2017苏科版数学八年级下册第8章《认识概率》单元练习

合集下载

第8章 认识概率 单元测试卷-苏科版八年级数学下册(原卷版+解析版)

第8章 认识概率 单元测试卷-苏科版八年级数学下册(原卷版+解析版)

第8章认识概率(原卷版)考试时间:100分钟;满分:120分一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.55B.0.4C.0.6D.0.56.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有()A.18B.27C.36D.307.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.抛一枚硬币,连续两次出现正面的概率B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.任意写一个正整数,它能被5整除的概率D.掷一枚正六面体的骰子,出现1点的概率8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是()A.12B.25C.3150D.35二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)15.(本题2分)下列四个事件中:①如果a为实数,那么20a ;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.(1)小军和小颖为争一个竞赛的名额,决定用摸球的方式来确定,从不透明箱里随机摸出1个球,是白球就小军去,是黄球,就小颖去.请问这个规则是否公平?并通过计算概率说明理由.(2)现每次从箱中任意摸出一个球记下颜色,再放回箱中,通过大量重复摸球实验后发现,摸到蓝球的频率稳定在25%,那么箱里大约有多少个红球?20.(本题10分)在一个口袋里有大小形状都一样的10张卡片,分别写有-1,-2,-3,-4,-5,1,2,3,4,5.从中任意抽出一张卡片.(1)抽到正数的可能性大还是抽到负数的可能性大?(2)抽到奇数的可能性大还是抽到偶数的可能性大?(3)抽到小于2的可能性大还是抽到大于-3的可能性大?(4)抽到平方数的可能性大还是抽到立方数的可能性大?(5)抽到绝对值大于1的可能性大还是抽到绝对值小于6的可能性大?21.(本题8分)小覃和小莫两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了100次试验,实验的结果如下:(1)求表格中x的值.(2)计算“3点朝上”的频率.(3)小覃说:“根据实验,一次实验中出现1点朝上的概率是12%”;小覃的这一说法正确吗?为什么?(4)小莫说:“如果掷6000次,那么出现5点朝上的次数大概是1500次左右.”小莫的这一说法正确吗?为什么?22.(本题8分)孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A级、2A级、3A级,其中1A级最好,3A级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到1A级的可能性大?为什么?23.(本题9分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a152010b已知前面两个小组的人数之比是1:5.解答下列问题:+=.(1)a b(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)24.(本题8分)某射击运动员在相同条件下的射击160次,其成绩记录如下:射击次数20406080100120140160射中9环以上的次数1533637997111130射中9环以上的频率0.750.830.800.790.790.790.81(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.25.(本题8分)[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)26.(本题9分)某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?27.(本题11分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的组统计数据:摸球的次数m10020030050080010003000摸到白球的次数n661281713024815991806摸到白球的频率nm0.660.640.570.6040.6010.5990.602(2)估算盒子里约有白球__________个;(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?第8章认识概率(解析版)一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据随机事件的概率值即可判断.【详解】解:因为不可能事件的概率为0,0<随机事件的概率<1,必然事件的概率为1,所以在如图的各事件中,是随机事件的有:事件B和事件C,共有2个,故选:B.【点睛】本题考查了随机事件,弄清不可能事件的概率,随机事件的概率,必然事件的概率是解题的关键.2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起【答案】D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、经过有交通信号灯的路口,遇到红灯,是随机事件,选项不符合题意;B、任意画一个三角形,其内角和等于180 ,是必然事件,选项不符合题意;C、连续掷两次骰子,向上一面的点数都是6,是随机事件,选项不符合题意;D、明天太阳从西边升起,是不可能事件,选项符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球【答案】A【解析】必然事件是在一定条件下一定会发生的事件,对各个选项进行判断即可得出答案.【详解】解:A中两直线平行,同位角相等是平行线的性质,属于必然事件,故符合要求;B中任意两条线段的位置关系可相交,可不相交,属于随机事件,故不符合要求;C中两条边长为3,4的三角形中,第三条边的长度大于1小于7均可,当第三边长为5时,该三角形为直角三角形,属于随机事件,故不符合要求;D中在只装有白球的袋子中摸出一个红球,属于不可能事件,故不符合要求;故选A.【点睛】本题考查了必然事件.解题的关键在于对必然事件,随机事件与不可能事件的理解.4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数【答案】A【解析】根据必然事件和随机事件的定义解答即可.【详解】解:A.平移后的图形与原来的图形对应线段相等是必然事件;B.∵两直线平行同位角相等,∴同位角相等是随机事件;C.∵随机抛掷一枚质地均匀的硬币,落地后可能正面朝上,也可能反面朝向,∴随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;D.∵当a=0时,-a=0,0既不是负数,也不是正数,∴-a 是负数是随机事件;故选A .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是( )(精确到0.1)A .0.55B .0.4C .0.6D .0.5【答案】D【解析】【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【详解】解:估计这名球员投篮一次,投中的概率约是2860781041241532520.550100150200250300500++++++≈++++++,故选:D . 【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.6.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A .18B .27C .36D .30【答案】D【解析】 【分析】设黑球的个数为x 个,根据频率可列出方程,解方程即可求得x ,从而得到答案.【详解】设黑球的个数为x 个,由题意得:0.445x x=+ 解得:x=30经检验x=30是原方程的解,则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键.7.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A .抛一枚硬币,连续两次出现正面的概率B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .任意写一个正整数,它能被5整除的概率D .掷一枚正六面体的骰子,出现1点的概率【答案】B【解析】【分析】根据统计图可得,实验结果在0.33附近波动,故概率0.33P ≈,计算四个选项的概率即可得出答案.【详解】A. 抛一枚硬币两次,出现得结果有(正,正),(正,反),(反,正)和(反,反)四种,所以连续两次出现正面的概率14P =,故A 排除; B. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为10.333P =≈,故B 正确; C. 任意写一个正整数,它能被5整除的概率为21105P ==,故C 排除; D. 掷一枚正六面体的骰子,出现1点的概率为16P =,故D 排除.故选:B 【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,在解答过程中掌握概率公式是解决本题的关键.8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .朝上的点数是5的概率B .朝上的点数是奇数的概率C .朝上的点数大于2的概率D .朝上的点数是3的倍数的概率【答案】D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断.【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果; C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果;D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率.9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是( )A .12B .25C .3150D .35【答案】B【解析】【分析】根据摸出黑棋子的频率稳定在0.6附近,则摸出白棋子的频率稳定在1-0.6=0.4附近,由此即可得到答案.【详解】解:∵摸出黑棋子的频率稳定在0.6附近,∴摸出白棋子的频率稳定在1-0.6=0.4附近, ∴那么摸出白棋子的概率约是20.45=, 故选B .【点睛】本题主要考查了用频率估计概率,解题的关键在于能够准确求出摸出白棋子的频率.二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.【答案】10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程即可求解.【详解】解:设袋中有黑球x 个, 由题意得:0.250x ,解得:x=10, 则,布袋中黑球的个数可能有10个.故答案为:10.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.【答案】12【解析】【分析】根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.【详解】解:由题意知摸到黄色球的频率稳定在40%,所以摸到白色球的概率:1-40%=60%,因为不透明的布袋中,有黄色、白色的玻璃球共有20个,所以布袋中白色球的个数为20×60%=12(个),故答案为:12.【点睛】本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键. 12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________. 【答案】15##0.2【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:∵共摸球4000次,其中800次摸到黑球,∴从中随机摸出一个球是黑球的概率为8001=40005,故答案为:15【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)【答案】③【解析】【分析】根据随机事件、不可能事件、必然事件的定义解答.【详解】解:①②是随机事件,③是不可能事件,④是必然事件,故答案为:③.【点睛】此题考查事件的分类:不确定事件、不可能事件、必然事件,正确掌握各定义是解题的关键.14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)【答案】③④【解析】【分析】因为确定事件包括必然事件和不可能事件,根据这两种事件的概念判断即可.【详解】①打雷后会下雨,随机事件;②明天是晴天,随机事件;③1小时等于60分钟,必然事件;④从装有2个红球,2个白球的袋子中摸出一个蓝球,不可能事件.故确定性事件的是:③④.【点睛】考查了必然事件、不可能事件、随机事件的概念:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事.15.(本题2分)下列四个事件中:①如果a为实数,那么20a≥;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)【答案】④【解析】【分析】根据必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】①如果a为实数,那么20a≥是必然事件;②在标准大气压下,水在1C时结冰是不可能事件;③同时掷两枚均匀的骰子,朝上一面的点数和为13是不可能事件;④小明期中考试数学得满分是随机事件.故答案是:④.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)【答案】白【解析】【分析】分别计算出摸到红、白、黑球的可能性,比较大小后即可得到答案.【详解】∵袋子中装有2个红球、5个白球和3个黑球,∴摸出红球的可能性是:2÷(2+5+3)=15,摸出白球的可能性是:5÷(2+5+3)=12,摸出黑球的可能性是:3÷(2+5+3)=3 10,∵12>310>15,∴白球出现的可能性大.故答案为:白【点睛】本题主要考查了求简单事件发生的可能性,用到的知识点为:可能性等于所求情况数与总情况数之比.17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)【答案】0.35【解析】【分析】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断即可.【详解】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断抛掷该纪念币正面朝上的概率约为0.35.故答案为:0.35.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义.三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?【答案】(1)n=5或6;(2)n=1或2;(3)n=3或4【解析】【分析】(1)利用必然事件的定义确定n的值;(2)利用不可能事件的定义确定n的值;(3)利用随机事件的定义确定n的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.。

苏科版数学八年级下册第八章《认识概率》单元过关测试训练(含答案)

苏科版数学八年级下册第八章《认识概率》单元过关测试训练(含答案)

苏科版数学八年级下册第八章《认识概率》单元过关测试训练(含答案)一、选择题1.下列事件为不可能事件的是()A. 掷一枚质地均匀的正方体骰子,掷得的点数不是奇数就是偶数B. 从一副扑克牌中任意抽出一张牌,花色是黑桃C. 抛一枚普通的硬币,正面朝上D. 从装满红球的袋子中摸出一个白球2.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A. 摸出的是白球B. 摸出的是黑球C. 摸出的是红球D. 摸出的是绿球3.在一个不透明的布袋中,共有30个小球,除颜色外其他完全相同.若每次将球搅匀后摸一个球记下颜色再放回布袋.通过大量重复摸球试验后发现,摸到红色球的频率稳定在0.2左右,则口袋中红色球的个数应该是A. 6个B. 15个C. 24个D. 12个4.气象台预报“本市明天降水概率是83%”.对此信息,下列说法正确的是A. 本市明天将有83%的时间降水B. 本市明天将有83%的地区降水C. 本市明天肯定下雨D. 本市明天降水的可能性比较大5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有80个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和40%,则口袋中白色球的个数很可能是().A. 34个B. 35个C. 36个D. 37个6.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球7.在一个不透明的口袋中装3个红球和12个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在其附近的是()A. 3%B. 12%C. 15%D. 20%8.某林业部门要考察某种幼树在一定条件下的移植成活率,实验结果统计如下:由此可以估计该种幼树移植成活的概率为(结果保留小数点后两位)A. 0.88B. 0.89C. 0.90D. 0.92二、填空题9.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n=________.10.“任意打开九年级数学课本,正好是第19页”,这是____事件(选填“随机”或“必然”或“不可能”).11.在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.4,那么据此估计,袋子里的球的总数大约是________个.12.下表记录了某种幼树在一定条件下移植成活情况.移植总数n400 1500 3500 7000 9000 14000成活数m325 1336 3203 6335 8073 126280.8130.8910.9150.9050.8970.902成活的频率(精确到0.001)由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.在一只不透明的袋子中装有红球和白球共20个,这些球除了颜色外都相同.将袋子中的球摇匀,从中任意摸出一个球,记下颜色后放回,通过多次试验后发现,摸到红球的频率稳定在30%,由此估计袋中有_________个红球.14.一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:(1)表格中a=;(精确到0.01)(2)估计从袋子中摸出一个球恰好是红球的概率约为;(精确到0.1)(3)如果袋子中有7个红球,那么袋子中除了红球,估计还有个其他颜色的球.15.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有2个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.16.事件A发生的概率为1,大量重复做这种试验,事件A平均每100次发生的次数是10________.三、解答题17.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)上表中的a=________,b=________;(2)“摸到白球的”的概率的估计值是________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球?18.一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:(1)表格中a=______ ,b=_____;(2)估计从袋子中摸出一个球恰好是红球的概率约为_______;(精确到0.1)(3)如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球⋅19.某校研究学生的课余爱好情况采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有______人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是_________.20.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.21.在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据(1)请你估计,当n很大时,摸到白球的频率将会接近______(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______.(3)试估算口袋中黑、白两种颜色的球有多少只.苏科版数学八年级下册第八章《认识概率》单元过关测试训练(含答案)1.D解:A.掷一枚质地均匀的正方体骰子,掷得的点数不是奇数就是偶数是必然事件;B.从一副扑克牌中任意抽出一张牌,花色是黑桃是随机事件;C.抛一枚普通的硬币,正面朝上是随机事件;D.从装满红球的袋子中摸出一个白球是不可能事件.2.A解:因为白球的数量最多,所以摸出的是白球的可能性最大.3.A解:∵摸到红色球的频率稳定在20%左右,∴口袋中红色球的频率为20%,故红球的个数为30×20%=6个.故选A.4.D解:本市明天降水概率是83%,只说明明天降水的可能性比较大,是随机事件,A,B,C属于对题意的误解,只有D正确.5.C解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和40%,∴口袋中白色球的个数很可能是(1−15%−40%)×80=36个.6.A解:A.摸出的是3个白球是不可能事件,故A选项正确;B.摸出的是3个黑球是随机事件,故B选项错误;C.摸出的是2个白球、1个黑球是随机事件,故C选项错误;D.摸出的是2个黑球、1个白球是随机事件,故D选项错误;7.D=0.2=20%.解:33+128.C解:观察表格,可得出通过多次移植试验后,发现移植成活率逐渐稳定在0.9附近,故幼树移植成活的概率为0.90,9.30解:∵摸到黄球的频率稳定在30%,∴在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,而袋中黄球只有9个,∴推算出袋中小球大约有9÷0.3=30(个),10.随机解:由随机事件的概念可知,“任意打开九年级数学课本,正好是第19页”“任意打开九年级数学课本,正好是第19页”是随机事件.11.5解:设袋子中共有x个球,∵只有两个红球,摸出红球的频率稳定在0.4,=0.4,∴2x解得x=5,12.0.9解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.13.6解:设袋中有x个红球.=30%,由题意可得:x20解得:x=6,14.解:(1)0.71;(2)0.7;(3)3.解:(1)a=571÷800=0.71,故答案为0.71;(2)观察发现随着实验次数的增多,摸到红球的频率逐渐稳定在常数0.7附近,所以计从袋子中摸出一个球恰好是红球的概率约为0.7,故答案为0.7;(3)设袋子中除去红球外,还有其他颜色的球x个,根据题意得0.7(x+7)=7,解得:x=3,∴袋子中还有其他颜色的球3个,故答案为3.15.10×100%=20%,解:由题意可得,2a解得,a=10.16.10解:事件A发生的概率为1,大量重复做这种试验,10=10.则事件A平均每100次发生的次数为:100×11017.解:(1)0.59,116;(2)0.6;(3)12÷0.6=20(个),20−12=8(个),答:除白球外,还有大约8个其它颜色的小球.解:(1)b=200×0.58=116,a=59=0.59.100故答案为0.59,116;(2)由表可知,当n很大时,摸到白球的频率将会接近0.6,故答案为0.6;(3)见答案.18.(1)0.71;0.70(2)0.7(3)设袋子中除去红球外,还有其他颜色的球x个,根据题意得0.7(x+14)=14,解得:x=6,答:袋子中还有其他颜色的球6个.解:(1)a=568÷800=0.71;b=701÷800=0.70;(2)观察发现随着实验次数的增多,摸到红球的频率逐渐稳定在常数0.7附近,所以计从袋子中摸出一个球恰好是红球的概率约为0.7;(3)见答案.19.解:(1)100;(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100−40−20−10=30,补全条形统计图,如图所示,(3)600;(4)3.10解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100,故答案为:100;(2)见答案;(3)爱好运动的学生人数所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600,故答案为:600;(4)爱好阅读的学生人数所占的百分比1−40%−20%−10%=30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为3,10.故答案为31020.(1)100;(2)爱好上网的人数所占百分比为10%∴爱好上网人数为:100×10%=10,∴爱好阅读人数为:100−40−20−10=30,补全条形统计图,如图所示,(3)600;(4)3.10解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:40÷40%=100,故答案为:100;(2)见答案;(3)爱好运动的学生人数所占的百分比为40%,∴估计爱好运用的学生人数为:1500×40%=600,故答案为:600;(4)爱好阅读的学生人数所占的百分比30%,∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为3,10故答案为:3.1021.(1)0.6;(2)0.6,35;25;(3)解:因为摸到白球的概率是,摸到黑球的概率是所以口袋中黑、白两种颜色的球有白球是20×35=12个, 黑球是20×25=8个.解:(1)根据题意可得当n 很大时,摸到白球的频率将会接近0.6; 故答案为0.6(2)因为当n 很大时,摸到白球的频率将会接近0.6;所以摸到白球的概率是35;摸到黑球的概率是25故答案为0.6,35;25(3)见答案.。

苏科版八年级下册数学第8章 认识概率含答案(有解析)

苏科版八年级下册数学第8章 认识概率含答案(有解析)

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A. B. C. D.2、根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有80%地区会降雨C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大3、下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖.B.为了解深圳中学生的心理健康情况,应该采用普查的方式. C.事件“小明今=0.01,乙年中考数学考95分”是可能事件. D.若甲组数据的方差S 2甲组数据的方差S 2=0.1,则乙组数据更稳定.乙4、在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个5、“车辆随机到达一个路口,遇到红灯”这个事件是( )A.不可能事件B.不确定事件C.确定事件D.必然事件6、下列事件中是不可能事件的是( )A.任意画一个四边形,它的内角和是360°B.若,则C.一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上7、下列事件中,必然事件是()A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽8、下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次9、如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。

苏科版八年级下册数学第八章-认识概率练习题(附解析)

苏科版八年级下册数学第八章-认识概率练习题(附解析)

1、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.C.D.12、甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )A.从甲袋摸到黑球的概率较大B.从乙袋摸到黑球的概率较大C.从甲、乙两袋摸到黑球的概率相等D.无法比较从甲、乙两袋摸到黑球的概率3、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为A.B.C.D.4、一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是A.B.C.D.5、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球.其中说法正确的是A.①②③B.①②C.①③D.②③6、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面是一张哭脸,若翻到哭脸,就不能得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻)。

某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.1/20 B.1/52 C.1/4 D.1/67、下列事件是必然事件的是()A.酒瓶会爆炸B.抛掷一枚硬币,正面朝上C.地球在自转D.今天的气温是100度8、一名运动员连续射靶10次,其中2次命中10环,2次命中9环,6次命中8环,针对某次射击,下列说法正确的是()A.射中10环的可能性最大B.命中9环的可能性最大C.命中8环的可能性最大D.以上可能性均等9、如图所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在白色区域的概率是A.B.C.D.10、袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11、口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为.12、如图所示是一飞镖游戏板,大圆的直径把组同心圆分成四等份,假设击中圆面上每个点都等可能的,则落在黑色区域的概率.13、如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14、甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏(填“公平”或“不公平”)15、P(太阳从东边升起)=_________。

苏科版数学八年级下册第8章认识概率单元测试题(含答案)

 苏科版数学八年级下册第8章认识概率单元测试题(含答案)

苏科版数学八年级下册第8章认识概率单元测试题(含答案)一、选择题1.下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上2.[不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球3.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是 ()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于124.在一个不透明的布袋中装有红、白两种颜色的小球,它们除颜色外没有其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是 ()A.4个B.5个C.不足4个D.6个或6个以上5.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件6.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.1200二、填空题(每小题4分,共24分)7.袋中有4个白球和2个红球,这些球除颜色不同外其他完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中取出3个球,这3个球都是球是可能发生的,都是球是不可能发生的.(填“白”或“红”)8.根据天气预报,明天降水的概率为20%,后天降水的概率为80%,假如你准备明天或后天去放风筝,你选择为佳.(填“明天”或“后天”)9.在一个不透明的口袋里装有2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.在一个不透明的口袋中,装有除颜色不同外无其他差别的白球和黄球.某同学进行了如下试验:从袋中随机摸出一个球记下它的颜色,放回摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数列表如下:摸球的次数100 200 500 1000摸出白球的次数21 39 102 199根据上表可以估计摸出白球的概率为.11.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.12.如图2,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.图2三、解答题(共52分)13.(9分)按下列要求各举一例:(1)一个发生可能性为0的不可能事件;(2)一个发生可能性为100%的必然事件;(3)一个发生可能性大于50%的随机事件.14.(9分)有一个转盘(如图3所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.思考各事件的可能性大小,然后回答下列问题:(1)可能性最大和最小的事件分别是哪个?(用序号表示)(2)将这些事件的序号按发生的可能性从小到大的顺序排列.图315.(9分)对某工厂生产的直径为38 mm的乒乓球进行产品质量检测,结果如下:抽取球数n50 100 500 1000 5000优等品的频数m45 92 455 890 4500优等品的频率(1)填写表中的空格;(2)估计该厂生产的乒乓球“优等品”的概率.16.(12分)在不透明的袋中装有只有颜色不同的8个小球,其中红球3个,黑球5个.(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑球的概率是,求m的值.17.(13分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图4所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率的估计值为.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?图4答案1. B2. B3. D4. D5. C6. C7.白红8.明天9.答案不唯一.摸1个球是白球10. 0.19911. 512. 113.解:答案不唯一.(1)一个发生可能性为0的不可能事件:在一个装着白球和黑球的袋中摸球,摸出红球.(2)一个发生可能性为100%的必然事件:抛掷一块石头,石头终将落地.(3)一个发生可能性大于50%的随机事件:在一个装着10个白球和1个黑球的袋中摸球,摸出白球. 14.解:(1)可能性最大的事件是④,可能性最小的事件是②.(2)由题意得②<③<①<④.15.解:(1)0.900.920.910.890.90(2)估计该厂生产的乒乓球“优等品”的概率是0.9.16.解:(1)从袋中取出3个红球,再从袋中随机摸出1个球,“摸出黑球”是必然事件;从袋中取出2个红球,再从袋中随机摸出1个球,“摸出黑球”是随机事件.故答案为3,2.(2)由题意得=,解得m=1.故m的值为1.17.解:(1)0.90.9(2)①4.5②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.。

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章 认识概率 含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、下列事件中,是必然事件的是()A.汽车走过一个红绿灯路口时,前方正好是绿灯B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.从一个只有白球的盒子里摸出一个球是白球2、下列说法正确的是()A.投掷三枚硬币正好三个都正面朝上是不可能事件B.打开电视正在播新闻联播是随机事件C.随机投掷一枚硬币正面朝上的概率是,是指将一枚硬币随机投掷10次,一定有5次正面朝上D.确定事件的发生概率大于0而小于13、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖4、某电视台每播放18分钟节目便插播2分钟广告,打开电视收看该台恰好遇到广告的概率是().A. B. C. D.5、下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大6、在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是()A. B. C. D.7、在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个8、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A. B. C. D.9、在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上10、下列说法中正确的是()A.同一平面内,过一点有且只有一条直线与已知直线平行B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 C.一组对边平行,一组对边相等的四边形是平行四边形 D.当时,关于的方程有实数根11、下列说法正确的是()A.扔100次硬币,都是国徽面向上,是不可能事件B.小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C.王明同学一直是级部第一名,他能考上重点高中是必然事件D.投掷一枚均匀的骰子,投出的点数是10,是一个确定事件12、如图有三条绳子穿过一木板,两人分别站在木板的左、右两边,各选该边的一条绳子。

苏科版八年级下册数学第8章 认识概率含答案

苏科版八年级下册数学第8章 认识概率含答案

苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰 C.任意画一个三角形,其内角和是360° D.随意翻到一本书的某页,这页的页码是奇数2、下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S2=0.4,则甲的成绩更稳定 D.数据6,6,7,7,8的中位数与众数均为73、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A.100B.90C.80D.704、世界杯足球赛正在巴西如火如荼地进行,赛前有人预测,巴西国家队夺冠的概率是90%.对他的说法理解正确的是()A.巴西队一定会夺冠B.巴西队一定不会夺冠C.巴西队夺冠的可能性很大D.巴西队夺冠的可能性很小5、如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A. B. C. D.6、下列说法正确的是( )A.为了解全国中学生视力的情况,应采用普查的方式B.某种彩票中奖的概率是,买1000张这种彩票一定会中奖C.从2000名学生中随机抽取200名学生进行调查,样本容量为200名学生D.从只装有白球和绿球的袋中任意摸出一个球,摸出黑球是确定事件7、为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A. B. C. D.8、下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S2=0.6,则甲的射击成绩较稳定 C.“明天降雨的概率为乙”,表示明天有半天都在降雨 D.“彩票中奖的概率为1%”,表示买100张彩票一定会中奖9、如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A. B. C. D.10、下列事件中,属于确定事件的个数是()1)打开电视,正在播广告;2)投掷一枚普通的骰子,掷得的点数小于10;3)射击运动员射击一次,命中10环;4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.311、做重复实验同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率0.48,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.24B.0.48C.0.50D.0.5212、下列事件中,为必然事件的是()A.抛掷10枚质地均匀的硬币,5枚正面朝上B.某种彩票的中奖概率为,那么买100张这种彩票会有10张中奖 C.抛掷一枚质地均匀的骰子,朝上一面的数字不大于6 D.打开电视机,正在播放戏曲节目13、下列判断正确的是()A.“打开电视机,正在播NBA篮球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上 C.一组数据2,3,4,5,5,6的众数和中位数都是5 D.甲组数据的方差S甲2=0.03,则乙组数据比甲组数据稳定2=0.24,乙组数据的方差S乙14、如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A. B. C. D.15、下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确个数是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、不透明袋子中装有个球,其中有个红球、个绿球和个蓝球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是红球的概率是________.17、在实数,π,3°,tan60°,2中,随机抽取一个数,抽得的数大于2的概率是________.18、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是________.19、从1~5这五个整数中随机抽取两个连续整数,恰好抽中数字4的概率是________.20、学校开展合唱社团活动,九年级(1)班有10名女生和若干名男生(包括小明)报名参加,现从中各选一名女生和一名男生参加合唱团,小明估算了一下,自己被选中的概率为,则共有________名男生报名.21、在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是________.22、一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是________.23、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有________个.24、)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是________ .25、写出一个你认为的必然事件________.三、解答题(共6题,共计25分)26、将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?27、图中第一排表示各盒中球的情况,请用第二排的语言来描述摸到黄球的可能性大小(选择最恰当的描述),并用线连起来.28、王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数 2 5 6 4 10 3(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.29、如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B 盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止,请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和大于4的概率.30、四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、C5、C6、D8、B9、C10、C11、D12、C13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。

苏科版八年级下册数学第8章《认识概率》单元练习(有答案)

苏科版八年级下册数学第8章《认识概率》单元练习(有答案)

八年级数学第8章《认识概率》单元练习一、选择题:1、下列事件中,是确定性事件的是( )A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中10环C. 明天会下雨D. 度量三角形的内角和,结果是360∘2、甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A. B. C. D.3、下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为74、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A. ①②③B. ①②C. ①③D. ②③5、某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为A.19B. 16C. 13D. 126、在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A. 随着抛掷次数的增加,正面向上的频率越来越小B. 当抛掷的次数n很大时,正面向上的次数一定为12C. 不同次数的试验,正面向上的频率可能会不相同D. 连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于127、下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件8、在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600 名学生进行调查C.随机抽取150 名老师进行调查D.在四个学校各随机抽取150 名学生进行调査9、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于1210、某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球11、已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的12、下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生二、填空题:13、小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.14、如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是 .15、在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为1,那么n的值是 .316、从甲地到乙地有A,B,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500 个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45 分钟”的可能性最大.17、从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是 .18、笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是 .19、从2018 高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6 个科目中,自主选择3 个科目参加等级考试.学生A 已选物理,还从思想政治、历史、地理3 个文科科目中选1 科,再从化学、生物2 个理科科目中选1 科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.20、如图,一个圆形转盘被分成了6个圆心角都为60∘的扇形,任意转动这个转盘一次,当转盘停止转动时,指针指向阴影区域的概率是 .21、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是 .22、正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为 .三、解答题:23、小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?和绿灯的概率均为1224、有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,求恰好能搭成一个三角形的概率是多大?25、甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.26、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.参考答案一、选择题:1、D2、 C3、C4、 B5、A6、C7、C 8、D 9、 D 10、 D 11、A 12、A二、填空题:13、114、2515、616、C17、1318、19、1620、1221、1322、三、解答题:.23、恰有一次红灯的概率是3824、3425、根据题意,有分析可得,共9种情况,两人一次性分出胜负的有6种;故其概率为2.3 26、(1)100;(3)600;(4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

认识概率
一、选择题(每题3分,共24分)
1。

“a是实数,I a I≥0”这一事件是 ( )
A。

必然事件 B。

不确定事件
C。

不可能事件 D.随机事件
2。

在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是 ( )
A.冠军属于中国选手
B.冠军属于外国选手
C。

冠军属于中国选手甲 D.冠军属于中国选手乙
3.下列事件是随机事件的是 ( )
A。

太阳绕着地球转
B.小明骑车经过某个十字路口时遇到红灯
C。

地球上海洋面积大于陆地面积
D。

李刚的生日是2月30日
4.某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域
时,顾客才能获得奖品,下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是 ( )
A B C D
5。

从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是
P2,则 ( )
A。

P1=1,P2=1 B.P1=0,P2=1
C。

P1=0,P2=1
4
D。

P1=P2=
1
4
6。

如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()
A.1
6
B。

1
3
C。

1
2
D.
2
3
7。

投掷一枚普通的正方体骰子,四个同学各自发表了以下见解:①出现“点数为奇数"的概率等于出现“点数为偶数”的概率;②只要连掷6次,一定会“出现1点”;③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会增大;④连续投掷3次,出现点数之和不可能等于19.其中正确见解的个数是 ( )
A.1个
B.2个
C.3个
D.4个
8.甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则
符合这一结果的实验可能是 ( )
A。

掷一枚正六面体的骰子,出现5点的概率
B.掷一枚硬币,出现正面朝上的概率
C.任意写出一个整数,能被2整除的概率
D。

一个袋子中装着只有颜色不同,其他都相同的两
个红球和一个黄球,从中任意取出一个是黄球的概

二、填空题(每空2分,共24分)
9. 某同学期中考试数学考了100分,则他期末考试数学考100分。

(选填“不可
能”“可能”或“必然")
10.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红
球的可能性选填“大于”“小于”或“等于”)是白球的可能性.
11.至少需要调查名同学,才能使“有两个同学的生日在同一天”这个事件为必
然事件。

12.下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数
相乘,积为正数;④异号两数相除,商为负数。

这4个事件中:
必然事件是 ,不可能事件是,随机事件是 .
13。

如图是一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是。

14.一个圆形转盘的半径为2 cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种
颜色.转盘转动10 000次,指针指向红色部分有2 500次.请问指针指向红色的概率的估计值是,转盘上黄色部分的面积大约是。

15.在英语句子“Wish you success"(祝你成功)中任选一个字母,这个字母为“s"的概率
是。

16.为了帮助残疾人,某地举办“即开型”福利彩票销售活动,规定每10万张为一组,其中
有10名一等奖,100名二等奖。

1 000名三等奖,5 000名爱心奖,小明买了10张彩票, 则他中奖的概率为。

17.某射击运动员在相同的条件下的射击成绩记录如下:
根据频率的稳定性,估计这名运动员射击一次“射中9环以上"的概率是 .
三、解答题(共52分)
18.(本题6分)一枚普通的正方体骰子,六个面上分别标有1、2、3、4、5、6。

在抛掷一
枚普通的正方体骰子的过程中,请用语言描述:(1)一个不可能事件;(2)。

一个必然事
件;
(3)一个随机事件.
19.(本题5分)下面第一排表示十张扑克牌的不同情况,任意摸一张。

请你用第二排的语
言来描述摸到红色扑克牌的可能性大小,并用线连起来。

20。

(本题8分)在三个不透明的布袋中分别放人一些除颜色不同外,其他都相同的玻璃球,并搅匀,具体情况如下表:
下列事件中,哪些是随机事件?哪些是必然事件?哪些是不可能事件?
(1)随机从第一个布袋中摸出一个玻璃球,该球是黄色、绿色或红色的;
(2)随机从第二个布袋中摸出两个玻璃球,两个球中至少有一个不是绿色的;
(3)随机从第三个布袋中摸出一个玻璃球,该球是红色的;
(4)随机从第一个布袋和第二个布袋中各摸出一个玻璃球,两个球的颜色一致.
21.(本题8分)下图是甲、乙两个可以自由旋转的转盘,转盘被等分成若干个扇形,并将其涂
成红、白两种颜色,转动转盘,分别计算指针指向红色区域的机会,若要使它们的机会相等,则应如何改变涂色方案?
22。

(本题8分)某公司的一批某品牌衬衣的质量抽检结果如下:
(1)求从这批衬衣中任抽1件是次品的概率。

(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?23。

(本题9分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:
(1)请你重新设计一张统计表,使全班同学在每个月出生人数情况一目了然;
(2)求出10月份出生的学生的频数和频率;
(3)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备
多少份礼物?
24.(本题8分)小强和小明两个同学设计一种同时抛出两枚1元硬币的游戏,游戏规则如下:
如果抛出的硬币落下后朝上的两个面都为1元,则小强得1分,其余情况小明得1分,谁先得到10分谁就赢得比赛。

你认为这个游戏规则公平吗?若不公平,怎样改正?
参考答案
一、1.A 2.A 3.B 4.A 5。

B 6.B 7。

B 8.D
二、9。

可能 10。

大于 11.367 12.④③①② 13.46、0% 14。

1
4
3πcm2。

15.
2
7
16.0、611 17.0、8
三、18.(1)抛掷一次,朝上的点数为7(答案不唯一) (2)抛掷一次,朝上的点数大于或
等于1 (3)抛制一次,朝上的点数为6。

19。

10张黑色O张红色—-不可能摸到红牌,8张黑色2张红色——不太可能摸到红牌,5张黑色5张红色-—可能摸到红牌,2张黑色8张红色——很可能摸到红牌,O张黑色10张红色——一定摸到红牌。

20.(4)是随机事件;(1)(2)是必然事件;(3)是不可能事件.
21.甲为1
2
,乙为
2
3
,答案不唯一,只要使红色区域和白色区域的面积之和相等即可。

22。

(1)任抽一件是次品的概率是3
50
(2)600件中可能有次品600×
3
50
=36(件),故
至少要准备36件以备退换。

23。

(1)按生日的月份重新分组可得统计表:
(2)读表可得:10月份出生的学生的频数是5,频率为5
40
=0、125
(3)2月份有4位同学过生日,因此应准备4份礼物。

24.这个游戏不公平.因为朝上两个面都为一元的概率是1
4
,而其余情况的概率是
3
4
,
所以小强得分的概率是1
4
,而小明得分的概率是
3
4。

可改为两面一样时,小强得1
分,两面不一样时,小明得1分(答案不唯一)。

相关文档
最新文档