夫兰克-赫兹实验数据处理

合集下载

弗兰克-赫兹实验实验报告

弗兰克-赫兹实验实验报告

课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。

初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。

子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。

位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。

对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。

同时,可以读出峰谷的横坐标值。

峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。

弗兰克赫兹实验数据处理

弗兰克赫兹实验数据处理

数据处理(1) 计算第一激发电势和相对误差IA--UG2K 曲线数据2.8V2.6V3.0V电流/uA 电压/V 电流/uA 电压/V 电流/uA电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷471.5289.171.580.371.1742.70.0500.01000.01500.02000.030.035.040.045.050.055.060.065.070.075.02.8V 2.6V3.0VI A ~ U G2K 曲线I A /μAU G2K /V用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内通过比较有:①灯丝电压的变化对极板电流有比较大的影响;②在其他因素相同的情况下,灯丝电压越大,极板电流越大。

分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。

(2)改变灯丝电压,研究其对实验的影响。

反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。

IA--UG2K曲线数据8.5V 10.5V 6.5V电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.70.0100.0200.0300.0400.0500.0600.0700.0800.0900.01000.030.035.040.045.050.055.060.065.070.075.08.5V 10.5V 6.5V通过比较有:① 反向拒斥电压的变化对极板电流有一定的影响;② 在其他因素相同的情况下,拒斥电压增大时,极板电流减小。

实验报告 弗兰克赫兹实验报告内容

实验报告 弗兰克赫兹实验报告内容

弗兰克赫兹实验报告内容弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持,那么,下面是给大家整理收集的弗兰克赫兹实验报告内容,供大家阅读参考。

弗兰克赫兹实验报告内容1仪器弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。

F-H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。

为了使F-H管内保持一定的汞蒸气饱和蒸气压,实验时要把F-H管置于控温加热炉内。

加热炉的温度由控温装置设定和控制。

炉温高时,F-H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。

温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。

辉光放电会降低管子的使用寿命,实验中要注意防止。

F-H管电源组用来提供F-H管各极所需的工作电压。

其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2,直流0~15V连续可调。

扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F-H管的加速电压,供手动测量或函数记录仪测量。

微电流放大器用来检测F-H管的板流,其测量范围为10^-8A、10^-7A、10^-6A三挡。

微机X-Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。

供自动慢扫描测量时,数据采集、图像显示及结果分析用。

原理玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。

原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。

弗兰克—赫兹实验

弗兰克—赫兹实验

弗兰克—赫兹实验弗兰克—赫兹实验信息安全07级姓名:马文博学号:PB07210411 实验名称:弗兰克—赫兹实验实验目的:利用电子碰撞原子的方法,观察并测量汞的激发电位和电离电位,从而证明原子能级的存在。

实验原理:1、电子与气态Hg 原子的碰撞为了实现原子从低能级到高能级的跃迁,可以使具有一定能量的电子和原子发生碰撞.这是最容易实现Franck-Hertz 实验的方法.若与之发生碰撞的电子是在电势V 的加速下,速度从零增加到v,则当电子的能量满足:221mveV E E E n m ==-=?时,电子将全部的能量交换给原子.由于两个能级之间的能量差是有确定的值,对应的电压就有确定的大小,当原子吸收电子的能量从基态跃迁到第一激发态时,相就的电压值称为原子的第一激发电位.实验中就是测量汞原子的第一电位差.2、Hg 原子能级下图是Hg 的谱图.其中61S 0(0ev )为基态,63P 1(4.9ev )为激发态,63P 0(4.7ev )、63P 2(5.47ev )为亚稳态.实验中用F-H管来测量汞原子的第一激发电位.原理图如下:F-H管内充汞,灯丝加热K使其发射电子,G1控制通过G1的电子数目,G2加速电子,G1、G2空间较大,提供足够的碰撞概率,A 接收电子,AG2加一扼止电压,使失去动能的电子不能到达,形成电流。

实验曲线:4.碰撞过程及能量交换此过程在G1G2空间发生,在加速场的作用下,电子获得动能,与原子的弹性碰撞中,电子总能量损失较小,在不断的加速场作用下,电子的能量逐渐增大,就有可能与原子发生非弹性碰撞,使原子激发到高能态,电子失去相对应的能量,使其不能到达A从而不能形成电流。

V GK2= 4.7V ,使原子激发到63P 0,此态较稳定,不容易再产生跃迁,故不容易观察到这个吸收。

V GK2= 4.9V ,使原子激发到63P 1,引起共振吸收,电子速度几乎为零,电子不能到达A ,形成第一个峰。

大学弗兰克赫兹实验报告

大学弗兰克赫兹实验报告

大学弗兰克赫兹实验报告摘要本实验通过使用弗兰克-赫兹实验装置,通过测量电子在某一金属中的入射电压与出射电流之间的关系,验证了能量量子化的存在。

实验结果表明,电子在金属中的受激发碰撞后可以吸收、释放固定量的能量,而非连续的。

引言20世纪早期,弗兰克与赫兹通过一系列实验,证实了存在能量的量子化现象,这为后来的量子力学理论奠定了基础。

弗兰克-赫兹实验是其中最经典的实验之一,通过测量电子在金属中的入射电压与出射电流之间的关系,验证了能量的量子化。

实验方法实验材料1. 弗兰克-赫兹实验装置:包括真空室、加热器、阴极和阳极等组件。

2. 高压电源:用于给实验装置提供稳定的加速电压。

实验步骤1. 首先,打开真空室的进气阀,将气压降至所需的真空度。

2. 将高压电源接通并调节至一定的电压。

3. 通过加热器加热阴极,使其发射电子。

4. 在实验装置的示波器上观察到一系列的电流峰值,调节加速电压并记录相应的电流数值。

5. 重复步骤4,分别记录对应不同加速电压下的电流数值。

实验结果与分析首先,我们通过测量不同入射电压下的电流数值,绘制了电流-电压曲线如下图所示。

![弗兰克-赫兹实验图表](./frank-hertz-plot.png)从图中可以明显观察到电流在某些电压点处会急剧下降。

这是因为当电压达到一定值时,电子在金属中的能量足够大,可以克服金属原子的束缚力,进而与原子发生弹性碰撞。

在碰撞过程中,电子可以吸收或释放固定量的能量。

当入射电压低于这个能量量子时,电子无法与原子发生碰撞,因此电流保持较高的数值。

然而,当电压高于这个能量量子时,电子与原子发生碰撞并且吸收能量,导致电流急剧下降。

根据实验数据,我们可以计算得到电子与原子发生碰撞后吸收或释放能量的大小。

通过计算电流峰值出现的能量差,并除以电子的电荷得到每次碰撞吸收或释放能量的大小。

结论通过本次实验,我们验证了弗兰克-赫兹实验中能量量子化的现象。

实验结果显示,电子在金属中受激发碰撞后可以吸收或释放固定量的能量,而非连续的。

弗兰克赫兹实验实验报告

弗兰克赫兹实验实验报告

弗兰克赫兹实验实验报告弗兰克赫兹实验实验报告引言:弗兰克赫兹实验是物理学领域的一项重要实验,它的发现为我们理解原子结构和量子力学奠定了基础。

本实验通过对气体放电管中电子的运动进行观察和测量,揭示了原子的离散能级和电子的波粒二象性。

本报告将详细介绍弗兰克赫兹实验的原理、实验装置、实验过程以及实验结果的分析与讨论。

一、实验原理弗兰克赫兹实验基于气体放电现象,利用电子在气体原子中的碰撞过程来研究原子的能级结构。

当气体放电管中加入一定电压时,电子会加速运动并与气体原子碰撞,从而使原子电离或激发。

当电子经过加速后,其动能增加,能够克服原子的束缚力,使原子电离。

而当电子能量不够大时,电子与原子的碰撞只能使原子激发到较低能级。

通过测量电子在气体放电管中的运动特性,可以得到气体原子的能级结构。

二、实验装置弗兰克赫兹实验的装置主要包括气体放电管、电源、测量仪器等。

气体放电管是实验的关键部分,它通常由两个电极构成,其中一个是阴极,用于发射电子;另一个是阳极,用于收集电子。

气体放电管内充满了待测气体,如氩气、氖气等。

电源提供所需的电压,通常为几百伏至几千伏。

测量仪器包括电压表、电流表、光电子倍增管等,用于测量电压、电流以及光电子的能量。

三、实验过程1. 装置调试:首先进行装置的调试,确保电源和测量仪器正常工作。

调整电源的电压和电流,使其达到实验要求。

2. 观察放电现象:打开电源,观察气体放电管中的放电现象。

当电压升高时,放电管中会出现不同颜色的光芒,这是因为气体原子的激发和电离过程。

3. 测量电流:通过连接电流表,测量电流的大小。

随着电压的增加,电流也会相应增加。

当电压达到一定值时,电流会急剧增加,这是因为电子能量足够大,可以克服原子的束缚力,使原子电离。

4. 测量电压:使用电压表测量电源的输出电压,记录下不同电压下的电流值。

5. 测量光电子能量:通过连接光电子倍增管,测量光电子的能量。

光电子是由气体原子激发或电离后发射出来的电子,其能量可通过光电子倍增管进行测量。

弗兰克赫兹实验 实验报告

弗兰克赫兹实验 实验报告

弗兰克赫兹实验实验报告弗兰克赫兹实验是20世纪初为了研究原子结构而开展的经典实验之一,也是量子力学发展史上的重要里程碑之一。

本文将对该实验的原理、实验装置、实验过程及结果进行介绍并进行简要的讨论。

一、实验原理弗兰克赫兹实验主要基于静电击穿现象的基础上进行。

在一个低压气体管内,将两个电极分别放在管的两端,使得电子能够从负极经过气体管向另一端正极方向运动。

当电子运动的速度达到一定的程度时,可以与气体原子相撞,使气体原子激发成为离子或激发态。

当电子经过气体管内的一个区域时,便可以观察到该区域的荧光现象。

二、实验装置弗兰克赫兹实验的实验装置主要由一个玻璃管组成,管中充满了低压气体。

实验中通过气体管两端的电极和外部高压电源构成电路,使电子可以在管内自由运动。

三、实验过程在实验进行时,首先将气体管中的气体抽成非常低的压强,然后通过高压电源,在管的两端分别加上负极和正极电压,使得气体管内形成一个电场。

当电压达到一定程度时,电子可以克服气体原子的束缚,在电场作用下自由运动。

当一些电子与气体原子碰撞时,气体原子可能会发生激发或电离,然后通过复合释放荧光。

荧光以波长分布明显的分界线出现(即发生荧光的气体种类不同,发射的光谱线也不同)。

通过测量压强与电场强度等参数,可以得到不同气体在不同电场强度下的谱线变化情况。

四、实验结果通过弗兰克赫兹实验的实验数据可以得出结论:(1)气体原子处于激发态不能较长时间复合释放,而处于离子状态的气体原子则不同。

(2)获得荧光的气体原子数与电子数不成正比,而且气体压强不能过高。

(3)通过不同气体在不同电场下的光谱线,证明了气体原子的能级结构。

五、实验讨论弗兰克赫兹实验是20世纪初的一个经典实验,尽管它不能很好地解释电子轨道等量子力学的本质,但它在理论形成的历程上起到了重要作用。

通过实验结果可以证明气体原子的能级结构,而这个结果也间接验证了量子力学理论的正确性。

而通过不同气体在不同电场下的发光谱线变化的规律性,也为后来分子谱学的研究奠定了基础性的实验基础。

弗兰克赫兹实验数据处理

弗兰克赫兹实验数据处理

数据处理(1) 计算第一激发电势和相对误差IA--UG2K 曲线数据2.8V2.6V3.0V电流/uA 电压/V 电流/uA 电压/V 电流/uA电压/V 峰1 32.6 124.9 32.6 35.7 33.0 251.4 谷1 36.9 71.4 37.1 19.6 36.9 151.5 峰2 43.0 308.7 43.2 91.0 43.4 657.7 谷2 48.1 103.5 48.3 26.8 48.0 220.5 峰3 54.6 560.3 54.6 169.5 54.7 1258.4 谷3 59.5 157.0 59.7 42.8 59.4 369.4 峰4 66.4 851.2 66.2 258.7 66.5 2004.2 谷471.5289.171.580.371.1742.70.0500.01000.01500.02000.030.035.040.045.050.055.060.065.070.075.02.8V 2.6V3.0VI A ~ U G2K 曲线I A /μAU G2K /V用逐差法求氩原子第一激发电势U=(66.4+54.6-43-32.6)/4=11.35V相对误差E R=(11.35-11.5)/11.5*100%=1.30% 误差在允许范围内通过比较有:①灯丝电压的变化对极板电流有比较大的影响;②在其他因素相同的情况下,灯丝电压越大,极板电流越大。

分析:灯丝电压变大导致灯丝的实际功率变大,灯丝的温度升高,在其他的因素相同的情况下,单位时间到达极板的电子数增加,从而极板电流增大。

(2)改变灯丝电压,研究其对实验的影响。

反向拒斥电压U G2A =8.5 V,,分别测量拒斥电压U=10.5 V.,U=6.5 V,情况下的实验数据。

IA--UG2K曲线数据8.5V 10.5V 6.5V电流/uA 电压/V 电流/uA 电压/V 电流/uA 电压/V 峰1 32.6 124.9 33.5 61.5 32.2 141.8 谷1 36.9 71.4 38.3 25.8 36.0 98.9 峰2 43.0 308.7 44.1 189.9 42.8 338.0 谷2 48.1 103.5 49.2 29.3 47.0 163.2 峰3 54.6 560.3 55.5 388.0 53.8 607.5 谷3 59.5 157.0 60.9 43.6 58.6 263.1 峰4 66.4 851.2 67.1 625.3 65.6 914.4 谷4 71.5 289.1 72.5 113.2 70.4 448.70.0100.0200.0300.0400.0500.0600.0700.0800.0900.01000.030.035.040.045.050.055.060.065.070.075.08.5V 10.5V 6.5V通过比较有:① 反向拒斥电压的变化对极板电流有一定的影响;② 在其他因素相同的情况下,拒斥电压增大时,极板电流减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档