2019届高考数学一轮复习核心素养提升系列(六)概率与统计高考中档大题的规范问题练习文

合集下载

高考苏教版数学理大一轮复习课件中档题型规范练——概率与统计

高考苏教版数学理大一轮复习课件中档题型规范练——概率与统计

A组
1 2 3 4
专项基础训练
5 6 7 8 9
3.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以 先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为 0.6,则本次比赛甲获胜的概率是________.
解 析
A组
1 2 3 4
专项基础训练
5 6 7 8 9
3.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以 先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为
6.两封信随机投入A,B,C三个空邮箱,则A邮箱的信件数ξ的数 学期望E(ξ)=________.
解 析
A组
1 2 3 4
专项基础训练
5 6 7 8 9
6.两封信随机投入A,B,C三个空邮箱,则A邮箱的信件数ξ的数 2 3 学期望E(ξ)=________.
解 析
两封信投入A,B,C三个空邮箱,投法种数是32=9, 4 A中没有信的投法种数是2×2=4,概率为9, 4 1 A中仅有一封信的投法种数是C2×2=4,概率为 , 9 1 A中有两封信的投法种数是1,概率为9, 4 4 1 2 故A邮箱的信件数ξ的数学期望是9×0+9×1+9×2=3.
ξ P
-1 1 2
0 1 3
1 1 6
解 析
1 1 1 1 E(ξ)=-1× +0× +1× =- , 2 3 6 3 12 1 12 1 12 1 5 V(ξ)=-1+3 ×2+0+3 ×3+1+3 ×6=9,
20 ∴V(η)=V(2ξ+2)=4V(ξ)= 9 .
2 121 111 ∴P(λ=1且μ=1)=P(λ=1)· P(μ=1)=C2··· C2··= . 33 22 9
A组

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。

2019年高考数学总复习 优编增分练:中档大题规范练(三)概率与统计 文

2019年高考数学总复习 优编增分练:中档大题规范练(三)概率与统计 文

(三)概率与统计1.某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:(1)计算上线考生中抽取的男生成绩的方差s 2;(结果精确到小数点后一位)(2)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率. 解 (1)依题意:样本中男生共6人,成绩分别为164,165,172,178,185,186, ∴他们的总分为1 050,平均分为175.∴s 2=16[(-11)2+(-10)2+(-3)2+32+102+112]≈76.7.(2)样本中180分以上的考生有男生2人,记为A ,B ,女生4人,记为a ,b ,c ,d ,从中任选2人,有AB ,Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd ,ab ,ac ,ad ,bc ,bd ,cd 共15种, 符合条件的有Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd 共8种, 故所求概率P =815.2.(2018·葫芦岛模拟)海水养殖场使用网箱养殖的方法,收获时随机抽取了100个网箱,测量各网箱水产品的产量(单位:kg),其产量都属于区间[25,50],按如下形式分成5组,第一组:[25,30),第二组:[30,35),第三组:[35,40),第四组:[40,45),第五组:[45,50],得到频率分布直方图如图:定义箱产量在[25,30)(单位:kg)的网箱为“低产网箱”,箱产量在区间[45,50]的网箱为“高产网箱”.(1)若同一组中的每个数据可用该组区间的中点值代替,试计算样本中的100个网箱的产量的平均数; (2)按照分层抽样的方法,从这100个样本中抽取25个网箱,试计算各组中抽取的网箱数;(3)若在(2)抽取到的“低产网箱”及“高产网箱”中再抽取2箱,记其产量分别为m ,n ,求|m -n |>10的概率.解 (1)样本中的100个网箱的产量的平均数x =(27.5×0.024+32.5×0.040+37.5×0.064+42.5×0.056+47.5×0.016)×5=37.5.(2)各组网箱数分别为:12,20,32,28,8,要在此100 箱中抽取25箱,则分层抽样各组应抽数3,5,8,7,2.(3)由(2)知,从低产网箱3箱和高产网箱2箱共5箱中要抽取2箱,设低产网箱中3箱编号为1,2,3,高产网箱中2箱编号为4,5,则一共有10种抽法,基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),满足条件|m-n|>10的情况为从高、低产网箱中各取1箱,基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),共6种,所以满足事件A:|m-n|>10的概率为P(A)=610=3 5.3.(2016·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3吨的人数为3.6万.理由如下:由(1)知,100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.4.(2018·宁夏银川一中模拟)为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下: 理科:79,81,81,79,94,92,85,89. 文科:94,80,90,81,73,84,90,80.(1)画出理科、文科两组同学成绩的茎叶图;(2)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好;(3)若在成绩不低于90分的同学中随机抽出3人进行培训,求抽出的3人中既有理科组同学又有文科组同学的概率.(参考公式:样本数据x 1,x 2,…,x n 的方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为样本平均数).解 (1)理科、文科两组同学成绩的茎叶图如下:(2)从平均数和方差的角度看,理科组同学在此次模拟测试中发挥比较好.理由如下: 理科同学成绩的平均数x 1=18×(79+79+81+81+85+89+92+94)=85,方差是s 21=18×[(79-85)2+(79-85)2+(81-85)2+(81-85)2+(85-85)2+(89-85)2+(92-85)2+(94-85)2]=31.25;文科同学成绩的平均数x 2=18×(73+80+80+81+84+90+90+94)=84.方差是s 22=18×[(73-84)2+(80-84)2+(80-84)2+(81-84)2+(84-84)2+(90-84)2+(90-84)2+(94-84)2]=41.75;由于x 1>x 2,s 21<s 22,所以理科组同学在此次模拟测试中发挥比较好.(3)设理科组同学中成绩不低于90分的2人分别为A ,B ,文科组同学中成绩不低于90分的3人分别为a ,b ,c ,则从他们中随机抽出3人有以下10种可能:ABa ,ABb ,ABc ,Aab ,Aac ,Abc ,Bab ,Bac ,Bbc ,abc .其中全是文科组同学的情况只有1种是abc ,没有全是理科组同学的情况,记“抽出的3人中既有理科组同学又有文科组同学”为事件M ,则P (M )=1-110=910.5.2018年6月14日,第二十一届世界杯足球赛在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下2×2列联表.(1)将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)补充列联表如下:由列联表知K 2=100×(30×40-10×20)250×50×40×60≈16.667>10.828.故可以在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关.(2)由分层抽样知,从不喜爱足球运动的观众中抽取6人,其中男性有6×2060=2(人),女性有6×4060=4(人).记男性观众分别为a 1,a 2,女性观众分别为b 1,b 2,b 3,b 4,随机抽取2人,基本事件有(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2),(b 3,a 1),(b 3,a 2),(b 4,a 1),(b 4,a 2),(a 1,a 2),共15种.记至少有一位男性观众为事件A ,则事件A 包含(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2),(b 3,a 1),(b 3,a 2),(b 4,a 1),(b 4,a 2),(a 1,a 2),共9个基本事件, 由古典概型,知P (A )=915=35.6.(2016·全国Ⅲ改编)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y)∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y)∑i =1n(t i -t)2,a ^=y -b ^t .解 (1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y)2=0.55.∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,所以r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17(t i -t )(y i -y)∑i =17(t i -t)2=2.8928≈0.10, a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以y 关于t 的线性回归方程为y ^=0.10t +0.92. 将2019年对应的t =12代入线性回归方程,得y ^=0.92+0.10×12=2.12.所以预测2019年我国生活垃圾无害化处理量将约为2.12亿吨.。

2019高三数学(北师大版理科)一轮:高考大题专项突破六+高考中的概率与统计

2019高三数学(北师大版理科)一轮:高考大题专项突破六+高考中的概率与统计

高考大题专项突破六高考中的概率与统计1.(2017四川成都二诊,理18)某项科研活动共进行了5次试验,其数据如下表所示:(1)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(2)求特征量y关于x的线性回归方程y=bx+a,并预测当特征量x=570时特征量y的值.--附:回归直线的斜率和截距的最小二乘法估计公式分别为b=,a=-b-〚导学号21500825〛2.(2017安徽黄山二模,理19)2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:(1)若在这100人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整,并据此资料能否有95%的把握认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”的人数为X,求X的分布列和数学期望.附:χ2=-3.(2017吉林三模,理18)据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问:应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,平均分成两组进行深入交流,求第一组中在校学生人数X的分布列和数学期望.4.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=w i.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=---,α=-5.(2017全国Ⅲ,理18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?〚导学号21500827〛6.(2017福建厦门二模,理19)2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1 000人的得分数据,其频率分布直方图如图所示:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1 000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布求P(50.5<Z<94);(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:①得分不低于μ可获赠2次随机话费;得分低于μ,则只有1次;②每次赠送的随机话费和对应概率如下:现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.〚导学号21500828〛参考答案高考大题专项突破六高考中的概率与统计1.解 (1)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都不大于600,有=3种方法,故至少有一个大于600的概率为1-=0.7.(2)=556,=600,b=---=0.3,a=-b=433.2,∴y=0.3x+433.2,当x=570时,y=604.2,即当特征量x=570时,特征量y的值为604.2.2.解 (1)将2×2列联表中的数据代入计算,得χ2=-=≈3.030.∵3.030<3.841,∴没有95%的把握认为赞成“自助游”与性别有关系.(2)X的所有可能取值为0,1,2,3,依题意X~B,P(X=i)=-(i=0,1,2,3),X的分布列为:EX=np=3×.3.解 (1)∵抽到持“应该保留”态度的人的概率为0.05,∴=0.05,解得x=60.∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720.∴应在持“无所谓”态度的人中抽取720×=72(人).(2)由(1)知持“应该保留”态度的一共有180人,则在所抽取的6人中,在校学生为×6=4(人),社会人士为×6=2(人),于是第一组中在校学生人数X的所有可能取值为1,2,3,P(X=1)=,P(X=2)=,P(X=3)=,即X的分布列为故EX=1×+2×+3×=2.4.解 (1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.--=68,因为d=-c=-d=563-68×6.8=100.6,所以y关于w的线性回归方程为y=100.6+68w,因此y关于x的回归方程为y=100.6+68.(3)①由(2)知,当x=49时,年销售量y的预报值y=100.6+68=576.6,年利润z的预报值z=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z=0.2(100.6+68)-x=-x+13.6+20.12.所以当=6.8,即x=46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.5.解 (1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)==0.2,P(X=300)==0.4,P(X=500)==0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.6.解 (1)EZ=35×0.025+45×0.15+55×0.2+65×0.25+75×0.225+85×0.1+95×0.05=65, ∴μ=65,δ=≈14.5,∴P(50.5<Z<79.5)=0.682 7,P(36<Z<94)=0.954 5,∴P(79.5<Z<94)=-=0.135 9,∴P(50.5<Z<94)=P(50.5<Z<79.5)+P(79.5<Z<94)=0.682 7+0.135 9=0.818 6.(2)P(Z<μ)=P(Z≥μ)=,X的可能取值为10,20,30,40,P(X=10)=,P(X=20)=,P(X=30)=,P(X=40)=.故X的分布列为。

(最新)2019届高考数学一轮复习 核心素养提升系列(三)数列高考中档大题的规范问题练习 新人教A版

(最新)2019届高考数学一轮复习 核心素养提升系列(三)数列高考中档大题的规范问题练习 新人教A版

核心素养提升系列(三)1.(导学号14577488)(理科)(2018·鹰潭市一模)已知正项数列{a n }的前n 项和为S n ,且S n 是1与a n 的等差中项.(1)求数列{a n }的通项公式; (2)设T n 为数列⎩⎨⎧⎭⎬⎫2a n a n +1的前n 项和,证明:23<T n <1(n ∈N *)解:(1)n =1时,a 1=1;n ≥2时,4S n -1=(a n -1+1)2.又4S n =(a n +1)2,两式相减得(a n +a n -1)(a n -a n -1-2)=0. ∵a n >0,∴a n -a n -1=2,∴数列{a n }是以1为首项,2为公差的等差数列,即a n =2n -1. (2)证明:由2a n a n -1=12n -1-12n +1, 故T n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1<1. 当n =1时,T 1=23,故23<T n <1(n ∈N *).1.(导学号14577489)(文科)(2018·海淀区模拟)在数列{a n }中,a n =2a n -1+1(n ≥2,n ∈N *)且a 1=2. (1)证明:数列{a n +1}是等比数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:∵a n =2a n -1+1, ∴a n +1=2(a n -1+1). ∵a 1=2,∴a 1+1=3,则数列{a n +1}是以3为首项,2为公比的等比数列. (2)由(1)知a n +1=3·2n -1,∴a n =3·2n -1-1,则S n =(3+6+…+3·2n -1)-(1+1+…+1),∴S n =-2n1-2-n =3·2n-n -3.2.(导学号14577490)(理科)(2018·安庆市二模)已知数列{a n }中,a 1=2,a 2=4,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1).(1)求数列{a n }的通项公式; (2)设b n =n2a n,求{b n }的前n 项和T n .解:(1)对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1),S n +2+S n =2(S n +1+1), 相减可得a n +2+a n =2a n +1.(*)又n =2时,S 3+S 1=2(S 2+1),即2a 1+a 2+a 3=2(a 1+a 2+1),a 1=2,a 2=4,解得a 3=6.n =1时(*)也满足.∴数列{a n }是等差数列,公差为2, ∴a n =2+2(n -1)=2n . (2)b n =n 2a n =n 22n =n4n ,∴{b n }的前n 项和T n =14+242+343+…+n4n ,14T n =142+242+…+n -14n +n4n +1, 可得34T n =14+142+…+14n -n 4n +1=14⎝ ⎛⎭⎪⎫1-14n 1-14-n 4n +1,∴T n =49-4+3n 9×4n .2.(文科)(2018·莆田市一模)已知数列{a n }的前n 项和S n =n 2+kn ,其中k 为常数,a 6=13. (1)求k 的值及数列{a n }的通项公式; (2)若b n =2na n +,求数列{b n }的前n 项和T n .解:(1)∵S n =n 2+kn ,n ≥2时,a n =S n -S n -1=n 2+kn -[(n -1)2+k (n -1)]=2n -1+k , ∴n =6时,a 6=11+k =13,解得k =2, ∴n ≥2时,a n =2n -1+2=2n +1.当n =1时,a 1=S 1=1+2=3,上式也成立. ∴a n =2n +1. (2)b n =2n a n +=2nn +=1nn +=1n -1n +1, 数列{b n }的前n 项和T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 3.(导学号14577491)(理科)(2018·长春市二模)已知数列{a n }满足a 1=32,a n +1=3a n -1(n ∈N *).(1)若数列{b n }满足b n =a n -12,求证:{b n }是等比数列;(2)若数列{c n }满足c n =log 3a n ,T n =c 1+c 2+…+c n , 求证:T n >n n -2.解:(1)由题可知a n +1-12=3⎝ ⎛⎭⎪⎫a n -12(n ∈N *),从而有b n +1=3b n ,b 1=a 1-12=1,所以{b n }是以1为首项,3为公比的等比数列. (2)证明:由(1)知b n =3n -1,从而a n =3n -1+12,c n =log 3⎝⎛⎭⎪⎫3n -1+12>log 33n -1=n -1,有T n =c 1+c 2+…+c n >0+1+2+…+(n -1)=n n -2,所以T n >n n -2.3.(导学号14577492)(文科)(2018·宁德市一模)已知数列{a n }满足a 1=2,a n +1=2a n -1. (1)求数列{a n }的通项公式;(2)设b n =n ·(a n -1),求数列{b n }的前n 项和S n .解:(1)数列{a n }满足a 1=2,a n +1=2a n -1.变形为:a n +1-1=2(a n -1).a 1-1=1. ∴数列{a n -1}是等比数列, ∴a n -1=2n -1,解得a n =1+2n -1.(2)b n =n ·(a n -1)=n ·2n -1,∴数列{b n }的前n 项和S n =1+2×2+3×22+…+n ·2n -1,∴2S n =2+2×22+…+(n -1)·2n -1+n ·2n,∴-S n =1+2+22+…+2n -1-n ·2n=2n-12-1-n ·2n =(1-n )·2n-1,可得S n =(n -1)·2n +1.4.(导学号14577493)(理科)(2018·济南市一模)已知{a n }是公差不为零的等差数列,S n 为其前n 项和,S 3=9,并且a 2,a 5,a 14成等比数列,数列{b n }的前n 项和为T n =3n +1-32. (1)求数列{a n },{b n }的通项公式;(2)若c n =a 2n +8log 3b na n +1b n,求数列{c n }的前n 项和M .解:(1)设{a n }的公差为d ,又S 3=9,并且a 2,a 5,a 14成等比数列,∴⎩⎪⎨⎪⎧3a 1+3d =9a 1+4d 2=a 1+d a 1+13d,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =1+2(n -1)=2n -1. ∵T n =3n +1-32=32(3n-1), ∴T n +1=32(3n +1-1),∴b n +1=T n +1-T n =32(3n +1-3n )=3·3n =3n +1.∴b n =3n.(2)c n =a 2n +8log 3b na n +1b n=n -2+8n n +n =n +2n +n=2n +13n , ∴M n =33+532+733+…+2n +13n ,①∴13M n =332+533+734+…+2n +13n +1,② ①-②得:23M n =1+232+233+234+…+23n -2n +13n +1=1+49⎝ ⎛⎭⎪⎫1-13n -11-13-2n +13n +1=53-2n +73n +1,∴M n =52-2n +72·3n .4.(导学号14577494)(文科)(2018·佛山市一模)已知数列{a n }的前n 项和为S n ,且满足S n =a n +n 2-1(n ∈N *).(1)求{a n }的通项公式; (2)求证:1S 1+1S 2+…+1S n <34.解:(1)∵S n =a n +n 2-1(n ∈N *), ∴a 1+a 2=a 2+22-1,解得a 1=3.n ≥2时,a n =S n -S n -1=a n +n 2-1-[a n -1+(n -1)2-1],化为:a n -1=2n -1,可得a n =2n +1, n =1时也成立,∴a n =2n +1.(2)证明:由(1)可得S n =2n +1+n 2-1=n 2+2n , ∴1S n=1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n=12⎣⎢⎡⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-15+⎝ ⎛⎭⎪⎫13-16+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.。

(福建专用)2019高考数学一轮复习-高考大题专项突破6 高考中的概率与统计课件 理 新人教A版

(福建专用)2019高考数学一轮复习-高考大题专项突破6 高考中的概率与统计课件 理 新人教A版
高考大题专项突破六
高考中的概率与统计
一、考查范围全面
概率与统计解答题对知识点的考查较为全面,近五年的试题考点
覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法,
统计图表、数据的数字特征、用样本估计总体、回归分析、相关
系数的计算、独立性检验、古典概型、条件概率、相互独立事件
的概率、独立重复试验的概率、离散型随机变量的分布列、数学
故P(C)的估计值为0.66.
因此,事件A的概率估计值为0.62×0.66=0.409 2.
题型一
题型二
题型三
题型四
(2)根据箱产量的频率分布直方图得列联表
箱产量<50 kg
箱产量≥50 kg
旧养殖法
62
38
新养殖法
34
66
2
200×(62×66-34×38)
K2=
≈15.705.
100×100×96×104
高,从而可以用线性回归模型拟合 y 与 t 的关系.
题型一
题型二
(2)由 =
题型三
9.32
7
题型四
≈1.331 及(1)得
7
^
=
∑ ( -)( - )
=1
7
∑ ( -)
2
=
2.89
28
≈0.103,
=1
^
^
= − ≈1.331-0.103×4≈0.92.
的公式组成比较复杂,求它们的值计算量比较大,为了计算准确,可
将其分成几个部分分别计算,这样等同于分散难点,各个攻破,提高
了计算的准确度.
题型一
题型二
题型三
题型四
对点训练1(2017河北石家庄二中模拟,理18)下表是某校高三一次

2019届人教A版高三数学一轮复习核心素养提升系列(六)(文)课件

2019届人教A版高三数学一轮复习核心素养提升系列(六)(文)课件

第十章(文)
提考能课时冲关
[审题视角]
求解第(1)问时, 利用散点图结合学过的函数图象直
接判断即可.求解第(2)问时,根据题目提供的数据及公式求出相关 量,就可写出回归方程.求解第(3)问中的第一小问时,把 x=49 直 接代入回归方程求解出 y 的预报值,再代入年利润 z 与 x,y 的关系 式求解即可; 求解第二小问时, 把 y 与 x 的关系式代入年利润 z 与 x, y 的关系式,将 z 转化为关于 x的二次函数求最值即可.
高 中 总 复 习
人教数学
提考能课时冲关
(文科)核心素养提升系列(六)
概率与统计高考中中档大题的规范问题
1. 概率与统计是高考中相对独立的一块内容, 处理问题的方式、 方法体现了较高的思维含量. 该类问题以应用题为载体, 注重考查学 生的应用意识及阅读理解能力、分类讨论与化归转化能力; 2.概率问题的核心是概率计算,其中事件的互斥、对立、独立 是概率计算的核心.统计问题的核心是样本数据的获得及分析方法, 重点是频率分布直方图、 茎叶图和样本的数字特征. 统计与概率内容 相互渗透,背景新颖.
第十章(文)
提考能课时冲关
[解析]
(1)由散点图可以判断,y=c+d x适宜作为年销售量 y
关于年宣传费 x 的回归方程类型. (2)令 ω= x,先建立 y 关于 ω 的线性回归方程.由于
^ ^- c=- y -d ω =563-68×6.8=100.6, 所以 y 关于 ω 的线性回归方程为^ y=100.6+68ω,因此 y 关于 x 的回归方程为^ y=100.6+68 x.
因此,没有 95%的把握认为是否喜欢运动与性别有关.
第十章(文)
提考能课时冲关
(3)喜欢运动的女志愿者有 6 人, 设分别为 A,B,C,D,E,F,其中 A,B,C,D 懂得医疗救 护, 则从这 6 人中任取 2 人的情况有(A,B,),(A,C),(A,D),(A, E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E), (C,F),(D,E),(D,F),(E,F),共 15 种, 其中两人都懂得医疗救护的情况有(A,B),(A,C),(A,D),(B, C),(B,D),(C,D),共 6 种, 设“抽出的 2 名志愿者都懂得医疗救护”为事件 A, 6 2 则 P(A)=15=5.

专题11概率与统计 2019年高考数学(理科)考试大纲解读Word版含解析

专题11概率与统计 2019年高考数学(理科)考试大纲解读Word版含解析

2019年考试大纲解读11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. (2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.概率与统计作为高考的必考内容,在2019年的高考中预计仍会以“一小一大”的格局呈现.小题一般比较简单,出现在选择题或填空题中比较靠前的位置,命题角度主要有两个方面:一是统计数据的分析,多以统计图表(折线图或柱状图)的形式提供数据,进行数据的特征分析,如均值、方差、最值点及趋势分析等;二是概率的求解,以古典概型的求解为主,涉及简单的排列组合知识,几何概型可能会与其他知识模块内容结合起来考查,如与函数、不等式、解析几何或定积分的计算等相结合.解答题一般出现在第18题或第19题的位置,属于中档题目,题目涉及两个以上的知识模块,具有一定的综合性.命题角度主要有三个方面:一是统计图表与分布列的综合,涉及用频率估计概率、互斥事件、对立事件以及相互独立事件等的概率求解,以离散型随机变量的分布列、数学期望的求解为核心;二是统计数据的数字特征与回归分析、独立性检验等的综合,此类问题计算量较大,注重数据的分析与应用;三是统计图表与函数内容的结合,包括函数解析式的求解与应用等,这有可能重新成为命题的热点.考向一三种抽样方法样题1 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是A.系统抽样B.分层抽样C.简单随机抽样D.各种方法均可【答案】B【解析】从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.考向二频率分布直方图的应用样题2 (2017新课标全国Ⅱ理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,(2)根据箱产量的频率分布直方图得列联表:2K的观测值,由于,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (2018·成都市模拟)某医疗科研项目对5只实验小白鼠体内的A 、B 两项指标数据进行收集和分析,得到的数据如下表:
(1)若通过数据分析,得知A 项指标数据与B 项指标数据具有线性相关关系,试根据上表,求B 项指标数据y 关于A 项指标数据x 的线性回归方程y ^=b ^x +a ^;
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B 项指标数据高于3的概率.
解:(1)根据题意,计算x -=1
5
×(5+7+6+9+8)=7,

5×2+7×2+6×3+9×4+8×4-5×7×352+72+62+92+82-5×72
=5
10 =12a ^=y --b ^x -=3-12×7=-1
2, ∴y 关于x 的线性回归方程为y ^=12x -12
.
(2)从这5只小白鼠中随机抽取3只,基本事件数为223,224,224,234,234,244,234,234,244,344共10种不同的取法;
其中至少有一只B 项指标数据高于3的基本事件是224,224,234,234,244,234,234,244,344共9种不同的取法,故所求的概率为p =
910
.
2. (2018·广州市一模)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检
查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品。

表是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图。

甲流水线样本的频数分布表
(1)若该项质量指标值落在直方图中,估计乙流水线生产该产品质量指标值的中位数;
(2)若将频率视为概率,某个月内甲,乙两条流水线均生产了5 000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?
(3)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
附:K 2

n ad -bc a +b c +d a +c
b +d (其中n =a +b +
c +
d 为样本容量)
解:因为0.48=(0.012+0.032+0.052)×5<0.5<(0.012+0.032+0.052+0.076)×5=0.86, 则(0.012+0.032+0.052)×5+0.076×(x -205)=0.5, 解得x =3 900
19
.
(2)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为p 甲=1550=3
10

乙流水线生产的产品为不合格品的概率为p 乙=(0.012+0.028)×5=1
5

于是,若某个月内甲,乙两条流水线均生产了5 000件产品,则甲,乙两条流水线生产的不合格品件数分别为5000×310=1 500,5 000×1
5
=1 000.
(3)2×2列联表:
则K 2
=100350-60050×50×75×25
=4
3×1.3.
因为1.3<2.072,
所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”.
3.在年初某项民意测试中,由10人专家团对被测评人进行打分,其中10人给出的分数分别为:5,5,6,6,6,7,7,8,10,10.把这10人给出的分数看成一个总体.
(1)求该总体的平均数;
(2)用简单随机抽样的方法从这10人给出的分数中抽取2个,组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
解:(1)总体平均数为1
10
×(5+5+6+6+6+7+7+8+10+10)=7.
(2)设“样本平均数与总体平均数之差的绝对值不超过0.5”为事件A ,从总体中用简单随机抽样的方法抽取2个个体的全部可能的基本结果有(5,5),(5,6),(5,6),(5,6),(5,7),(5,7),(5,8),(5,10),(5,10),…,(10,10),
共有9+8+7+6+5+4+3+2+1=45(个)基本结果,事件A 包括的基本结果有(5,8),(5,10),(5,10),(5,8),(5,10),(5,10),(6,7),(6,7),(6,8),(6,7)(6,7),(6,8),(6,7),(6,7),(6,8),(7,7),(7,8),(7,8),共有18个基本结果,故所求的概率为P (A )=1845=2
5
.
4.(2018·海淀区模拟)股票市场的前身是起源于1602年荷兰人在阿姆斯特河大桥上进行荷属东印度公司股票的买卖,而正规的股票市场最早出现在美国.2017年2月26号,中国证监会主席刘士余谈了对股市的几点建议,给广大股民树立了信心.最近,张师傅和李师傅要将家中闲置资金进行投资理财.现有两种投资方案,且一年后投资盈亏的情况如下:
(1)投资股市:
(2)购买基金:
(1)当时p =1
2
,求q 的值;
(2)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;
(3)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.
解:(1)因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立,
所以p +13+q =1,又因为p =12,所以q =1
6
.
(2)由“购买基金”亏损的概率比“投资股市”亏损的概率小,得q <3
8.
因为p +1
3
+q =1,
所以q =23-p <38,解得p >7
24.
又因为p +1
3+q =1,q ≥0,
所以p ≤2
3,
所以724<p ≤23
.
(3)记事件A 为“一年后张师傅和李师傅两人中至少有一人获利”,
用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,
则一年后张师傅和李师傅购买基金,所有可能的投资结果有3×3=9种,它们是:(a ,x ),(a ,y ),(a ,z ),(b ,x ),(b ,y ),(b ,z ),(c ,x ),(c ,x ),(c ,y ),(c ,z ),
所以事件A 的结果有5种,它们是:(a ,x ),(a ,y ),(a ,z ),(b ,x ),(c ,x ). 因此这一年后张师傅和李师傅两人中至少有一人获利的概率P (A )=59.。

相关文档
最新文档