮被氧化成氨、亚硝酸盐和硝酸盐,磷被氧化成磷酸盐,硫被氧化成硫酸盐等。

与此同时释放出能量,作为细菌自身生命活动的能源,并将另一部分有机物作为其生长繁殖所需要的构造物质,合成新的原生质。

好氧生物处理时,有机物的转化过程如图8-17所示。

图8-17 有机物的好氧分解图示在废水好氧处理过程中,必须不间断地供给溶解氧。

因为氧是有机物的最后氢受体,正是由于这种氢的转移,才使能量释放出来,成为细菌生命活动和合成新细胞物质的能源。

有机物的好氧合成过程,也可以用下列生化反应式表示:(1)有机物的氧化分解(有氧呼吸):(8-7)(2)原生质的同化合成(以氨为氮源):(8-8)(3)原生质的氧化分解(内源呼吸):(8-9)由此可以看出,当废水中营养物质充足,即微生物既能获得足够的能量,又能大量地合成新的原生质肘,微生物就不断增长。

当废水中营养物质缺乏时,微生物只得依靠细胞内贮藏的物质,甚至把原生质也作为营养物质利用,以获得生命活动所需的最低限度得能源,这种情况下,微生物无论重量还是数量都是不断减少的。

可见,要保证废水处理得效果,首先必须有足够数量的微生物,同肘,还必须有足够数量的营养物质。

在好氧生物处理过程中,有机物用于氧化与合成的比例,随废水中有机物性质而异。

对于生活污水或与之相类似的工业废水,所产生的新细胞物质,约占全部有机物干重的50~60%。

(二)废水的厌氧生物处理在断绝供氧的条件下,利用厌氧微生物的生命活动过程,使废水中的有机物转化成较简单的有机物和无机物的处理过程,在工程上称为废水的厌氧生物处理。

有机物的厌氧分解过程分为两个阶段。

在第一阶段中,产酸细菌把存在于废水中的复杂有机物转化成较简单的有机物(如有机酸、醇类等)和CO2、NH3、H2S等无机物。

在第二阶段中,甲烷细菌接着将简单的有机物分解成甲烷和二氧化碳等。

厌氧分解过程可用图8-18的简单图式来说明。

图8-18 有机物厌氧分解图示厌氧分解过程中,由于缺乏氧作为氢受体,所以,对有机物的分解不彻底,贮于有机物中的化学能未全部释放出来。

一般说来,微生物的厌氧生长条件比较严格。

(三)好氧生物处理与厌氧生物处理的区别1.起作用的微生物群不同好氧生物处理是由一大群好氧菌和兼性厌氧菌起作用的;而厌氧生物处理是两大类群的微生物起作用,先是厌氧菌和兼性厌氧菌,后是另一类厌氧菌。

相关文档
最新文档