复数三角不等式

合集下载

三角函数的定义和性质

三角函数的定义和性质
三角函数与复数的关系
三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。

三角不等式

三角不等式

三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式;V=s*h 圆柱体V=pi*r2h。

高中数学概念公式大全

高中数学概念公式大全

高中数学概念公式大全一、 三角函数1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=xr ,csc α=y r ; 2、同角三角函数的关系中,平方关系是:222222 倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg ; 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限;如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -; 4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心;5、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈;6、=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos=±)(βαtg βαβαtg tg tg tg ⋅± 1 7、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -; 8、三倍角公式是:sin3α=αα3sin 4sin 3- cos3α=ααcos 3cos 43-9、半角公式是:sin 2α=2cos 1α-± cos 2α=2cos 1α+± tg 2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +;10、升幂公式是:2cos2cos 12αα=+ 2sin 2cos 12αα=-; 11、降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=; 12、万能公式:sin α=21222ααtg tg + cos α=212122ααtg tg +- tg α=21222ααtg tg - 13、sin βα+sin βα-=βα22sin sin -,cos βα+cos βα-=βα22sin cos -=αβ22sin cos -;14、)60sin()60sin(sin 400ααα+-=α3sin ;)60cos()60cos(cos 400ααα+-=α3cos ;)60()60(00ααα+-tg tg tg =α3tg ;15、ααtg ctg -=α22ctg ; 16、sin180=415-; 17、特殊角的三角函数值:18、正弦定理是其中R 表示三角形的外接圆半径:R Cc B b A a 2sin sin sin === 19、由余弦定理第一形式,2b =B ac c a cos 222-+ 由余弦定理第二形式,cosB=acb c a 2222-+ 20、△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示则:① =⋅=a h a S 21;② ==A bc S sin 21; ③C B A R S sin sin sin 22=;④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S =21、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…22、在△ABC 中,B A B A sin sin <⇔<,…23、在△ABC 中:-tgC B)+tg(A -cosC B)+cos(A sinC=B)+sin(A == 2cos 2sin C B A =+ 2sin 2cos C B A =+ 22C ctg B A tg =+ tgC tgB tgA tgC tgB tgA ⋅⋅=++24、积化和差公式:①)]sin()[sin(21cos sin βαβαβα-++=⋅, ②)]sin()[sin(21sin cos βαβαβα--+=⋅, ③)]cos()[cos(21cos cos βαβαβα-++=⋅,④)]cos()[cos(21sin sin βαβαβα--+-=⋅;25、和差化积公式: ①2cos 2sin2sin sin y x y x y x -⋅+=+, ②2sin 2cos 2sin sin y x y x y x -⋅+=-, ③2cos 2cos 2cos cos y x y x y x -⋅+=+, ④2sin 2sin 2cos cos y x y x y x -⋅+-=-; 二、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n ;二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,;用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( 顶点式;2、 幂函数nm x y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞;三、 反三角函数1、x y arcsin =的定义域是-1,1,值域是]22[ππ,-,奇函数,增函数; x y arccos =的定义域是-1,1,值域是]0[π,,非奇非偶,减函数; arctgx y =的定义域是R,值域是)22(ππ,-,奇函数,增函数; arcctgx y =的定义域是R,值域是)0(π,,非奇非偶,减函数;2、当x x x x x ==-∈)cos(arccos )sin(arcsin ]11[,时,,; 221)cos(arcsin 1)sin(arccos x x x x -=-=,x x x x arccos )arccos(arcsin )arcsin(-=--=-π,2arccos arcsin π=+x x对任意的R x ∈,有: 2)()()()(ππ=+-=--=-==arcctgx arctgx arcctgx x arcctg arctgx x arctg xarcctgx ctg x arctgx tg ,, 当x arctgx ctg x arcctgx tg x 1)(1)(0==≠,时,有:; 3、最简三角方程的解集:{}{}{}{}。

高考数学常用公式(不等式、复数及其他部分)

高考数学常用公式(不等式、复数及其他部分)

高考数学常用公式(不等式、复数及其他部分)1.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b +≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>> (4)b a b a b a +≤+≤-2.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->, 如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.3.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x<-a.4.无理不等式:(1()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 5.指数不等式与对数不等式(1)当a>1时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当0<a<1时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩6.特殊数列的极限(1)0||1lim 11||11n n q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k t t t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 . (3)()111lim 11n n a q a S q q→∞-==--(S 无穷等比数列}{11n a q - (|q|<1)的和). 7.,a bi c di a c b d +=+⇔==.(a,b,c,d ∈R ) 8.复数z=a+bi 的模(或绝对值)9.复数的四则运算法则(1)(a+bi)+(c+di)=(a+c)+(b+d)i ;(2)(a+bi)-(c+di)=(a-c)+(b-d)i ;(3)(a+bi)(c+di)=(ac-bd)+(bc+ad)i ; (4)2222()()(0)ac bd bc ad a bi c di i c di c d c d+-+÷+=++≠++. 10.集合关系: U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆ U A C B ⇔=Φ U C A B R ⇔=11.平面两点间的距离公式 ,A B d=||AB ==11(,)x y ,B 22(,)x y ).12.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ∥b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.13.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ= ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 14.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 15.点的平移公式 ''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形F ′上的对应点为'''(,)P x y ,且'PP 的坐标为(h ,k )).(注:只需记住前一个关系)。

世界数学史上的十个著名不等式

世界数学史上的十个著名不等式

数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数.当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立.平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一.设,,…,是个正的变数,则(1)当积是定值时,和有最小值,且;(2)当和是定值时,积有最大值,且两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值.在中,当时,分别有,平均不等式经常用到的几个特例是(下面出现的时等号成立;(3),当且仅当时等号成立;(4),当且仅当时等号成立.二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)对任意两组实数,,…,;,,…,,有,其中等号当且仅当时成立.柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:(1),,则(2)(3)柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.三、闵可夫斯基不等式设,,…,;,,…,是两组正数,,则()()当且仅当时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:右图给出了对上式的一个直观理解.若记,,则上式为四、贝努利不等式(1)设,且同号,则(2)设,则(ⅰ)当时,有;(ⅱ)当或时,有,上两式当且仅当时等号成立.不等式(1)的一个重要特例是().五、赫尔德不等式已知()是个正实数,,则上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式(1)若,则;(2)若,则下面给出一个时的契比雪夫不等式的直观理解.如图,矩形OPAQ中,,,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知).于是有,也即七、排序不等式设有两组数,,…,;,,…,满足,则有,式中的,,…,是1,2,…,的任意一个排列,式中的等号当且仅当或时成立.以上排序不等式也可简记为:反序和乱序和同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式为复数,则,左边的等号仅当的幅角差为时成立,右边的等号仅当的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是,也可记为绝对值不等式在实数的条件下用得较多。

关于复数的三角不等式

关于复数的三角不等式

z 1ei(argz - argz 1- Α2)
这样我们完成了定理的证明.
定理 1 的几何意义是明显的: 圆环
z
z1 - z2 ≤ z ≤ z1 + z2
的 每 个 向 量 均 可 由 两 个 圆 周 C 1: =
z z = z 1 和 C 2: = z z = z 2 上
的 相应向量相加得到, 反之亦然. 结合定理 1
n
k- 1
∑ ∑ 使 z +
zj = d1
z j + d 2z k,
k+ 1
j= 1
再次运用情况 (1) 的推理, 即可完成这种情况
的证明.
综合上述, 我们可以看到, 本文对中学教
师和中学生理解复数的特征是有帮助的.
参考文献
1 W. R udin 著, 赵慈庚等译. 数学分析原理. 北京: 高等教育出版社, 1983
l≠j
在 n 个模为 1 的复数 t1, t2, …, tn, 使得
z = t1z 1 + t2z 2 + … + tnz n.
证明 我们在定理 1 的基础上进行, 不
妨设 z 1 ≥ z 2 ≥ … ≥ z n , 此时容易验证 a1 ≥ a2 ≥ … ≥ an, 于是定理 2 的条件变为
n
∑ m ax (a1 = z 1 -
44
中学数学 2003 年第 7 期
课外
关于复数的三角不等式
园地
430062 湖北大学数学与计算机科学学院 沈 华
我们知道, 对于任意两个复数 z 1 和 z 2, 有 z1 - z2 ≤ z1+ z2 ≤ z1 + z2 , 这是有名的的三角不等式. 它是一个极其初 等而又重要的不等式, 在分析学里扮演着基 本的角色, 具体可见文献 [ 1 ] [ 2 ]. 根据这个不 等式, 我们容易知道, 对于任意两个模为 1 的 复数 t1 和 t2, 亦有

复数z的n次方的模等于z的模的n次方的证明-概述说明以及解释

复数z的n次方的模等于z的模的n次方的证明-概述说明以及解释

复数z的n次方的模等于z的模的n次方的证明-概述说明以及解释1.引言概述部分的内容应该是对整篇文章的概括和引入。

下面是一个可能的概述部分的内容:1.1 概述复数是数学中一个重要的概念,它由实部和虚部组成,可以用来描述平面上的点或向量。

它在计算机图形学、电路分析、信号处理等领域有着广泛的应用。

本文将探讨复数的幂运算,并证明了一个重要的性质——复数的n次方的模等于复数的模的n次方。

在正文部分,我们将首先对复数的定义和性质进行介绍,包括复数的表示形式、四则运算以及共轭和模等基本性质。

然后,我们会详细讨论复数的模的定义和性质,其中包括模的计算公式和模的运算规则。

接着,我们会引入复数的幂的定义和性质,讨论复数的幂运算的一般规律。

在结论部分,我们将给出一个证明:复数z的n次方的模等于z的模的n次方。

通过推导和论证,我们将展示这个性质的正确性,并提供一个简洁的证明过程。

最后,我们会总结本文的主要内容,强调证明的重要性和复数幂运算的实际应用。

通过本文的阅读,读者将对复数及其幂运算有一个更清晰的认识,并了解到复数的n次方的模与复数的模的n次方之间的关系。

这个性质在解决一些具体问题时将会有很大的帮助。

请根据需要进行修改和调整,以符合您文章的实际情况。

1.2 文章结构文章结构部分的内容:本文采用如下结构进行展开论述:2.1 复数的定义和性质- 复数的定义- 复数的运算法则- 复数的共轭2.2 复数的模的定义和性质- 复数的模的定义- 复数的模的性质- 复数的模的计算方法2.3 复数的幂的定义和性质- 复数的幂的定义- 复数的幂的性质- 复数的幂的计算方法3.结论3.1 证明复数z的n次方的模等于z的模的n次方- 证明思路- 证明过程- 证明结果解释3.2 总结- 本文总结了复数的定义、复数的模的定义以及复数的幂的定义- 通过论述复数的幂的性质,进一步推导证明了复数z的n次方的模等于z的模的n次方的结论- 本文的证明过程清晰、严谨,具备较高的可读性和逻辑性- 最后对本文的研究意义和应用前景进行了简要展望1.3 目的本文的主要目的是证明复数z的n次方的模等于z的模的n次方这一数学命题。

高中数学复数重难知识点(一)

高中数学复数重难知识点(一)

高中数学复数重难知识点(一)复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.1.知识网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的`几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档