数学人教版八年级上册全等三角形的性质和判定 习题课

合集下载

全等三角形的性质和判定习题课

全等三角形的性质和判定习题课

课题:三角形全等的性质和判定习题课南通市如东县新区初级中学张小锋
教学目标1.通过三角形全等判定方法的复习,让学生体会辨别、探寻、构造、运用全
等三角形的一般方法。

2.探究全等三角形问题的过程中体会“由已知得可知,由未知想需知”的研
究问题的方法,体会“转化”、“建模”等数学思想。

3.经历“找全等→构全等→用全等”的过程,能逐步提升学生观察和理解能
力、几何语言的叙述能力及运用全等知识解决问题的能力。

重点难点构造全等三角形解决问题
教学方法教师启发、引导,学生自主思考、合作交流、互助探究相结合教学手段以学生独立探究为基础,合作学习为主线
教学过程
探究一:
如图:在△ABC和△DEF中,BC=EF.请再添加两个条件,使△ABC ≌△DEF,并说明两个三角形全等的判定方法。

探究二:
例1:已知:如图,点B,E,C,F在同一条直线上,BE=CF,AB=DE,∠B=∠DEF。

(1)求证:AC=DF
(2)求证:AC∥DF
反馈训练:
如图所示:∠A=∠D=90°,∠B=∠E,CA=CD。

由这些条件可以得到若干结论,请至少写出5个正确结论。

【设计意图】
复习回顾三角形全等的判定方法
【设计意图】
引导学生深入体会全等三角形是证明边、角相等的重要工具,渗透转化的数学思想。

2022年人教版八年级上册数学第十二章全等三角形第2节 第3课时判定三角形全等ASA,AAS)

2022年人教版八年级上册数学第十二章全等三角形第2节 第3课时判定三角形全等ASA,AAS)

基基础础巩巩固固
能力提升
核心素养
-10-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
8.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两张 凳子之间(凳子与地面垂直).已知DC=a,CE=b,则两张凳子 的高度之和为 a+b .
基基础础巩巩固固
能力提升
核心素养
-11-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
∴△ABC≌△DCB(ASA),∴AB=DC.
基基础础巩巩固固
能力提升
核心素养
-5-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
知识点2 三角形全等的判定方法(AAS) 4.如图,在△ABC中,∠C=90°,D是AB上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E,则△ACB≌△MDE , 判定依据是 AAS(答案不唯一) .(用字母表示)
-8-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
解:∵AB∥DE,∴∠ABC=∠DEF.
∠ABC=∠DEF, 在△ABC 和△DEF 中, ∠A=∠D,
AC=DF,
∴△ABC≌△DEF(AAS),
∴BC=EF,∴EC=BF=3 m,
∴FC=10-3-3=4(m).
基基础础巩巩固固
能力提升
第3课时 利用两角一边判定三角形全 等(ASA,AAS)
第3课时 利用两角一边判定三角形全等(ASA,AAS)
限时:15分钟
知识点1 三角形全等的判定方法(ASA)
1.如图,已知∠1=∠2,则不一定能使△ABC≌△ABD的条件
是( B )
A.AC=AD
B.BC=BDC.∠C=∠来自 D.∠3=∠4第1题图

全等三角形的判定-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

全等三角形的判定-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)

第二课时——全等三角形的判定知识点一:全等三角形的判定:判定方法内容数学语言 图形表示 注意点边边边(SSS )三边分别相等的两个三角形全等。

可简写为“边边边”或“SSS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF边角边(SAS )两边及其夹角分别对应相等的两个三角形全等。

可简写为“边角边”或“SAS ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧=∠=∠=DF AC D A DEAB ∴△ABC ≌△DEF用“边角边(SAS )判定全等时,角一定是两边的夹角,否则不能判定全等。

在写条件的时候角必须写在中间。

角边角(ASA )两角及其夹边分别对应相等的两个三角形全等。

可简写为“角边角”或“ASA ”在△ABC 与△DEF中:⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB DA ∴△ABC ≌△DEF用“角边角(ASA )判定全等时,边是两角的夹边,在书写的过程中需把边写在中间特别提示:在写全等三角形的数学语言时,等号左边写“≌”左边三角形的条件,等号右边写“≌”右边三角形的条件。

并且条件的顺序必须和判定条件顺序一致。

方法总结:【类型一:补充证全等条件】1.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DBC.∠A=∠DEF D.∠ABC=∠D2.如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()第2题第3题A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3.如图,BC=BD,添加下列一个条件后,仍无法判定△ABC≌△ABD的是()A.AC=AD B.∠ABC=∠ABD C.∠CAB=∠DAB D.∠C=∠D=90°4.如图,已知点A,D,C,F在同一条直线上,AB=DE,AD=CF,要使△ABC≌△DEF,则下列条件可以添加的是()第4题第5题第7题A.∠B=∠E B.∠A=∠EDF C.AC=DF D.BC∥EF5.如图,已知AB=AE,∠EAB=∠DAC,添加一个条件后,仍无法判定△AED≌△ABC的是()A.AD=AC B.∠E=∠B C.ED=BC D.∠D=∠C6.下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等7.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,添加一个条件,不能使得Rt△ABC≌Rt△DCB 的是()A.AB=DC B.AC=DB C.∠ABC=∠DCB D.BC=BD8.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB全等,则需要添加的条件是()A.AD=CB B.∠A=∠CC.BD=DB D.AB=CD【类型二:证明三角形全等】9.请将以下推导过程补充完整.如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF平分∠DCE.求证:△DCF ≌△ECF 证明:∵AD ∥BE ∴∠A =∠B在△ACD 和△BEC 中()⎪⎩⎪⎨⎧=∠=∠BC AD B A ∴△ACD ≌△BEC ( )∴CD =CE ( ) ∵CF 平分∠DCE ∴ 在△DCF 和△ECF 中()⎪⎩⎪⎨⎧==CE CD CF CF ∴△DCF ≌△ECF (SAS )10.如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD .求证:△ABC ≌△CDE .11.如图,点A、D、B、E在一条直线上,AD=BE,AC=DF,AC∥DF,求证:△ABC≌△DEF.12.如图,点D在线段BC上,AB=AD,∠1=∠2,DA平分∠BDE:求证:△ABC≌△ADE.13.天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≌△CDO.14.如图,在△ABC中,点D在BC的延长线上,DE∥AC,且DE=BC,AC=BD.求证:△ABC≌△BED.15.如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.16.如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.18.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE =BF.19.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.【类型三:全等三角形的判定与性质】20.如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,∠F AC =40°,则∠BFE=()第20题第21题A.35°B.40°C.45°D.50°21.如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为()A.21B.24C.27D.3022.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()第22题第23题A.3B.5C.6D.723.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.424.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.25.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.26.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.【类型四:全等三角形的应用】27.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()第27题第28题A.SSS B.SAS C.ASA D.AAS28.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去29.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.第29题第30题30.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB =OC,测得AB=a,EF=b,圆形容器的壁厚是()A .aB .bC .b ﹣aD .21(b ﹣a )一、选择题(10题)1.如图为正方形网格,则∠1+∠2+∠3=( )第1题 第2题 第3题A .105°B .120°C .115°D .135°2.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL ”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是( )A .∠ABC =∠ABDB .∠BAC =∠BAD C .AC =AD D .AC =BC3.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A .①B .②C .③D .①和②4.根据下列已知条件,能唯一画出△ABC 的是( )A.∠C=90°,AB=6B.AB=4,BC=3,∠A=30°C.AB=5,BC=3D.∠A=60°,∠B=45°,BC=45.如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B的距离,判定△EDC≌△ABC的依据是()A.ASA B.SSS C.AAS D.SAS6.如图,已知∠EAC=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠D.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()第7题第8题A.BD>CD B.BD<CD C.BD=CD D.不能确定8.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从B向A运动,每分钟走1m,点Q从B向D运动,每分钟走2m,P、Q两点同时出发,运动()分钟后,△CAP与△PQB全等.A.2B.3C.4D.89.把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为()第9题第10题A.4cm B.6cm C.8cm D.求不出来10.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD 交于点M,连接OM.下列结论:①AC=BD,②∠OAM=∠OBM,③∠AMB=α,④OM平分∠BOC,其中正确结论的个数是()A.4B.3C.2D.1二、填空题(6题)11.如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件的是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.第12题第14题13.在△ABC中,AB=3cm,AC=4cm,则BC边上的中线AD的取值范围是.14.在直角三角形中,存在斜边的平方等于两条直角边的平方的和。

人教版八年级数学上册1三角形全等的判定第4课时用“HL”判定直角三角形全等课件

人教版八年级数学上册1三角形全等的判定第4课时用“HL”判定直角三角形全等课件

E
∴CD = CE,
B
又DA⊥AB,EB⊥AB,
∴∠A=∠B =90°,
在Rt△ACD与Rt△BCE中,
D
AC BC,
CD CE,
A
∴Rt△ACD≌Rt△BCE(HL).
∴DA = EB,
C
E
即D、E与路段AB的距离相等.
B
练习2 如图,AB = CD,AE⊥BC,DF⊥BC, 垂足分别为E,F,CE = BF.求证:AE = DF.
∴Rt△ABC ≌ Rt△DEF(HL).
例2 如图,有两个长度相同的滑梯,左边滑 梯的高度AC 与右边滑梯水平方向的长度DF 相等, 两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么 关系?为什么? 证明:∴∠ABC =∠DEF
(全等三角形对应角相等).
∵ ∠DEF +∠DFE =90°,
∴ ∠ABC +∠DFE =90°.
DC AB, CF BE, ∴Rt△DFC≌Rt△AEB(HL).
FE
∴AE = DF.
A
B
练习3 如图,B、E、F、C 在同一直线上, AF⊥BC 于F,DE⊥BC与E,AB = DC,BE = CF, 你认为 AB 平行于 CD 吗?说说你的理由.
解:平行. 理由:∵AF⊥BC,DE⊥BC, ∴∠AFB 和∠DEC 都是直角, 又 BE = CF, ∴BE+EF=CF+EF,即 BF = CE.
例2 如图,有两个长度相同的滑梯,左边滑 梯的高度AC 与右边滑梯水平方向的长度DF 相等, 两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么 关系?为什么?
证明:∵AC⊥AB,DE⊥DF,
∴∠CAB =∠FDE =90°.

人教版八年级数学上册12.2.2《三角形全等的判定(2)》说课稿

人教版八年级数学上册12.2.2《三角形全等的判定(2)》说课稿

人教版八年级数学上册12.2.2《三角形全等的判定(2)》说课稿一. 教材分析《人教版八年级数学上册》第12.2.2节《三角形全等的判定(2)》是继第12.2.1节《三角形全等的判定(1)》之后,进一步深化学生对三角形全等判定方法的理解和应用。

本节内容主要包括SSS、SAS、ASA、AAS四种判定方法,以及三角形全等的应用。

在学习本节内容时,学生需要掌握这四种判定方法的判定条件和应用场景,并能够熟练运用到实际问题中。

二. 学情分析在八年级的学生中,他们已经掌握了基本的三角形知识,对三角形的全等概念也有了一定的了解。

但在实际应用中,学生可能对判定方法的选用和判断过程的推理有所欠缺。

因此,在教学过程中,需要关注学生的知识掌握情况,针对性地进行辅导和引导,提高他们运用知识解决问题的能力。

三. 说教学目标1.知识与技能:使学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法,理解它们的判定条件和应用场景。

2.过程与方法:培养学生运用三角形全等知识解决实际问题的能力,提高他们的逻辑思维和推理能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们独立思考、合作交流的良好学习习惯。

四. 说教学重难点1.教学重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法及其判定条件。

2.教学难点:判断方法的选用和实际问题中的灵活运用。

五. 说教学方法与手段本节课采用讲授法、案例分析法、小组讨论法等多种教学方法,结合多媒体课件、几何画板等教学手段,以直观、生动的方式呈现教学内容,提高学生的学习兴趣和参与度。

六. 说教学过程1.导入新课:回顾上节课的内容,引出本节课的主题——三角形全等的判定(2)。

2.知识讲解:讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示各自的判定条件和应用场景。

3.课堂互动:学生分组讨论,选取判定方法解决实际问题,教师巡回指导,解答学生的疑问。

4.总结提升:对本节课的内容进行总结,强调判定方法的选用和判断过程的推理。

八年级数学上册12.2三角形全等的判定(第3课时)课件(新版)新人教版

八年级数学上册12.2三角形全等的判定(第3课时)课件(新版)新人教版

第十三页,共20页。
知识小结
知识点一:“角边角(biān jiǎo)”判定三角形全等.
两角和它们的夹边分别(fēnbié)相等的两个三角形全等(可以 简写成“角边角”或“ASA”).
这是我们学习的第三个判定三角形全等的方法,这里(zhèlǐ)的两角和夹边, 是指同一个三角形的边和角,边是两个角的公共边.
八年级数学(shùxué)·上 [人]
新课标
第十二章 全等三角形
12.2 三角形全等的判定(PÀNDÌNG)(3)
学习新知
检测反馈
第一页,共20页。
学习新知
如图所示,小明不慎把一 块三角形的玻璃打碎成四块, 现在要去玻璃店去配一块完 全一样的玻璃,那么最省事的 办法是什么?你能帮小明出出 主意吗?
(1)AB=DE ; (2)BC=EF ; (3)AC=DF ;
(4)∠A=∠D ;
(5)∠B=∠E ; (6)∠C=∠F.
以其中(qízhōng)三个作为已知条件,不能判定△ABC与
△DEF全D等的是 ( )
A.(1)(5)(2)
B.(1)(2)(3)
C.(4)(6)(1)
D.(2)(3)(4)
解析:A.正确,符合判定方法SAS;B.正 确,符合判定方法SSS;C.正确,符合判 定方法AAS;D.不正确,不符合全等三 角形的判定方法.故选D.
第六页,共20页。
第七页,共20页。
例3 如下(rúxià)图所示,点D在AB上,点E在AC 上,AB=AC,∠B=∠C.求证AD=AE.
分析
AD和AE分别在△ADC和△AEB中,所以(suǒyǐ)要证AD=AE,只需证明△ADC≌△AEB即可.
第八页,共20页。
证明过程

八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定第2课时用“SAS”判定三角形全等说课稿(新版)新人教版一. 教材分析本次说课的内容是新人教版八年级数学上册第12.2节三角形全等的判定,第2课时,主要讲解的是用“SAS”判定三角形全等。

这一节内容是在学习了三角形相似和三角形全等的概念基础上进行的,是三角形全等判定方法中的重要一环。

通过本节课的学习,学生能够理解和掌握“SAS”判定三角形全等的方法,并能够运用到实际问题中。

二. 学情分析根据我对学生的了解,他们在学习了三角形相似和三角形全等的基础上,对于全等的概念已经有了初步的认识,但是对于如何用“SAS”判定三角形全等,可能还存在着一些理解和运用上的困难。

因此,在教学过程中,我需要通过具体的例子和练习题,引导学生理解和掌握“SAS”判定三角形全等的方法。

三. 说教学目标本次课的教学目标是让学生理解和掌握“SAS”判定三角形全等的方法,能够运用“SAS”判定三角形全等,并能够解决实际问题。

四. 说教学重难点教学重点是让学生理解和掌握“SAS”判定三角形全等的方法,教学难点是如何引导学生理解和运用“SAS”判定三角形全等。

五. 说教学方法与手段在教学过程中,我会采用讲解法、示范法、练习法等教学方法。

通过讲解法,让学生了解“SAS”判定三角形全等的原理;通过示范法,让学生直观地理解“SAS”判定三角形全等的步骤;通过练习法,让学生巩固“SAS”判定三角形全等的方法。

六. 说教学过程1.导入:通过复习三角形相似和三角形全等的概念,引导学生进入本节课的学习。

2.讲解:“SAS”判定三角形全等的方法:首先,让学生观察两个三角形,找出它们的两个边和夹角分别相等;然后,根据全等三角形的性质,得出这两个三角形全等。

3.示范:通过具体的例子,演示如何用“SAS”判定三角形全等,让学生直观地理解全等的判定过程。

4.练习:让学生通过练习题,运用“SAS”判定三角形全等,巩固所学的方法。

小学八年级数学三角形全等的判定习题课教学设计

小学八年级数学三角形全等的判定习题课教学设计

《三角形全等的判定习题课》教学设计一、关于教学内容和要求的试探本节的要紧内容是:通过判定三角形全等的三种题型温习全等三角形的判定方式,利用题中的已知条件、挖掘“隐含条件”、转化“间接条件”、合理添加“辅助线”来判定三角形全等,充分把握分析问题的方式,使所学的知识能灵活应用到解题当中。

要求慢慢培育学生观看、比较、分析、综合、抽象和归纳的能力,提高学生的空间想象能力和思维能力,这是《数学课程标准》中对中学数学的要求。

本节的课题是《三角形全等的判定习题课》是八年级数学的重点内容之一,在生活中有普遍的应用,同时三种题型中的条件的挖掘、转化与利用也是九年级的重点内容,在八年级学习中适当的安排相应的内容,关于九年级的学习起着渗透的踊跃作用,学会运用条件的直接与间接的利用、转化解决问题策略的思想方式,进展学生的创新意识,增强图形变换的爱好,也巩固了全等的知识。

二、学生情形的分析一、学生已有的知识基础:本节课是在学生已经学习完了全等三角形的判定方式,的基础上进一步来研究的。

二、八年级学生心理生理特点:中学生心理学研究指出:初中时期是智力进展的关键时期,学生逻辑思维从体会型慢慢向理论型进展,观看能力经历力和想象能力也随着迅速进展。

从学生年龄特点来看,初中生好动、好奇、好表现,抓住学生特点,踊跃采纳形象生动,形式多样的教学方式和学生普遍踊跃参与的教学形式,定能激发学生爱好,有效培育学生能力,增进学生个性进展。

生理上,青青年好动,注意力易分散,爱发表观点,希望取得教师的夸奖。

因此在教学中抓住学生的特点,一方面要运用直观形象,激发学生的爱好,使他们的注意力始终集中在课堂上;另一方面要制造条件和机遇,让学生发表观点,发挥学生学习的主动性。

三、学习目标的确信1、熟练把握全等三角形的判定方式。

2、能准确、灵活的运用三角形全等的判定方式解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

训练学生解题的严谨性。

四、学习重、难点的分析重点:利用三角形全等的判定方式正确的解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【设计意图】
通过构造全等三角形,进而证明线段相等,进一步让学生感受到全等三角形是证明边、角相等的重要模型,渗透建模思想。
【设计意图】
引导学生对比条件,对比结论,总结问题的实质,感受变化问题中不变的思想。
板书设计
三角形全等的性质和判定习题课
判定方法策略与方法数学思想
边边边(SSS)寻找全等三角形建模思想
图1图2图3
变式1:如图2,△ABC和△ADE都是等边三角形,BD、CE交于点O,
(1)求∠COD的度数。(2)若连接OA,求证:OA平分∠BOD.
变式2:如图3,分别以△ABC的边AB,A C为一边画正方形AEDB和正方形ACGF,连结CE, BF,OA.求∠EOA.的度数。
反思小结:通过本节课的学习,你有哪些收获?
课题:三角形全等的性质和判定习题课
南通市如东县新区初级中学张小锋
教学目标
1.通过三角形全等判定方法的复习,让学生体会辨别、探寻、构造、运用全等三角形的一般方法。
2.探究“转化”、“建模”等数学思想。
3.经历“找全等→构全等→用全等”的过程,能逐步提升学生观察和理解能力、几何语言的叙述能力及运用全等知识解决问题的能力。
(1)求证:AC=DF
(2)求证:AC∥DF
反馈训练:
如图所示:∠A=∠D=90°,∠B=∠E,CA=CD。
由这些条件可以得到若干结论,请至少写出5个正确结论。
【设计意图】
复习回顾三角形全等的判定方法
【设计意图】
引导学生深入体会全等三角形是证明边、角相等的重要工具,渗透转化的数学思想。
探究三:
例2:如图,在平面直角坐标系中,将直角三角形的直角顶点放在点
重点难点
构造全等三角形解决问题
教学方法
教师启发、引导,学生自主思考、合作交流、互助探究相结合
教学手段
以学生独立探究为基础,合作学习为主线
教学过程
探究一:
如图:在△ABC和△DEF中,BC=EF.请再添加两个条件,使△ABC≌△DEF,并说明两个三角形全等的判定方法。
探究二:
例1:已知:如图,点B,E,C,F在同一条直线上,BE=CF,AB=DE,∠B=∠DEF。
P(2,2)处,两直角边分别与坐标轴交于点A和点B。
(1)求证:PB=PA
(2)求OA+OB的值.
反馈训练:
如图,△ABC中,AC=BC,∠C=90°,
BD为∠ABC的平分线,若A点到直线BD
的距离为a,求BE的长。
探究四:
例3:如图1,A是CD上的一点,△ABC和△ADE都是等边三角形,BD、CE交于点O,求∠COD的度数。
边角边(SAS)构造全等三角形转化思想
角边角(ASA)应用全等三角形
角角边(AAS)
斜边、直角边(HL)(只适用直角三角形)
作业内容
见讲义
教学反思
相关文档
最新文档