电网络理论1-66

合集下载

电网络理论考点 - 副本

电网络理论考点 - 副本

.供用电网络考试内容第一章绪论第一节电力系统概述理解掌握 1 电力系统的构成包括:答:电力系统是由发电机,变压器,输配电线路和电力用户的电器装置连接而成的整体,他完成了发电,输电,变电,配电,用电的任务。

电力系统的概念答:什么是电力网、电力系统、动力系统答:电路系统各种电压的变电所及输配电线路组成的统一体,称为电力网。

电力网的主要任务是输电与分配电能。

2为发电厂和用户架起一座桥梁,用于传输电能,这边是电力系统。

2电力系统运行的特点(1)、电能生产,运输,使用的同时性(2)与生产及人们生活密切相关性、(3)过渡过程的瞬时性3对电力系统的基本要求(1)满足用电要求、(2)、安全可靠用电(3)保证电能质量,保证电力系统运行的经济性---以及1类~3类负荷的定义答:,电能质量指标—电压(正负百分五)、频率(正负百分之零点二到五)、波形(正弦波)一类负荷,在正常的运行和故障情况下,系统接线方式必须有足够的可靠性和灵和性,保证对用户的连续供电。

二类负荷,需双回路线路供电,三类负荷,允许停电较长,但不可以随意停电。

第二节发电厂类型熟悉1发电厂的种类;理解掌握1水电厂发电机容量大小由上下游的落差和流量决定2根据地形地质水能资源特点的不同,水电厂的分类;水力发电厂按其运行方式可分为无调节水电厂和有调节水电厂)3各类电厂的结构和特点第三节变电所类型熟悉变电所的类型和分类1按在电网的地位和作用划分:升压变压器和降压变压器按电压高低划分,大型变电所,中型变电说,小型变电所,按变电所的结构型式划分,屋外是变电所,屋内是变电所,地下变电所和箱式变电所第四节电力网的电压理解掌握1我国电力的额定电压022. 0.38 3 6 10 35 60 110 220 330 500 750KV第五节供配电系统的接地理解熟练掌握1按接地的目的不同,接地可以分为什么?答:工作接地,保护接地。

防雷接地2工作接地,中性点直接接地优点:单相接地时,其中性点电位不变,非故障相对电压接近相电压,因此降低电力网绝缘的投资,而且电压越高,其经济效益也越大,所以,目前我国对110千伏以上的电力网一般采用中性点直接接地。

电网络理论

电网络理论

电网络理论电网络理论是电力系统的基础理论,通过对电路中电流、电压、功率和能量等参数的分析和研究,以及电路中的元件如电阻、电容和电感等的特性和相互关系,来研究电路中的电能传输、控制和转换问题。

本文将从电网络的基本原理、电路分析方法、交直流电路、三相电路和磁电路等方面来介绍电网络理论。

一、电网络的基本原理电网络是由电路元件按照一定的连接方式组成,在电路中产生或传输电能的一种电学系统。

它包含基本电路、复合电路和控制电路等三种基本类型。

其中,基本电路只由一种电路元件构成,例如电阻、电容和电感等单元,例子如图1所示。

图1:基本电路复合电路由多种电路元件组合而成,可以分为串联、并联、树型等不同结构,例子如图2所示。

图2:复合电路控制电路则在复合电路的基础上增加了逻辑控制包括开关、计算机等,在实现空间、时间、功能上高度复杂,例子如图3所示。

图3:控制电路每种电路元件都有其对电能的特性消耗、储存、转换的贡献,而每种电路结构规则所连接的电路元件也影响了电路的性能特征。

因此,电网络理论的基本任务是分析和预测电路中电信号之间的关系和影响。

二、电路分析方法为了研究电路中的各种性质,需要采用适当的方法来分析电路。

电路分析方法主要分为两大类,即基本法和派生法。

1.基本法基本法是指对简单电路采用基本关系式和物理学原理求解电路中的电压、电流和功率各种参数的方法。

其中包括:(1)基尔霍夫电压定律法和基尔霍夫电流定律法,用于求解电路中各节点的电压和电流。

(2)欧姆定律法,用于求解电路中电阻元件的电流和电压。

(3)功率方程法,用于求解电路中的功率分配和传输。

(4)电荷守恒定律法,用于求解电路中的电荷分布和电场特性等。

如图4所示的简单电路,可以采用基本法来计算其中的电路参数。

图4:简单电路2.派生法派生法是指通过用已知电路中的节点电压、电流或电阻替换未知元件来简化复杂电路求解问题的方法。

其中的常用方法有:(1)串并联电路转换,用于求解串联、并联电路特性和电路等效性分析。

电网络理论1-66

电网络理论1-66

i(
t
)

ic
(t
)

iL
(t
d
)
KVL u(t) ic (t) uc (t) dt q(t) u(t) uc (t) u(t) f (q(t))
u(t )、f
u(t) uL(t) iL(t)
d dt

(t
)

u(t
)

1
iL
(t
)
() 相同时,有 i(t) u(t)
1-7 网络的时不变性和时变性
v(t)
y(t)
时不变网络
u(t)
u(t)
性质:
0
(a)
t
vˆ (t) dv(t)
yˆ (t) dy(t)
0
(a)
t
dt
dt u(t-T
u(t-T)
t
vˆ (t) v(t)dt
t
)
yˆ (t) y(t)dt


0 T (b)
t
0 T (b)
W(to),在to至t W(to,t) ,W (to

,t)
间内从电源
t uT ( )i( to
传送至n )d 式中
端口网络 u(t )、i(t )




分别为n端口网络的端口电压向量和端口电流向量。如果
对所有的初始时刻to,对所有的 t to,以及对所有的容许
信号向量偶(u(t), i(t)),均有
t
1-7 网络的时不变性和时变性
传统型时不变网络的定义:若一个网络中不含任何非源时变 网络元件,则称该网络为时不变的。

电网络理论课程简介

电网络理论课程简介

电网络理论课程简介
“电网络理论”是电气工程类硕士研究生的学科基础课。

电网络理论是研究电网络(电路)的基本规律及其分析计算方法的科学,是电子科学与技术的重要理论基础。

它是在大学本科课程“电路”基础上的深入与发展,主要体现在理论分析的系统性、综合性和概括性。

通过课程的学习,可使学生的电网络理论体系得到充实和巩固。

课程要求学生具有坚实的数学基础,对电网络的基本特性有着严格的证明与推导,为计算机辅助电路分析的必要基础。

它为研究生向现代控制和电力系统方向拓展打下很好的理论基础,课程也包含电网络综合的设计。

近年来现代电路的新进展,如非线性电路混沌现象、模拟和数字混合的VLSI技术、人工神经网络理论都对本门学科产生了深刻的影响。

“网络分析”与“网络综合”是课程的两大部分。

课程涉及图论、网络分析、有源无源网络综合、非线性电路、时变电路、电网络计算机辅助设计、灵敏度分析等内。

我校已经在电气工程学科开设本门课程多次,电力系统及其自动化、电力电子与电力传动专业的学生选择该门课程作为学科基础课。

在教学计划的实施过程中,安排了实验教学环节。

采用“网络分析”与“网络综合”并重的模式,教学内容符合本门课程的主流内涵。

教学的两大部分内容基本是互为独立的。

“网络分析”的理论性要强一些,故将该部分内容先讲。

而“网络综合”内容与工程应用更接近,在这一部分安排了实验内容。

电网络理论第一章

电网络理论第一章

W ( t1 , t 2 ) = ∫ u( t )i ( t )dt
t1
t2
能量守恒是电网络理论中许多重要推理的立论基础之一 集总假设 假定任一网络变量信号仅是独立变量时间t的函数,而与 测点的空间坐标无关,即认为电磁波的传播是瞬时完成 的。换句话讲,对于以光速传播的电磁波而言,电路的长 短和电气装置的大小可以忽略不计。这样便可将任一 电磁过程中的各个方面(电场储能,磁场储能,电能的损耗 等)孤立开来,各自分别存在于某一元件上,而一个电路中 各个元件的空间位置关系对电路的行为是毫无影响的 。
南京航空航天大学
二、电容元件 i( t) +
q ( t) u ( t) -
如果一个n端口元件的端口电压向量u和端口电荷 向量q之间为代数成分关系 f C (u( t ), q( t ), t ) = 0 (*) 则称该元件为电容性n端口元件,n端口电容元件
u( t ) = h(q( t ), t )
f L (i ( t ),ψ ( t ), t ) = 0
(*)
则称该元件为电感性n端口元件,n端口电感元件
i ( t ) = h(ψ ( t ), t )
磁控电感 流控电感
南京航空航天大学
ψ ( t ) = f (i ( t ), t )
单调型电感 一个二端电感元件,如果其元件特性既可写为磁控形 式,又可表示为流控形式,且函数h(·,t)与f(·,t)互为惟 一的反函数,则其Ψ-i曲线必定为严格单调的,这种 电感称为单调型的。 时不变电感元件
南京航空航天大学
小信号电阻(又称动态电阻)
电阻元件的作用已远不能仅用“将电能转化为热能” 来描述。实际上,在现代电子技术中,非线性电阻 和线性时变电阻被广泛地应用于整流、变频、调制 、限幅等信号处理的许多方面。 四种理想受控源、理想变压器、回转器和负阻抗变 换器等元件都是二端口电阻元件,因为它们的元件 特性都是用端口电压向量和端口电流向量间的代数 成分关系来表征的。独立电压源和独立电流源的元 件特性分别用伏安平面的平行于电流轴与平行于电 压轴的直线表示,因此,它们均属于非线性电阻元 件。

电网络理论 01 网络元件与网络性质

电网络理论 01 网络元件与网络性质

u - i关系方程
h q, t du h q, t i t dt q t
研究生课程——电网络理论 ——1.1网络的基本概念
五、记忆电阻元件——忆阻元件
• 记忆电阻元件(忆阻元件) memory resistor(memristor)
f M , q, t 0
研究生课程——电网络理论
二、网络的时不变性与时变性
• 传统定义
若一个网络中不含任何非源时变网络元件,则该网络是时 不变的;反之,凡含有非源时变网络元件的。则称为时变 网络
• 端口型时不变网络 当 v t y t 时,必有
v t T y t T ,则网络
为端口型时不变网络 一个时不变网络的输出波形只决定于该网络的输入波形, 不因输入的时刻不同而改变
• 按此定义,含线性电感的电流和线性电容的电压可具有任意初 始值 • 传统定义着眼于网络内部的组成元件
– 端口型线性网络
• 若一个n端口网络的输入—输出关系由积分微分算子D确定,当 D既有齐次性又具有可加性时,此网络称为线性网络 • 反之,若算子D不具有齐次性或可加性,则此网络称为端口性 非线性网络
t1 t2
• 集总参数 lumped parameter
研究生课程——电网络理论 ——1.1网络的基本概念
集总参数电路
• 集总
– 电路中的电场与磁场分隔开:
• 电场只与电容元件相关
• 磁场只与电感元件相关
– 两种场之间不存在相互作用:
• 电场与磁场的相互作用将产生电磁波,能量以波的形式传递
– 实际电路尺寸与工作波长接近就不能用集总参数模型
研究生课程——电网络理论
三、网络的有源性和无源性

电网络理论简介

电网络理论简介
电网络故障诊断
电网络理论简介
发展轨迹
1930年前物理学中电磁学的一个分支(欧姆定 律)、基尔霍夫定律、 等效电源定理、复数理论 用于电路理论、星形--三角形变换、 对偶原理、 阻抗概念、电气滤波器概念、对称分量法、理想 变压器概念、滤波器实现、四端网络和黑盒子概 念、瞬态响应概念
3.引入了新型元件模拟现代电路
4.引入了冲激函数到时域分析中
5.引入了离散信号ቤተ መጻሕፍቲ ባይዱ
6.在计算方法上引入了“系统步骤”
电网络理论简介
电网络理论内容:
输入 结构、参数 输出
(激励)
(响应)
电网络分析
1.已知输入、结构、参数,求输出
2.已知输入、输出,求结构、参数
3.已知输入、输出、结构,求结构、参数
电网络综合
电网络理论简介
回顾:电路理论
研究任务
发展轨迹 •经典电路理论、近代电路理论
电网络理论简介
1.网络:数学意义 物理意义
电网络理论简介
2.电网络理论(电路理论)、系统理论
经典电路理论 近代电路理论 电路与系统理论
电网络理论简介
电网络理论的特征:
1.引入了一维拓扑学的成果
2.引入了动力学中状态变量和状态空间的概念

电网络 - 第一章网络理论基础(1)教材

电网络 - 第一章网络理论基础(1)教材

第一章
重点:
网络理论基础
网络及其元件的基本概念: 基本代数二端元件,高阶二端代数元件,代数 多口元件和动态元件。 网络及其元件的基本性质: 线性、非线性;时变、非时变 ;因果、非因果; 互易、反互易、非互易;有源、无源 ;有损、无 损,非能 。 网络图论基础知识:
Q f , B f ;KCL、KVL的矩阵形式; G,A,T,P, 特勒根定理和互易定理等。
3.本课程的主要内容:
教材的第一章~第七章的大部分内容,计划 40学时,21周考,详见后面的教学安排。
4.要求:
掌握基本概念和基本分析计算方法。使对电网络的 分析在“观念”和“方法”上有所提高。
5.参考书:
肖达川:线性与非线性电路
电路分析 邱关源:网络理论分析(新书,罗先觉)
第一章 网络理论基础
§5-7端口分析法(储能元件、高阶元件和独立源抽出跨接 在端口上—与本科介绍的储能元件的抽出替代法类似)
第二章 简单电路(非线性电路分析)
§2-1非线性电阻电路的图解法(DP、TC、假定状态法) §2-2小信号和分段线性化法 §2-3简单非线性动态电路的分析(一阶非线性动态电路分析) §2-4二阶非线性动态电路的定性分析(重点)

t
t
t
u
( )
i( )
, 取任意整数
(0) x x
基本变量(表征量)之间存在与“网络元件”无关的普遍 关系:
dq(t ) ( 1 ) i(t) ,q(t) i i(t)dt dt d (t ) ( 1 ) u(t) , (t ) u ( t) u(t)dt dt
§1- 1 网络及其元件的基本概念 §1-2 基本二端代数元件 §1-3高阶二端代数元件 §1-4代数多口元件 §1-5动态元件(简介) §1-11网络及元件的基本性质 §1-8 图论的基础知识~§1-10网络的互联规律性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-7
网络的时不变性和时变性
v (t )
y (t )
时不变网络
u( t )
u( t )
0
(a)
t
性质:
dv( t ) ˆ (t ) v dt
u(t-T)
dy( t ) ˆ (t ) y dt
0 u(t-T ) 0 T
(a)
t
0
T
(b)
t
ˆ ( t ) v( t )dt v

t
ˆ ( t ) y( t )dt y

t
(b)
t
1-7
网络的时不变性和时变性
传统型时不变网络的定义:若一个网络中不含任何非源时变 网络元件,则称该网络为时不变的。
结论:不含时变网络元件的网络是端口型时不变网络。
1-8
网络元件及网络的无源性和有源性
传统的无源网络:若一个网络仅由无源网络元件构成, 则该网络是无源的。 端口型无源网络:设 n 端口网络于 to 时刻贮存的能量为 W(to) ,在 to 至 t 时间内从电源传送至 n 端口网络的能量为 t W ( t o , t ) uT ( )i( )d 式中 u( t )、i( t ) W ( t o ,t ) , t
o
分别为n端口网络的端口电压向量和端口电流向量。如果 对所有的初始时刻to,对所有的 t t o ,以及对所有的容许 信号向量偶 (u( t ), i( t )),均有
W ( t o ) W ( t o , t ) W ( t o ) uT ( )i( )d 0
to t
i +
1-6
网络的线性和非线性1 qFra biblioteku –
+ uC – iC

iL
1
例 如图所示一端口网络中,荷控非线性电 容和磁控非线性电感的元件特性分别为
uc f (q )
即二者的非线性函数f()是相同的。设f()的导数连续,且 q与的初始值为零。试证明此一端口网络为端口型线性网 络。 解:KCL i ( t ) ic ( t ) i L ( t ) d q( t ) u( t ) uc ( t ) u( t ) f (q( t )) u ( t ) i ( t ) u ( t ) KVL c c dt u(t ) uL (t ) i L (t ) d (t ) u(t ) 1 i L (t ) u(t ) f ( (t )) dt u( t )、f () 相同时,有 i ( t ) u( t )
iL L R1
iC C
u – R2
1-8
网络元件及网络的无源性和有源性
i + u R1 – R2 iL L iC C
例:图示一个由线性时不变电阻、电感和电容 R1 R2 1 , 元件构成的一端口网络。其中, L= –1H,C= –1F。与原始值为零试判断该网 络是否为端口型有源网络。
1 1 1 1 Y ( s ) 解: 1 sL 1 1 1 s 1 1 sC s 1 s Y ( s) 1 1 s s 1 i 1Ω
成立,则称该网络为端口型无源网络。
1-8
网络元件及网络的无源性和有源性
传统的无源网络中仅含无源元件,不难论证,这种网络 必定是端口型无源网络。
传统的有源网络不一定是端口型有源网络
i +
例:图示一个由线性时不变电阻、电感和电容 R1 R2 1 , 元件构成的一端口网络。其中, L= –1H,C= –1F。与原始值为零试判断该网 络是否为端口型有源网络
1-6 网络的线性和非线性
v1 y1 N (多端口 网络) yq y2
v v1 v2 v p


v2
T
y y1 y2 yq


T
vp
N中全部元件均为集总元件
1-6
网络的线性和非线性
端口型线性网络的定义是: 若一个n端口网络的输入输出关系由积分微分算子D确定, 当D既具有齐次性、又具有可加性时,此网络称为端口型线性 网络。
I + U R1 –
IL
u _ 结论:端口型无源网络
I ( s) U ( s) +
SL
IC 1/(SC)
R2
i L f ( )
1-6 网络的线性和非线性
i ( t ) u( t )
i + u _

1-7
网络的时不变性和时变性
端口型 时不变网络的定义是:如果 v (t ), y(t )为一个n端口网络的 ˆ(t ) v (t T )时, 任一输入—输出信号偶,将输入改变为 v ˆ (t ) ,只要在两种情况下的输入输出方程具有 输出变为 y ˆ (T ) y (0) (t=0和t=T分别为两种情 相同的初始条件,即 y ˆ (t ) y (t T )(对于所有的t和T), 况的初始时刻),必定有 y 则此网络称为端口型时不变网络 。
1-6
i +
网络的线性和非线性
端口VCR: R + us _
u Ri us
i为输入、 u为输出
u
_
齐次性: i1
可加性:
u1 R i u s u
i
i i1 i2 u R(i1 i 2 ) us u1 u2
结论:该端口不是线性。 传统型线性网络 端口型线性网络
相关文档
最新文档