高一数学集合知识点归纳及典型例题

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

(完整)人教版高一数学必修一集合知识点以及习题,推荐文档

(完整)人教版高一数学必修一集合知识点以及习题,推荐文档

高一数学必修1第一章集合一、集合有关概念1.集合的含义:一定范围的、确定的、可区别的事物,当作一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。

2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2},{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆注意:有两种可能(1)A是B的一部分,;(2)AB与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集例题1.下列四组对象,能构成集合的是( )A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2-2x+1,x R},N={x|x≥0},则M 与N 的关系是 .∈4.设集合A=,B=,若A B ,则的取值范围是 }{12x x <<}{x x a <⊆a 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。

高一年级数学《集合》知识点总结

高一年级数学《集合》知识点总结

高一年级数学《集合》知识点总结【一】一.知识归纳:1.集合的相关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存有x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握相关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

4.相关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。

高一数学集合、函数知识点总结、相应试题及答案

高一数学集合、函数知识点总结、相应试题及答案

第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:1)元素的确定性如:世界上最高的山2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B 注意:B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高一数学集合知识点归纳及典型例题培训资料

高一数学集合知识点归纳及典型例题培训资料

高一数学集合知识点归纳及典型例题集合一、知识点:1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性;(3)集合表示方法:列举法、描述法、图示法;(4)常用数集:R Q Z N N N ;;;;;*+2、集合的关系:子集相等3、全集交集并集补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ(2) ;,A B B A A A ⋃=⋃=⋃φ(3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。

例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。

例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。

\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ=I I ,,试求b , c的值。

例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A I , 求m 的范围;(2)若A B A =Y , 求m 的范围。

例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。

三、练习题1. 设集合M =,24},17|{=≤a x x 则( )A. M a ∈B. M a ∉C. a = MD. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( )A. M ={(3,2)} , N ={(2,3)}B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M I , 则a 的取值集合是( )A. }21,2,3{-B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a 的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x y y x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( )A. ΦB. MC. ND. R8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。

人教版高一数学必修一集合知识点和习题

人教版高一数学必修一集合知识点和习题

高一数学必修 1第一章集合一、集合有关概念1.集合的含义:必然范围的、肯定的、可区别的事物,看成一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。

2.集合的中元素的三个特性:(1)元素的肯定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方式:列举法与描述法。

注意:常常利用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方式。

{x∈R| x-3>2} ,{x|x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无穷集含有无穷个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的大体关系1.“包括”关系—子集A⊆有两种可能(1)A是B的一部份,;(2)A与注意:BB是同一集合。

反之: 集合A不包括于集合B,或集合B不包括集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:若是A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③若是 A⊆B, B⊆C ,那么 A⊆C④若是A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即CSA=},|{AxSxx∉∈且韦恩图示A B图1A B图2性质A A=AA Φ=ΦA B=B AA B⊆AA B⊆BA A=AA Φ=AA B=B AA B⊇AA B⊇B(CuA) (CuB)= Cu(A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.SA例题1.下列四组对象,能组成集合的是( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高中数学集合的知识点总结与常考题(附经典例题与解析)

高中数学集合的知识点总结与常考题(附经典例题与解析)

集合的知识点与常考题 【知识点分析】: 一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.如:x 2﹣8x +7≧0。

2.如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.二、分式不等式的解法类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.0>ab 等价于:0b >•a 0<ab 等价于:0b <•a 如:解011x ≥-+x 等价于:解011x ≥-•+)()(x 三、绝对值不等式的解法利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论:“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解。

如:|1﹣3x |<3,得到﹣3<1﹣3x <3两个绝对值不等式的解法:法一:利用分界点分类讨论,例:解不等式 2|x ﹣3|+|x ﹣4|<2,①若x ≥4,则3x ﹣10<2,x <4,∴舍去.②若3<x <4,则x ﹣2<2,∴3<x <4.③若x ≤3,则10﹣3x <2,∴<x ≤3.综上,不等式的解集为.法二:利用数形结合去掉绝对值符号利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。

高一数学集合知识点归纳及典型例题(供参考)

高一数学集合知识点归纳及典型例题(供参考)

高一数学集合知识点归纳及典型例题一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。

在进行集合间的运算时要注意使用Venn 图。

本 章 知 识 结 构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。

理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。

集合是由它的元素唯一确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。

我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。

理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N 、N*、N +、Z 、Q 、R 要记牢。

3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如 {1,2,3,…,n ,…}●注意a 与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。

但关键点也是难点。

学习时多加练习就可以了。

另外,弄清“代表元素”也是非常重要的。

如{x|y =x 2}, {y|y =x 2}, {(x ,y )|y =x 2}是三个不同的集合。

4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合一、知识点: 1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集交集 并集 补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ (2) ;,A B B A A A ⋃=⋃=⋃φ (3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。

例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。

例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。

\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b ,c 的值。

例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A , 求m 的范围;(2)若A B A = , 求m 的范围。

例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。

三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ∉ C. a = M D. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( ) A.}21,2,3{- B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a 6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R8. 已知 A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。

13. 已知}065|{},019|{222=+-==-+-=x x x B a ax x x A ,且A ,B 满足下列三个条件:① B A ≠ ② B B A = ③ ΦB A ,求实数a 的值。

四、练习题答案1. B2. A3. D4. C5. A6. B7. C8. {0,1,2} 9. 2,或310. {1,2,3}或{1,2,3,4}或{1,2,3,5}或{1,2,3,4,5}11. 解:依题意,得:⎩⎨⎧==22b b a a 或⎩⎨⎧==a b b a 22,解得:⎩⎨⎧==00b a ,或⎩⎨⎧==10b a ,或⎪⎩⎪⎨⎧==2141b a结合集合元素的互异性,得⎩⎨⎧==10b a 或⎪⎩⎪⎨⎧==2141b a 。

12. 解:B ={x|x<-1, 或x>2}① 若A = Φ,即 0416≤-=∆p ,满足A ⊆B ,此时4≥p② 若Φ≠A ,要使A ⊆B ,须使大根142-≤-+-p 或小根242≥---p (舍),解得:43≤≤p所以 3≥p13. 解:由已知条件求得B ={2,3},由B B A = ,知A ⊆B 。

而由 ①知B A ≠,所以A B 。

又因为ΦB A ,故A ≠Φ,从而A ={2}或{3}。

当A ={2}时,将x =2代入01922=-+-a ax x ,得019242=-+-a a 53或-=∴a经检验,当a = -3时,A ={2, - 5}; 当a =5时,A ={2,3}。

都与A ={2}矛盾。

当A = {3}时,将x =3代入01922=-+-a ax x ,得019392=-+-a a 52或-=∴a经检验,当a = -2时,A ={3, - 5}; 当a =5时,A ={2,3}。

都与A ={2}矛盾。

综上所述,不存在实数a 使集合A , B 满足已知条件。

函数定义域求法的总结和配套习题(1)分式中的分母不为零;(2)偶次方根下的数(或式)大于或等于零; (3)对数函数真数大于零; (4)幂零函数底数不为零 抽象的一、已知()f x 的定义域,求[]()f g x 的定义域例1已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围.解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤.故函数(35)f x -的定义域为41033⎡⎤⎢⎥⎣⎦,.二、已知[]()f g x 的定义域,求()f x 的定义域例2 已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.分析:令222u x x =-+,则2(22)()f x x f u -+=,由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤.令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 三、运算型的抽象函数例3 若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.解:由()f x 的定义域为[]35-,,则()x ϕ必有353255x x --⎧⎨-+⎩,,≤≤≤≤解得40x -≤≤.所以函数()x ϕ的定义域为[]40-,. 3、逆向型例5已知函数862++-=m mx mx y 的定义域为R 求实数m 的取值范围。

分析:函数的定义域为R ,表明0862≥++-m mx mx ,使一切R x ∈都成立,由2x 项的系数是m ,所以应分0=m 或0≠m 进行讨论。

解:当0=m 时,函数的定义域为R ;当0≠m 时,0862≥++-m mx mx 是二次不等式,其对一切实数x 都成立的充要条件是⎩⎨⎧≤+--=∆>0)8(4)6(02m m m m 10≤<⇒m 综上可知10≤≤m 。

评注:不少学生容易忽略0=m 的情况,希望通过此例解决问题。

例6已知函数347)(2+++=kx kx kx x f 的定义域是R ,求实数k 的取值范围。

解:要使函数有意义,则必须0342≠++kx kx 恒成立, 因为)(x f 的定义域为R ,即0342=++kx kx 无实数解 ①当0≠k 时,034162<⨯-=∆k k 恒成立,解得430<<k ; ②当0=k 时,方程左边03≠=恒成立。

综上k 的取值范围是430<≤k 。

1.若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(l o g2x f 的定义域为 。

2.已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.3. 已知函数的定义域为,则的定义域为________。

4. 函数定义域是,则的定义域是( )A. B. C. D.5.已知函数的定义域是,求的定义域。

6. 若函数f (x +1)的定义域为[-21,2],求f (x 2)的定义域. 求函数的值域方法总结1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。

事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

对于一些比较简单的函数,其值域可通过观察得到。

如:1. 求函数x 1y =的值域。

2. 求函数x 3y -=的值域。

例1:求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2: ]53(232,求函数-∈+-=x x x y 的值域;例:. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域。

解:令1x log y ,2y 325x 1-==- 则21y ,y 在[2,10]上都是增函数 所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81 练习: 求函数1x 1x y --+=的值域。

相关文档
最新文档