第四章 原子吸收光谱法与原子荧光光谱法分析
原子吸收法和原子荧光法的异同比较

原子吸收法和原子荧光法的异同比较原子吸收法和原子荧光法是分析化学中常用的两种技术手段,用于测定物质中微量元素的含量。
尽管它们有着相似的应用领域,但在原理、仪器和操作上存在一些显著的差异。
在本文中,我将深入研究原子吸收法和原子荧光法,并比较它们之间的异同点。
一、原子吸收法原子吸收法(Atomic Absorption Spectroscopy, AAS)通过测量物质中特定元素在特定波长下吸收可见光的量,来确定该元素的含量。
其基本原理是根据原子吸收特定波长的光,但过渡态或分解态的离子并不吸收该波长的光,从而可以利用这一特性分析样品中特定元素的含量。
原子吸收法可以测定多种元素,包括金属和非金属元素。
1. 仪器和工作原理:在原子吸收法中,主要使用的仪器是原子吸收光谱仪。
该仪器包括光源、样品室、光学系统、检测器和数据处理系统。
其工作原理是将样品中的元素化合物转化为原子态,通过中空阴极放电灯或石墨炉技术,产生特定元素的原子吸收光谱,再通过光谱仪测量吸收光强度,最终计算出元素的浓度。
2. 优点和应用:原子吸收法具有高选择性、良好的线性范围和较低的检测限等优点。
它被广泛应用于环境监测、冶金、食品安全等领域。
可用原子吸收法测定土壤中的重金属含量、水中的污染物浓度以及食品中的微量元素含量。
二、原子荧光法原子荧光法(Atomic Fluorescence Spectroscopy, AFS)是一种利用原子或离子在受激发后发射荧光的现象来分析物质中元素含量的技术。
原子荧光法需要源于样品的非分解态的离子或原子进行测定。
它可以测定只能被激发成原子态的元素或离子。
1. 仪器和工作原理:在原子荧光法中,主要使用的仪器是原子荧光光谱仪。
该仪器包括光源、样品室、分光系统、荧光检测器和数据处理系统。
其工作原理是将样品中的元素通过光源激发成原子态并发射荧光,再将荧光信号由光谱仪检测并进行分析。
2. 优点和应用:原子荧光法具有高选择性、较低的检测限和较宽的线性范围等特点。
原子荧光光谱和原子吸收光谱的区别

原子荧光光谱和原子吸收光谱的区别
原子荧光光谱和原子吸收光谱是两种常见的光谱分析方法,它们的区别主要在于测量原理和应用领域。
原子荧光光谱是通过激发原子内部能级,使得原子中的电子跃迁到较高的能级,然后再回到基态时放出光子,从而形成光谱。
这种光谱具有独特的谱线,每个谱线对应着原子中某个特定的能级跃迁所释放出的能量。
原子荧光光谱常用于分析金属、非金属元素和稀土元素等化学元素的含量和化学结构。
原子吸收光谱则是通过测量样品中的元素吸收特定波长的光线,来推断该元素的含量。
原子吸收光谱要求样品经过化学处理,使得其中的元素以单质或者化合物的形式存在,并且必须具有一定的浓度。
在测量过程中,光源会发射特定波长的光线,这些光线会穿过样品,被吸收掉一部分,未被吸收的光线会被检测器测量。
吸收光线的强度与样品中元素的含量成正比,因此可以通过测量吸收光线的强度来推断样品中元素的含量。
原子吸收光谱常用于分析金属、非金属元素以及汞、铅等有毒元素的含量。
总之,原子荧光光谱和原子吸收光谱各有优缺点,应根据具体需要选择合适的方法进行分析。
- 1 -。
原子吸收光谱法和原子荧光光谱法

的谱线宽度,它是由单色器的狭缝宽度(S) 和倒色 散率(D)决定。当倒色散率(D)一定时,可通过 选择狭缝宽度(S)来确定:
W=DS
第31页/共62页
五、检测系统
主要由检测器、放大器、对数变换器、显示记录 装置组成。
作用:将待测光信号转换成电信号,经过检波放大、 数据处理后显示结果。
第35页/共62页
三、电离干扰
来源:
高温导致原子电离,从而使基态原子数减少, 吸光度下降。
消除:
加入消电离剂(主要为碱金属元素),产生大
量电子,从而抑制待测原子的电离。如大量KCl 的
加入可抑制Ca的电离,
K Ca++ e
K+e Ca
第36页/共62页
四、光谱干扰
主要有谱线干扰和背景干扰两种 1、谱线干扰和抑制
第34页/共62页
二、化学干扰
来源:待测元素与共存元素发生化学反应生成难挥发的化合物所 引起的干扰,主要影响原子化效率,使待测元素的吸光度降低。
消除:
1. 加入释放剂:SO42-、PO43-对Ca2+的干扰----加入La(III)、
Sr(II) ----释放Ca2+; 2. 加入保护剂(配合剂):
• PO43-对Ca2+的干扰---加入EDTA----CaY(稳定但易破坏) • 含氧酸中Mg 和Al 形成MgAl2O4---使A急剧下降-----加8-羟
基喹啉作保护剂。
3. 加入缓冲剂或基体改进剂:主要对GFAAS。例如加入EDTA可 使Cd的原子化温度降低。 4. 化学分离:溶剂萃取、离子交换、沉淀分离等。
激发态基态,发射出一定频率的辐射。
原子吸收光谱法和原子荧光光谱法介绍及应用

4.2.1.2 光学系统
➢ 单光束光学系统
原子吸收光谱法与原子荧光光谱法 介绍和应用
原子吸收光谱法与 原子荧光光谱法介绍和应用
原子吸收光谱法与原子荧光光谱法 介绍和应用
Alan Walsh
(1916-1998) 和他的原子吸 收光谱仪在一 起
原子吸收光谱法与原子荧光光谱法 介绍和应用
4.1 原子吸收光谱法
➢原子吸收光谱法(AAS)是基于气态的基态原 子外层电子对紫外光和可见光范围的相对应 原子共振辐射线的吸收强度来定量被测元素 含量为基础的分析方法。
原子吸收光谱法与原子荧光光谱法 介绍和应用
4.2 原子吸收分光光度计
原子吸收光谱法与原子荧光光谱法 介绍和应用
4.2.1 仪器结构与工作原理
原子吸收光谱法与原子荧光光谱法 介绍和应用
4.2.1.1 空心阴极灯
➢ 空心阴极灯(Hollow Cathode Lamp,HCL) ➢ 由待测元素的金属或合金制成空心阴极圈和钨或其
各个量子化能级上的分布遵循Boltzmann分布 定律:
Ni
gi
ΔEi
e kT
N0 g0
原子吸收光谱法与原子荧光光谱法 介绍和应用
4.1.1 原子吸收光谱的产生
➢处于基态原子核外层电子,如果外界所提供 特定能量(E)的光辐射恰好等于核外层电子基 态与某一激发态(i)之间的能量差(ΔEi)时,核 外层电子将吸收特征能量的光辐射由基态跃 迁到相应激发态,从而产生原子吸收光谱。
➢ 选择性好:谱线比原子发射少,谱线重叠概率小 。 ➢ 灵敏度高:适用于微量和痕量的金属与类金属元素
定量分析。 ➢ 精密度(RSD%)高:一般都能控制在5%左右。 ➢ 操作方便和快速: 无需显色反应。 ➢ 应用范围广。 ➢ 局限性:不适用于多元素混合物的定性分析;对于
《分析化学》PPT课件

积分吸收与峰值吸收
• 锐线光源: 所发射谱线与原子化器中待测元素所吸收谱线中心频率(ν0)
一致,而发射谱线半宽度(ΔνE)远小于吸收谱线的半宽度 ( ΔνA )。
原子吸收光谱法的特点
选择性好:空心阴极灯作锐线光源,光 谱干扰小。
灵敏度高:适应于微量与痕量金属与 类金属分析。石墨炉原子化法,10-10~10-14水平。
精密度高。操作方便和快速。 应用范围广:分析不同含量、不同性质、不 同状态的元素。 局限性:不适于多元素混合物的定性分析, 难以原子化的元素分析灵敏度低。
在原子光谱中的带光谱和连续光谱
• 当获得原子的线光谱时,除观察到线光谱外,还会出现带光谱和连 续辐射。
• 连续辐射来源于原子化介质中的热微粒物质产生的热辐射。等离子 体,电弧,火花也会产生带光谱和连续辐射。
原子吸收分光光度计
仪器结构与工作原理 原子化系统 原子吸收分光光度计的性能指标
仪器结构与工作原理
锐线光源 原子化器
单色器 检测器 计算机工作站
空心阴极灯(HLC)
火焰原子化器(FAAS) 石墨炉原子化器(GFAAS) 氢化物原子化器(HGAAS) 平面衍射光栅 中阶梯光栅二维色散系统
光电倍增管(PMT)
包括雾粒的脱溶剂、蒸发、解离等阶段。 大部分分子解离为气态原子。
火焰原子化
火焰原子化器 火焰的类型 火焰的构造及其温度分布 自由原子在火焰中的空间分布 燃气和助燃气的比例
火焰的类型
• 当空气作为助燃气时,由不同燃气获得的火焰温度在1 700~2 400 ℃。仅仅能够原子化那些易分解的试样。
• 对难熔的试样,必须采用氧或氮氧化合物作为助燃气进行原子化。
光源的调制也可用稳定的直流电供给空心 阴极灯,在空心阴极灯和火焰之间插入一个切 光器,进行机械调制。
原子吸收和原子荧光的异同

原子吸收和原子荧光的异同
原子吸收和原子荧光都是原子光谱学中的重要现象,但它们之间还是存在一些区别的。
异同点:
1. 原理:原子荧光和原子吸收都是基于原子的能量转移现象,但原子荧光是指原子在受到激发后,放出辐射能量进而产生光谱信号,而原子吸收则是指原子吸收外部光源中的某些特定波长的能量进入到其内部能级使得电子跃迁。
2. 测量方法:原子荧光和原子吸收的测量方法不同。
原子荧光可以通过测量样品所产生的荧光光谱在特定波长处的强度来得出样品成分的信息。
而原子吸收则是通过测量样品中特定波长的光信号的强度变化来得出样品成分的信息。
3. 应用范围:原子荧光和原子吸收都可以应用于分析化学中,但原子荧光的应用范围更广泛,可以用于分析各种元素和化合物的含量,包括有机和无机化合物,地球和环境样品等;而原子吸收只能应用于分析金属元素及其化合物。
4. 灵敏度:原子荧光的检测灵敏度高于原子吸收。
因为荧光信号通常是放射出来的光子数量级,可以被放大检测。
但原子吸收信号则是由经过样品的光强度减弱引起的,灵敏度要低于原子荧光。
5. 分辨率:原子荧光在分析元素时的分辨率要比原子吸收高,因为荧光谱的线宽较窄,可以区分更多的元素。
总的来说,原子荧光和原子吸收是两个不同的原子光谱学技术,各有其优缺点和适用范围。
在实际分析测试中,需要根据样品特征、要求的检测灵敏度等因素,选择适合的分析方法。
仪器分析第04章 原子吸收(荧光)光谱

N
1 2 k
(K 为激发态寿命或电子在高能 级上停留的时间,10-7-10-8 s)
原子在基态和激发态的寿命是有限的。电子在基态停留的时间长, 在激发态则很短。由海森堡测不准(Heisenberg Uncertainty principle) 原理,这种情况将导致激发态能量具有不确定的量,该不确定量使谱线 具有一定的宽度N (10-5nm),即自然宽度。 该宽度比光谱仪本身产生的宽度要小得多,只有极高分辨率的仪器 才能测出,故可勿略不计。
K d
e 2
mc
N0 f
式中,e为电子电荷;m为电子质量;f为振子强度,它是受到激发的每个原 子的平均电子数,与吸收几率成正比。
此式说明,在一定条件下,“积分吸收”只与基态原子数N0成正比 而与频率及产生吸收线的轮廓无关。只要测得积分吸收值,即可求出基 态原子数或浓度。因此 AAS 法是一种不需要标准比较的绝对分析方法。 积分吸收就是将原子吸收线轮廓所包含的吸收系数进行积分(即吸 收曲线下的总面积)。
因此,尽管原子吸收现象早在18世纪就被发现,但一直未用 于分析。直到1955年,Alan Walsh 提出以“峰值吸收”来代替“ 积分吸收”。从此,积分吸收难于测量的困难得以“间接”地解 决。
25
2. 峰值吸收 1955年,Walsh 指出,在温度不太高时,当发射线和吸收线满足以 下两个条件,即: 带宽 e a ; e a 中心波长一致 当e a时,发射线很窄,发射线的轮廓可认为是一个矩形,则 在发射线的范围内各波长的吸收系数近似相等,即K=K0(K ,积分吸 收系数;K0 ,峰值吸收系数),因此可以“峰值吸收”代替“积分吸收 ”:
同样频率的光辐射,其对应的谱线称为共振发射线。
第四章 原子吸收光谱法与原子荧光光谱法

第四章原子吸收光谱法与原子荧光光谱法4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比.解:Mg原子的电子跃迁由31S0→31P1 ,则g i/g0=3跃迁时共振吸收波长λ=285.21nmΔEi=h×c/λ=(6.63×10-34)×(3×108)÷(285.31×10-9)=6.97×10-19J激发态和基态原子数之比:Ni/N0=(g i/g0)×e-ΔEi/kT其中:g i/g0=3ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕代入上式得:Ni/N0=5.0×10-94-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施?答:因为: S1 =W1/D= (251.61-251.43)/1.6= 0.11mmS2 =W2/D=(251.92-251.61)/1.6=0.19mmS1<S2所以应采用0.11mm的狭缝.4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。
答:原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。
原子吸收光谱与原子发射光谱的不同在于:原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章原子吸收光谱法与原子荧光光谱法4-1 . Mg原子的核外层电子31S0→31P1跃迁时吸收共振线的波长为285.21nm,计算在2500K 时其激发态和基态原子数之比.解:Mg原子的电子跃迁由31S0→31P1 ,则g i/g0=3跃迁时共振吸收波长λ=285.21nmΔEi=h×c/λ=(6.63×10-34)×(3×108)÷(285.31×10-9)=6.97×10-19J激发态和基态原子数之比:Ni/N0=(g i/g0)×e-ΔEi/kT其中:g i/g0=3ΔEi/kT=-6.97×10-19÷〔1.38×10-23×2500〕代入上式得:Ni/N0=5.0×10-94-2 .子吸收分光光度计单色器的倒线色散率为1.6nm/mm,欲测定Si251.61nm的吸收值,为了消除多重线Si251.43nm和Si251.92nm的干扰,应采取什么措施?答:因为: S1 =W1/D= (251.61-251.43)/1.6= 0.11mmS2 =W2/D=(251.92-251.61)/1.6=0.19mmS1<S2所以应采用0.11mm的狭缝.4-3 .原子吸收光谱产生原理,并比较与原子发射光谱有何不同。
答:原子吸收光谱的产生:处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(ΔEi)时,核外层电子将吸收特征能量的光辐射有基态跃迁到相应激发态,从而产生原子吸收光谱。
原子吸收光谱与原子发射光谱的不同在于:原子吸收光谱是处于基态原子核外层电子吸收特定的能量,而原子发射光谱是基态原子通过电、热或光致激光等激光光源作用获得能量;原子吸收光谱是电子从基态跃迁至激发态时所吸收的谱线,而原子发射光谱是电子从基态激发到激发态,再由激发态向基态跃迁所发射的谱线。
4-4.简述原子吸收法定量分析的依据及其定量分析的特点。
答:原子吸收法定量分析的依据是A=Kc.定量分析特点选择性好,灵敏度高,精密度高,操作方便和快速应用范围广,有局限性。
4-5.原子谱线变宽的主要因素有哪些?对原子吸收光谱分析有什么影响?答:变宽因素有自然变宽、多普勒变宽、碰撞变宽、场致变宽、和自吸变宽 其中主要因素有Doppler 变宽、Lorentz 变宽自然变宽和劳伦兹变宽在1500~3000K 的原子化器中数量级都约为10-3nm ,要对半宽度约为10-3nm 的吸收谱线进行积分,需要极高分辨率的光学系统和极高灵敏度的检测器,目前还难以做到。
谱线变宽后就无法进行积分吸收难以用与分析中而只能采用峰值吸收。
4-6.画出原子吸收分光光度计的结构图,并简要叙述原子吸收分光光度计的工作原理。
工作原理:锐线光源发射出待测元素特征谱线被原子化器中待测元素原子核外层电子吸收后,经光谱系统中的单色器,将特征谱线与原子化器在原子化过程中产生的复合光谱色散分离后,检测系统将特征谱线强度信号转换成电信号,通过摸/数转化器转化成数字信号;计算机光谱工作站对数字信号进行采集处理与显示,并对分光光度计个系统进行自动控制。
4-7.子吸收分光光度计有哪些主要性能指标?这些性能指标对原子吸收光谱定量分析有什么影响?答1.光学系统的波长显示值误差;进行光谱分析时,待仪器稳定后,调节波长控制装置,达到最强光辐射能量时光学系统显示波长与理论波长误差小于正负0.2mm.2光学系统分辨率;光学系统分辨率是单色器时对共振吸收线与其他干扰谱线分辨率能力的一项重要指标. 3基线的稳定性4吸收灵敏度;灵敏度定义为产生1﹪吸收(T=99﹪,A=0.0044)时所对应的元素含量.5精密度;精密度用相对标准(RSD)表示,在仪器最佳工作状态下,对一定浓度的溶液进行多次重复测量(n>10).火焰原子化的RSD 必须小于3﹪,石墨炉原子法采用自动化进样器进样,RSD必须小于5﹪6检出限; 检出限(0.L)的定义为吸收信号相当于3倍噪声水平的标准差时所对应的元素含量.4-8.火焰原子化法和石墨原子化法的工作原理,特点及其注意事项;为什么石墨炉原子化法比火焰原子化法具有更高的灵敏度和更低的检出限?火焰原子化的过程:由燃气(化学燃料)和助燃气(氧化剂)之间的燃烧反应形成化学火焰,燃烧过程中雾化的气溶胶进行下列各种物理变化与化学反应过程:干燥与蒸发:MmNn(l)=MmNn(s)=MmNn(g)解离与原子化反应: MmNn(g)=M(m+)+N(n_)=M+N原子吸收与发射过程:M+N----M*+N*----M+N电子与离子发射过程:M+N==M(m+)+N(n+)--- M(m+)*+N(n+)*--- M(m+)+N(n+)火焰原子化的特点与局限性: 适用范围广,分析操作简单,分析速度快和分析成本低,然而,同轴气动雾化器的雾化效率低(约为5%--10%),所需试样溶液体积大(ml),火焰原子化效率低并伴随着复杂的火焰反应,原子蒸汽在光程中滞留时间短和燃气与助燃气稀释作用,限制了方法检出限的减低,而且只能分析液体试样.石墨原子化法的升温程序: 石墨原子化法必须选择适宜的干燥,灰化,原子化和除残升温速率,并保持时间程序及内保护气的控制程序.1干燥的升温速率和保持时间2灰化升温速率和保持时间.3原子化升温速率和保持时间.4除残升温程序.石墨炉原子化法的特点:采用直接进样和程序升温方式,原子化温度曲线是一条具有峰值的曲线,主要特点是:可达3500摄氏度高温,且升温速度快,绝对灵敏度高,一般元素的可达10-9---10-12g,可分析70多种金属和类金属元素,所用试样量少,但是石墨炉原子化法的分析速度慢,分析成本高,背景吸收,光辐射和基体干扰比较大.4-9.原子法存在哪些主要的干扰?如何减少或消除这些干扰?答:原子吸收光谱法分析中的干扰主要包括物理干扰,化学干扰,电离干扰和光谱干扰.1减少或消除物理干扰的办法:A最常用的方法是配置与待测液试样溶液基体相一致的标准溶液.B当配制与待测液试样溶液基体相一致的标准溶液有困难时,采用标准加入法.C被测试样溶液中元素的浓度较高时,采用稀释方法来减少或消除物理干扰.2减少或消除化学干扰的办法.改变火焰类型,改变火焰特征,加入释放剂,加入保护剂,加入缓冲剂,采用标准加入法.3减少或消除电离干扰的方法.最常用的方法是加入电离能较低的消电离剂,利用强还原性富燃火焰也可抑制电离干扰,标准加入法也可在某些程度上减少或消除电离干扰,提高金属元素总浓度也是减少或消除电离干扰的基本方法.4光谱干扰及其消除方法:A减少或消除吸收线重叠干扰方法:选用较小的光谱通带,选用被测元素的其他分析线,预先分离干扰元素.B减少或消除直流发射光谱干扰方法:采用锐线光源的电源调制技术.C减少或消除非吸收光谱干扰方法:选用较小的光谱通带,选用较小HCL灯电流.4-10简述氘灯校正背景校正技术的工作原理及特点答:(1)工作原理是:在垂直于锐线光源和原子化器之间增加了氘灯光源与切光器,氘灯在发射连续光谱,通过切光器的频率,让锐线光源所发射的特征谱线和一定光谱通带氘灯所发射的谱线分时通过原子化器,当特征谱线进入原子化器时,原子化器中的基态原子核外层电子对它进行吸收,同时也产生分子吸收和光散射背景吸收,检测得到原子吸收(A1)和背景吸收(A2)的总吸收(A),A=A1+A2.当氘灯所发射的谱线进入原子化器后,宽带背景吸收要比窄带原子吸收大许多倍,此时原子吸收可忽略不计,检测只获得背景吸收(A2).根据光吸定律加和性,两束谱线吸收结果差:A1=A-A2,T得到扣除背景吸收以后的原子吸收(A1).(2)特点:它是火焰原子化法.石墨炉原子化法和低温原子化法都可以采用的背景校正技术,且灵敏度高,动态线性范围宽,但仅对紫外光谱区(<350nm)有效.4-11. 简述Zeeman效应背景校正技术的工作原理及其特点答:(1)工作原理:利用锐线光源所发射的特征谱线被偏振成垂直于磁场的特征偏振谱线.通过在石墨炉原子化器上施加恒定强度电磁场,使待测元素原子核外层电子的吸收谱线裂分为π和σ+,σ- -.当通过垂直于磁场的σ+和σ -时,检测器检测到背景吸收(A2),当通过平行于磁场的π时,检测器检测到原子吸收(A1)和背景吸收(A2)的总吸收(A),两种吸收结果的差:A1=A-A2,就得到扣除背景吸收以后的原子吸收.(2)特点:因石墨炉原子化器的背景吸收比火焰原子化法更严重,它是石墨炉原子化法必须采用的背景吸收校正技术之一.4-12.简述标准曲线法和标准加入法的特点与使用注意事项.答:(1)标准曲线法需绘制吸光度对标准溶液浓度的曲线,其注意事项:分析前用标准溶液校正系统;分析过程中保持操作条件不变;标准系列与被分析样品溶液的组成尽量一致;标准和试样溶液的吸光度应试在0.15~0.70之间.(2)标准加入法是建立在吸光度与浓度成正比及吸光度的加和性的基础上.该法可消除基体效应的影响,但不能扣除背景.它又分为单点加入法和作图法.其注意事项:对于作图法适合对三份以上等体积的实测溶液中成比例地加入标准溶液,分别测定吸光度.4-13.简要回答以下问题:(1)在测定血清中钾时,先用纯水将试样稀释40倍,再加入钠盐至800μg/ml. 试解释这些实验操作的理由. 并简述此定量分析的标准曲线法系列标准溶液应如何配制.(2) 硒的共振吸收线为196.0nm. 若分析头发中硒元素的含量,应选用何种火焰类型并说明理由.(3) 分析矿石中锆元素含量,应选用何种火焰类型并说明理由.答:(1)稀释是为了减少基体效应;加入钠盐可抑制电离效应,减少电离干扰.为了使基体匹配,标准溶液应使用标准加入法配制.(2)应选用空气-氢气火焰. 原因: 196.0nm处位于真空紫外区,空气-氢气火焰是氧化火焰适用于其共振线在短波区的元素分析.(3)氧化亚氮-乙炔火焰因为在矿石中燃烧时形成了耐高温的氧化物,而此火焰具有还原性,可产生耐高温火焰,利于锆氧化物的融化和分解.4-14.焰原子吸收光谱法分析某试样中微量Cu的含量,称取试样0.500g,溶解后定容到100ml容量瓶中作为试样溶液.分析溶液的配制及测量的吸光度如下表所示(用0.1mol/L的HNO3定容),计算试样中Cu的质量分数(%)解:设2号,3号溶液配制好的浓度分别为C2,C3(mg/L).试样Cu的摩尔浓度为C mg/L,扣除1号溶液未加入试样溶液吸光度的干扰.得:0.150-0.010=KC20.375-0.010=KC3又因为:C2=5C÷25 C3=(5C+1.0×5.00)÷25联立解得C=0.62mg/L则Cu的质量分数为(0.62mg/L×0.1L)÷(0.500×103mg)=0.0124%4-15. 子吸收光谱法测定水样中Co离子的含量,分取V水样(ml)的水样于6个50.00ml 的容量瓶中,加入V标准溶液(ml)的60.00μg/ml,Co标准溶液,然后稀释至刻度,计算水样答案:由题意知背景吸收为0.042,所以要扣除背景吸收,扣除背景吸收后列表如下:作V 标准溶液—A 吸光度曲线,其与X 轴交点即为标准溶液与待测物质物质的量相等的点0.000.050.100.150.200.250.300.350.400.450.500.550.60吸光度v标准溶液/ml1.732由图知V 标准溶液=1.73mlC 标准溶液×V 标准溶液=C x ×VCx=(C 标×V 标)/V=(60×1.73)/10=10.9μg/ml4-16.原子荧光光谱是怎样产生的?有几种类型? 答:原子荧光光谱的产生:气态和基态原子核外层电子吸收了特征频率的光辐射后被激发至第一激发态或较高激发态,在瞬间又跃迁回或较低的能态,若跃迁过程以光辐射的形式发射出与所吸收的特征频率相同或不相同的光辐射即产生原子荧光。