印第26章二次函数同步练习(一)及答案
九年级数学下册 第26章 二次函数 26.1 二次函数同步练习 (新版)华东师大版-(新版)华东师大

二次函数一、选择题1.下列函数:①y =x 2+1;②y =1x 2+1;③y =x 2+1;④y =x +1;⑤y =(x +1)2-x 2;⑥y =ax 2+bx +c (a ,b ,c 是常数);⑦y =3(x -1)2+1;⑧y =x +1x ;⑨y =1x2+x .其中y 是x 的二次函数的有()A .1个B .2个C .3个D .4个2.已知二次函数y =1-3x +5x 2,则其二次项系数a ,一次项系数b ,常数项c 分别是()A .1,-3,5B .1,3,5C .5,3,1D .5,-3,13.在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有() ①设正方形的边长为x ,面积为y ,则y 与x 之间的函数关系;②x 个球队参加比赛,每两个队之间比赛一场,则比赛的场次y 与x 之间的函数关系; ③设正方体的棱长为x ,表面积为y ,则y 与x 之间的函数关系;④若一辆汽车以120 km /h 的速度匀速行驶,则汽车行驶的里程y(km )与行驶时间x(h )之间的函数关系.A .1个B .2个C .3个D .4个4.若函数y =(a -1)xa 2+1+x -3是关于x 的二次函数,则a 的值是()A .1B .-1C .±1D .05.若等边三角形的边长为x ,则它的面积y 与x 之间的函数关系式是()A .y =12x(x >0) B .y =32x 2(x >0) C .y =34x 2(x >0) D .y =33x 2(x >0) 6.共享单车为市民出行带来了方便.某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 之间的函数关系式是()A .y =a(1+x)2B .y =a(1-x)2C .y =(1-x)2+aD .y =x 2+a7.某种品牌服装的进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查发现,每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,则y 关于x 的函数关系式为()A .y =-12x 2+10x +1200(0≤x<60) B .y =-12x 2-10x +1250(0<x<60) C .y =-12x 2+10x +1250(0<x<60) D .y =-12x 2+10x +1250(x≤60)二、填空题8.下列属于二次函数的有________.(填序号)(1)S =πR 2;(2)C =2πR ;(3)V =a 3;(4)S =12ab ;(5)d =n (n -2)2.听课例1归纳总结9.将二次函数y =2(x +1)2-3化为一般形式为________________. 10.已知二次函数y =x 2+kx -8,当x =2时,y =-8,则k =________.11.(1)已知关于x 的函数y =(m 2-m)x 2+(m -1)x +m +1,若这个函数是二次函数,则m________; (2)已知函数y =(k +2)xk 2+k -4是关于x 的二次函数,则k =________.12.2017·某某如图K -1-1,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 关于x 的函数关系式为________.图K -1-113.某产品每件的成本为10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是________(不必写出自变量的取值X围).三、解答题14.根据下面的条件列出函数关系式(不要求写出自变量的取值X围),并判断列出的函数是不是二次函数.(1)如果两个数中,一个数比另一个数大5,那么这两个数的乘积p是较大的数m的函数;(2)一个半径为10 cm的圆上,挖掉4个大小相同的正方形孔,剩余部分的面积S(cm2)是方孔边长x(cm)的函数;(3)有一块长为60 m,宽为40 m的矩形绿地,计划在它的四周相同的宽度内种植草坪,中间种郁金香,那么郁金香的种植面积S(m2)是草坪宽度a(m)的函数.听课例1归纳总结15.若函数y=(a-1)x b+1+x2+1是关于x的二次函数,试讨论a,b的取值X围.16.如图K-1-2,在正方形ABCD中,AB=2,M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△MDF的面积为y,求y与x之间的函数关系式.(不必写出自变量的取值X围,提示:在BC上截取CH=CM,连接MH)图K-1-217.开心果园有100棵橙子树,每一棵树平均结600个橙子.2019年开心果园准备多种一些橙子树以提高产量,但是如果多种树,那么树与树之间的距离就会减小,每一棵树所接收的阳光也会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的函数关系式(不必写出自变量的取值X围).(4)根据(3)中的函数关系式,填写下表:观察表中的数字,你知道增种多少棵橙子树,可以使果园橙子的总产量最多吗?听课例2归纳总结1.[解析] B①和⑦符合题意.2.[解析] D∵函数y=1-3x+5x2是二次函数,∴a=5,b=-3,c=1.3.[解析] C ①依题意,得y =x 2,属于二次函数关系,故符合题意;②依题意,得y =12x(x -1)=12x 2-12x ,属于二次函数关系,故符合题意;③依题意,得y =6x 2,属于二次函数关系,故符合题意;④依题意,得y =120x ,属于一次函数关系,故不符合题意.综上所述,两个变量所满足的函数关系属于二次函数关系的有3个.4.[解析] B 依题意,得a 2+1=2且a -1≠0,解得a =-1.故选B . 5.[解析] C 由等边三角形的边长为x ,可求得它任意边上的高为32x ,所以它的面积y =12·x ·32x =34x 2(x>0). 6.[解析] A 设该公司第二、三两个月投放单车数量的月平均增长率为x ,依题意得第三个月投放单车a(1+x)2辆,则y =a(1+x)2,故选A .7.[解析] A 由题意,得y =(210-150-x)×⎝ ⎛⎭⎪⎫20+12x =-12x 2+10x +1200(0≤x<60).8.[答案] (1)(5) 9.[答案] y =2x 2+4x -1 10.[答案] -211.[答案] (1)≠0且m ≠1(2)2或-3[解析] (1)要使函数是二次函数,则二次项系数不能等于零. ∵m 2-m ≠0,∴m ≠0且m ≠1,即当m ≠0且m ≠1时,这个函数是二次函数.(2)由题意可得k 2+k -4=2且 k +2≠0,解得k =2或k =-3.12.[答案] y =2x 2-4x +4(0<x<2) [解析] 如图所示,∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2, ∴∠1+∠2=90°. ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF , ∴∠1+∠3=90°,∴∠2=∠3, ∴△AHE ≌△BEF ,∴AE =BF =x ,AH =BE =2-x. 在Rt △AHE 中,由勾股定理,得EH 2=AE 2+AH 2=x 2+(2-x)2=2x 2-4x +4,即y =2x 2-4x +4(0<x <2). 故答案为y =2x 2-4x +4(0<x<2). 13.[答案] w =-10x 2+500x -4000[解析] 由表中数据易得y 与x 之间的函数关系式为y =250-10(x -15)=-10x +400,故日销售利润w(元)与销售单价x(元/件)之间的函数关系式为w =(x -10)y =(x -10)(-10x +400)=-10x 2+500x -4000.14.解:(1)这两个数的乘积p 与较大的数m 之间的函数关系式为p =m(m -5)=m 2-5m ,是二次函数. (2)剩余部分的面积S(m 2)与方孔边长x(cm )之间的函数关系式为S =100π-4x 2,是二次函数. (3)郁金香的种植面积S(m 2)与草坪宽度a(m )之间的函数关系式为S =(60-2a)(40-2a)=4a 2-200a +2400,是二次函数.15.解:①由b +1=2,解得b =1, 由a -1+1≠0,解得a≠0.∴当a≠0,b =1时,函数是关于x 的二次函数. ②由b +1=1或b +1=0,得b =0或b =-1,∴当b =0或b =-1,a 取全体实数时,函数是关于x 的二次函数. ③当a =1,b 为全体实数时,y =x 2+1是二次函数. 16.解:∵四边形ABCD 是正方形, ∴CD =BC ,∠C =∠CDA =90°=∠ADE. ∵DF 平分∠ADE , ∴∠ADF =12∠ADE =45°,∴∠MDF =90°+45°=135°.如图,在BC 上截取CH =CM ,连接MH ,则△MCH 是等腰直角三角形,BH =MD ,∴∠CHM =∠CMH =45°, ∴∠BHM =135°,∴∠1+∠BMH =45°,∠BHM =∠MDF. ∵MF ⊥BM ,∴∠FMB =90°, ∴∠2+∠BMH =45°,∴∠1=∠2. 在△BHM 与△MDF 中,∵∠1=∠2,BH =MD ,∠BHM =∠MDF , ∴△BHM ≌△MDF ,∴BH =MD =2-x ,S △MDF =S △BHM ,∴y 与x 之间的函数关系式为y =12x(2-x)=-12x 2+x.17.解:(1)变量有果园里面的橙子树的棵数和果园的总产量.(2)假设果园增种x 棵橙子树,那么果园共有(100+x)棵橙子树,这时平均每棵树结(600-5x)个橙子.(3)果园橙子的总产量y =(100+x)(600-5x)=-5x 2+100x +60000. (4)填表如下:由上表可知,当x 取10时,y 取得最大值,即增种10棵橙子树时,可以使果园橙子的总产量最多. [素养提升][答案] y =⎩⎪⎨⎪⎧-12x 2+8(0≤x≤4),-12x 2+8x -24(4<x≤8)[解析] 在点P ,Q 的运动过程中,当0≤x≤4时,y =S △ABD -S △APQ =12×4×4-12x 2=-12x 2+8;当4<x≤8时,y =S △CBD -S △CPQ =12×4×4-12(8-x)2=-12x 2+8x -24.。
第26章《二次函数》单元测试(1)

第26章《二次函数》单元测试一、选择题(每题3分,共30分)1.下列函数中属于二次函数的是( )(A )y =12x (B )y =x 2+1x+1 (C )y =2x 2-1 (D )y =x 2+3 2.下列抛物线中与y =-122+3x -5的形状、开口方向都相同,只有位置不同的是( ) (A )y =x 2+3x -5 (B )y =-12x 2+2x (C )y =12x 2+3x -5 (D )y =12x 2 3.抛物线y =(x -1)2+5的对称轴是( )(A )直线x =1 (B )直线x =5 (C )直线x =-1 (D )直线x =-54.抛物线y =2x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A )y =2(x -1)2-2 (B )y =2(x +1)2-2 (C )y =2(x +1)2+2 (D )y =2(x -1)2+25.下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )6.抛物线y =-5x 2-4x +7与y 轴的交点坐标为( )(A )(7,0) (B )(-7,0) (C )(0,7) (D )(0,-7)7.如图,二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )(A )a >0,b >0,c >0 (B )a <0,b <0,c >0(C )a >O ,b <O ,c <0 (D )a <0,b >0,c >08.二次函数y =2x 2+x -1的图象与x 轴的交点的个数是( )(A )0 (B )1 (C )2 (D )39.抛物线y =-2x 2-x +1的顶点在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限10.一台机器原价为60万元,如果每年的折旧率为x ,两年后这台机器的价位为y 万元,则y 与x 之间的函数表达式为( )(A )y =60(1-x )2 (B )y =60(1-x ) (C )y =60-x 2 (D )y =60(1+ x )2二、填空题(每题3分,共30分)1.若y =(a -1)231a x 是关于x 的二次函数,则a = .2.抛物线 y =-2(x +1)2+3的顶点坐标是 .3.对于函数y =x 2-3x ,当x =-1时,y = ; 当y =-2时,x = .4.如果一条抛物线的形状与y =-2x 2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是 .(第7题)5.将抛物线y=13x2先向左平移1个单位,再向上平移2个单位,得到y=.6.抛物线y=x2+2x+3与y轴的交点坐标为.7.抛物线y=(m-2)x2+2x+(m2-4) 的图象经过原点,则m=.8.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______.9.直线y=2x+2与抛物线y=x2+3x的交点坐标为________.10.用配方法把y=-x2+4x+5化为y=a(x-h)2+k的形式为y=,其开口方向,对称轴为,顶点坐标为.三、解答题(共60分)1.已知抛物线经过点(0,-3),且顶点坐标为(1,-4),求抛物线的解析式.2.已知抛物线y=12x2+x-52(1)求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.3.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?4.如图,已知直线AB经过x轴上的点A(2,0),且与抛物线相交于B、C两点,已知B 点坐标为(1,1)。
华东师大版九年级数学下册第26章:二次函数(26.2.2~26.2.3) 同步测试题(含答案)

华东师大版九年级数学下册第26章二次函数(26.2.2~26.2.3)同步测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =-x 2+2x +4的最大值为(C)A.3B.4C.5D.62.抛物线y =x 2+4x +3的对称轴是(C)A.直线x =1B.直线x =-1C.直线x =-2D.直线x =23.对于二次函数y =-13x 2+2,当x 为x 1和x 2时,对应的函数值分别为y 1和y 2.若x 1>x 2>0,则y 1和y 2的大小关系是(B)A.y 1>y 2B.y 1<y 2C.y 1=y 2D.无法比较4.二次函数y =2x 2+3的图象经过(A)A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在(A)A.第一象限B.第二象限C.第三象限D.第四象限6.如果抛物线y =ax 2+2x +c 全部在x 轴的上方,那么下列判断中正确的是(C)A.a >0,对称轴在y 轴右侧B.a <0,对称轴在y 轴左侧C.a>0,对称轴在y轴左侧D.a<0,对称轴在y轴右侧7.已知抛物线y=ax2+bx和直线y=ax+b在同一平面直角坐标系内的图象如图,其中正确的是(D)A B C D8.如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.其中正确的是(D)A.①③B.②③C.②④D.③④二、填空题(每小题4分,共20分)9.把二次函数y=x2-12x化为形如y=a(x-h)2+k的形式:y=(x-6)2-36.10.若一条抛物线的顶点是(-2,3),并且经过点(0,-1),则它的表达式为y=-(x+2)2+3.11.如图是二次函数y=ax2+bx+c的图象,已知点(2,y1),(3,y2)是函数图象上的两个点,则y1,y2的大小关系是y1>y2.12.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B,C,则线段BC的长为1.13.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算:减少40棵黄瓜秧收获最多,最多收获360千克.三、解答题(共48分)14.(10分)如图,直线y=-x+c与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c经过点A,B,C.求点A的坐标和抛物线的表达式.解:把B(3,0)代入y=-x+c,得-3+c=0,解得c=3,∴直线表达式为y=-x+3.当x=0时,y=-x+3=3,则C(0,3).把B(3,0),C(0,3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧9+3b +c =0,c =3.解得⎩⎪⎨⎪⎧b =-4,c =3. ∴抛物线表达式为y =x 2-4x +3.当y =0时,x 2-4x +3=0,解得x 1=1,x 2=3,∴A(1,0).15.(12分)如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB =x m ,矩形的面积为y m 2,求矩形面积的最大值.解:由题意可得,DC∥AF,∴△EDC∽△EAF.∴ED EA =DC AF, 即30-AD 30=x 40.解得AD =120-3x 4. ∴y=AD·AB=120-3x 4·x =-34x 2+30x=-34(x -20)2+300. ∵a=-34<0,∴当x =20时,y 最大=300. 答:矩形面积的最大值为300 m 2.16.(12分)设函数y =(x -1)[(k -1)x +(k -3)](k 是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一平面直角坐标系中画出当k 取0时的函数的图象;(2)根据图象,写出一条你发现的结论;(3)将函数y 2的图象向左平移4个单位长度,再向下平移2个单位长度,得到函数y 3的图象,求函数y 3的最小值.解:(1)当k =0时,y =-(x -1)(x +3),所画函数图象如图所示.(2)答案不唯一,如:①图象都经过点(1,0)和(-1,4);②图象与x 轴的交点都包含(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称.(3)∵平移后的函数y 3的表达式为y 3=(x +3)2-2,∴当x =-3时,函数y 3的最小值是-2.17.(14分)如图,已知抛物线y =-x 2+mx +3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.解:(1)把点B(3,0)代入抛物线y =-x 2+mx +3,得0=-32+3m +3,解得m =2.∴y=-x 2+2x +3=-(x -1)2+4.∴顶点坐标为(1,4).(2)连结BC 交抛物线对称轴l 于点P ,连结AP ,则此时PA +PC 的值最小.设直线BC 的表达式为y =kx +b ,∵点C(0,3),点B(3,0),∴⎩⎪⎨⎪⎧0=3k +b ,3=b ,解得⎩⎪⎨⎪⎧k =-1,b =3. ∴直线BC 的表达式为y =-x +3.则当x =1时,y =-1+3=2.∴当PA+PC的值最小时,点P的坐标为(1,2).。
新人教版九年级数学下册 26.1.1 二次函数同步练习(含答案)

26.1.1 二次函数
1. 下列五个函数关系式:①25y ax x =-+,②y =-x 2+1,③y =32
+2x ,④2325y x x =--,⑤2256
y x x =-+.其中是二次函数的有( ) A .1个 B .2个 C .3个 D .4个 2. 下列结论正确的是( )
A .关于x 的二次函数y =a (x +2)2中,自变量的取值范围是x ≠-2
B .二次函数自变量的取值范围是所有实数
C .在函数y =-x 22
中,自变量的取值范围是x ≠0 D .二次函数自变量的取值范围是非零实数
3. 如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB =3,设直线x =t 截此三角形所得的阴影部
分的面积为S ,则S 与t 之间的函数关系式为( )
A .S=t
B .212S t =
C .S=t 2
D .2112
S t =- 4. 当m =_________时,2(2)m m y m x +=+是关于x 的二次函数.
5. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18
元,降价后的价格为y 元,则y 与x 之间的函数关系式为 .
参考答案
1.B
2.B
3.B
4.1
5.y=18(1-x)2。
二次函数的图象和性质部分练习题(附参考答案)

新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题3分,共30分)1. 抛物线()312--=x y 的对称轴是 【 】(A )y 轴 (B )直线1-=x (C )直线1=x (D )直线3-=x2. 将抛物线2x y =向右平移1个单位,所得的抛物线的关系式是 【 】 (A )12-=x y (B )12+=x y (C )()21-=x y (D )()21+=x y3. 抛物线332-=x y 向右平移3个单位,得到新抛物线的表达式为 【 】 (A )()3332--=x y (B )23x y =(C )()3332-+=x y (D )632-=x y4. 对于函数()22m x y --=的图象,下列说法不正确的是 【 】(A )开口向下 (B )对称轴是直线m x = (C )最大值为0 (D )与y 轴不相交5. 对于二次函数()212+--=x y 的图象与性质,下列说法正确的是 【 】(A )对称轴是直线1=x ,最小值是2 (B )对称轴是直线1=x ,最大值是2 (C )对称轴是直线1-=x ,最小值是2 (D )对称轴是直线1-=x ,最大值是26. 有一抛物线和抛物线22x y -=的形状、开口方向完全相同,顶点坐标是()3,1-,则该抛物线的关系式为 【 】 (A )()3122+--=x y (B )()3122++-=x y(C )()3122++-=x y (D )()3122+--=x y7. 将函数2x y =的图象用下列方法平移后,所得的图象不经过点A (1 , 4)的方法是 【 】 (A )向左平移1个单位 (B )向右平移3个单位(C )向上平移3个单位 (D )向下平移1个单位 8. 若点()1,4y A -,()2,1y B -,()3,1y C 在抛物线()12212-+-=x y 上,则321,,y y y 的大小关系是 【 】 (A )231y y y << (B )312y y y << (C )213y y y << (D )123y y y << 9. 对于抛物线()31212++-=x y ,下列结论:①抛物线的开口向下;②对称轴为直线1=x ;③顶点坐标为()3,1-;④当1>x 时,y 随x 的增大而减小;⑤函数的最大值为 3.其中正确结论的个数为【 】(A )2 (B )3 (C )4 (D )510. 将抛物线152+-=x y 向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为 【 】 (A )()1152-+-=x y (B )()1152---=x y(C )()3152++-=x y (D )()3152+--=x y二、填空题(每小题3分,共30分)11. 抛物线()223+-=x y 的对称轴为直线_________.12. 抛物线()3122-+=x y 的顶点坐标为_________.13. 若抛物线()512-+--=m x y 的最大值为3,则=m _________.14. 若二次函数22x y =的图象向左平移2个单位后,得到函数()22h x y +=的图象,则=h _________.15. 将抛物线231x y =向右平移3个单位,再向下平移2个单位,所得的抛物线的关系式为________________.16. 已知函数()21--=x y 图象上两点()1,2y A ,()2,y a B ,其中2>a ,则1y 与2y 的大小关系是_________.17. 已知二次函数图象的顶点坐标为(2 , 0),直线1+=x y 与二次函数图象交于A 、B 两点,其中点A 在y 轴上,则二次函数的解析式为____________.18. 若抛物线()()12++-=m m x y 的顶点在第一象限,则m 的取值范围是____________.19. 已知抛物线()2132+-=x y ,当x _________时,y 随x 的增大而减小.20. 点()1,2y A ,()2,3y B 是二次函数122+-=x x y 的图象上两点,则1y 与2y 的大小关系是_________.三、解答题(共60分)21.(8分)已知二次函数()23-=x y .(1)写出它的图象的开口方向、对称轴、顶点坐标和最值;(2)若点()11,y x A ,()22,y x B 位于对称轴右侧的抛物线上,且21x x <,试比较1y 与2y 的大小; (3)抛物线()27+=x y 可以由抛物线()23-=x y 平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.22.(8分)对于函数()2231+=x y ,请回答下列问题: (1)把抛物线231x y =怎样移动得到抛物线()2231+=x y ?(2)写出图象的对称轴和顶点坐标; (3)试讨论函数()2231+=x y 的增减性及最值问题.23.(8分)用配方法把函数10632+--=x x y 化为()k h x a y +-=2的形式,并写出抛物线的开口方向、对称轴、顶点坐标和最值.24.(8分)已知二次函数图象的对称轴为直线2=x ,函数的最小值为3,且图象经过点()5,1-,求这个二次函数的表达式.25.(8分)如图,已知二次函数的图象顶点坐标为(2 , 0),直线1+=x y 与二次函数的图象交于A 、B 两点,其中点A 在y 轴上.(1)二次函数的关系式为________________;(2)证明点()12,--m m 不在(1)中所求的二次函数的图象上.yxA BO26.(10分)如图所示,抛物线()412+-=x a y 与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作x CD //轴,交抛物线的对称轴于点D ,连结BD ,已知点A 的坐标为()0,1-.(1)求该抛物线的解析式; (2)求梯形COBD 的面积.yxBDCA O27.(10分)如图所示,二次函数()212++=x a y 的图象与x 轴交于A 、B 两点,已知()0,3-A ,根据图象回答下列问题:(1)求a 的值和点B 的坐标;(2)设抛物线的顶点是P ,试求△P AB 的面积;(3)在抛物线上是否存在点M ,使得△MAB 的面积是△P AB 的面积的2倍?若存在,求出点M 的坐标.新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 2-=x 12. ()3,1-- 13. 8 14. 2 15. ()23312--=x y 16. 21y y > 17. ()2241-=x y 18. 0>m 19. 1< 20. 21y y < 三、解答题(共60分)21.(8分)已知二次函数()23-=x y .(1)写出它的图象的开口方向、对称轴、顶点坐标和最值;(2)若点()11,y x A ,()22,y x B 位于对称轴右侧的抛物线上,且21x x <,试比较1y 与2y 的大小;(3)抛物线()27+=x y 可以由抛物线()23-=x y 平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.解:(1)开口向上,对称轴为直线3=x ,顶点为(3 , 0),最小值为0;……………………………………………4分 (2)在对称轴直线3=x 的右侧,y 随x 的增大而增大∵213x x << ∴21y y <;……………………………………………6分 (3)可以.将抛物线()23-=x y 向左平移10个单位即可得到抛物线()27+=x y .……………………………………………8分 22.(8分)对于函数()2231+=x y ,请回答下列问题:(1)把抛物线231x y =怎样移动得到抛物线()2231+=x y ? (2)写出图象的对称轴和顶点坐标; (3)试讨论函数()2231+=x y 的增减性及最值问题.解:(1)把抛物线231x y =向左平移2个单位即可得到抛物线()2231+=x y ; ……………………………………………2分 (2)图象的对称轴为直线2-=x ,得到坐标为()0,2-;……………………………………………4分 (3)当2-<x 时,y 随x 的增大而减小; 当2->x 时,y 随x 的增大而增大;……………………………………………6分当2-=x 时,函数()2231+=x y 取得最小值,最小值为0.……………………………………………8分 23.(8分)用配方法把函数10632+--=x x y 化为()k h x a y +-=2的形式,并写出抛物线的开口方向、对称轴、顶点坐标和最值. 解:()10232++-=x x y()()131310112322++-=+-++-=x y x x y……………………………………………4分 抛物线的开口向下,对称轴为直线1-=x ,顶点坐标为()13,1-,函数的最大值为13=y . ……………………………………………8分 (每个结果1分)24.(8分)已知二次函数图象的对称轴为直线2=x ,函数的最小值为3,且图象经过点()5,1-,求这个二次函数的表达式.解:由题意可设该二次函数的表达式为()k h x a y +-=2∵其对称轴为直线2=x ,函数的最小值为3 ∴3,2==k h ∴()322+-=x a y……………………………………………5分 ∵其图象经过点()5,1- ∴()53212=+--⨯a解之得:92=a ……………………………………………8分 ∴这个二次函数的表达式为()32922+-=x y . 25.(8分)如图,已知二次函数的图象顶点坐标为(2 , 0),直线1+=x y 与二次函数的图象交于A 、B 两点,其中点A 在y 轴上. (1)二次函数的关系式为________________;(2)证明点()12,--m m 不在(1)中所求的二次函数的图象上.yxA BO解:(1)()2241-=x y ; ……………………………………………3分(2)证明:当m x -=时()1214124122-≠++=--=m m m m y ……………………………………………7分 ∴点()12,--m m 不在(1)中所求的二次函数的图象上.……………………………………………8分 26.(10分)如图所示,抛物线()412+-=x a y 与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作x CD //轴,交抛物线的对称轴于点D ,连结BD ,已知点A 的坐标为()0,1-. (1)求该抛物线的解析式; (2)求梯形COBD 的面积.yxBDCA O解:(1)把()0,1-代入()412+-=x a y 得:()04112=+--⨯a解之得:1-=a……………………………………………3分 ∴该抛物线的解析式为()412+--=x y ;……………………………………………4分 (2)∵该抛物线的对称轴为直线()0,1,1-=A x∴()0,3B……………………………………………5分 ∴3=OB当0=x 时,()341012=+-⨯-=y∴C (0 , 3) ∴3=OC……………………………………………6分 ∵x CD //轴 ∴D (1 , 3) ∴1=CD……………………………………………7分∴()OB CD OC S COBD +⋅=21图象 ()631321=+⨯⨯= …………………………………………10分 27.(10分)如图所示,二次函数()212++=x a y 的图象与x 轴交于A 、B 两点,已知()0,3-A ,根据图象回答下列问题:(1)求a 的值和点B 的坐标;(2)设抛物线的顶点是P ,试求△P AB 的面积;(3)在抛物线上是否存在点M ,使得△MAB 的面积是△P AB 的面积的2倍?若存在,求出点M 的坐标.解:(1)把()0,3-A 代入()212++=x a y 得:()02132=++-⨯a解之得:21-=a ……………………………………………2分 ∴()21212++-=x y ∵抛物线的对称轴为直线1-=x ,()0,3-A 、B 两点关于对称轴对称 ∴()0,1B ;……………………………………………3分 (2)∵()21212++-=x y ∴抛物线的顶点坐标为P ()2,1-……………………………………………4分 ∵()0,3-A ,()0,1B ∴()431=--=AB ∴42421=⨯⨯=∆PABS ; ……………………………………………6分 (3)存在.理由如下:设点M 的纵坐标为m ,则有842221=⨯==⋅=∆∆PAB MAB S m AB S ∴8421=⨯⨯m ,4=m ∴4±=m当4=m 时,()421212=++-=x y ,无解; 当4-=m 时,()421212-=++-=x y解之得:321,32121--=+-=x x ∴点M 的坐标为()4,321-+-或()4,321---.…………………………………………10分 关于求抛物线的解析式:在求抛物线的解析式时,要先根据题目的意思或结合图象设出抛物线的解析式,然后再求字母的值.设抛物线的解析式时,有以下几种情况: (1)若抛物线的顶点是坐标原点,则抛物线的解析式应设为2ax y =;(2)若抛物线的顶点在y 轴上(不是原点),则抛物线的解析式应设为k ax y +=2; (3)若抛物线的顶点在x 轴上(不是原点),则抛物线的解析式应设为()2h x a y -=;(4)若抛物线的顶点在象限内,则抛物线的解析式应设为()k h x a y +-=2.如果知道的是抛物线的对称轴和最值,则抛物线的解析式应设为()2h x a y -=或()k h x a y +-=2,视具体情况而定.。
人教版九年级数学下册第二十六单元二次函数的应用同步练习1带答案

人教版九年级数学下册第二十六单元《二次函数的应用》同步练习1带答案一、抛物线y=(k+1)x 2+k 2-9开口向下,且通过原点,那么k =—————————二、已知抛物线y=x 2+(n-3)x+n+1通过坐标原点O ,求这条抛物线的极点P 的坐标3、、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )(A )1x =- (B )1x = (C )2x =(D )3x =4、极点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.五、已知二次函数y =ax 2+bx +c ,当x =1时,y 有最大值为5,且它的图象通过点(2,3),求那个函数的关系式.6、某水果批发商场经销一种水果,若是每千克盈利10元,天天可售出500千克.经市场调查发觉, 在进货价不变的情形下,假设每千克涨价1元,日销售量将减少20千克.(10分)(1)当每千克涨价为多少元时,天天的盈利最多?最多是多少?(2)假设商场只要求保证天天的盈利为6000元,同时又可使顾客取得实惠,每千克应涨价为多少元?7、已知函数12-+=bx x y 的图象通过点(3,2).求那个函数的解析式;并指出图象的极点坐标;当0>x 时,求使2≥y 的x 的取值范围.八、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。
九、直角坐标平面上将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,那么其极点为( )A.(0,0) B.(1,-2) C.(0,-1) D.(-2,1)10、已知二次函数232)1(2-++-=m mx x m y ,那么当=m 时,其最大值为0. 1一、抛物线2ax y =与直线b ax y +=交于点)3,3(-A ,求这两个函数的解析式。
新课程课堂同步练习册(九年级数学下册人教版)答案

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。
(完整版)人教九年级数学下册同步练习题及答案

2
-
3,如果
y 随 x 的增大而减小,那么
x 的取值范围是 ______.
2.抛物线 y= (x-1) 2+2 的对称轴是直线 ____顶点坐标为 ____。
3 .抛物线 y 3(x 1)2 2 可由抛物线 y 3 x 2 先向 ____ 平移 ______ 单位,再向 _____ 平移
_______ 单位得到。
1
1.形如 _______ ________ 的函数叫做二次函数 .
2.扇形周长为 10,半径为 x,面积为 y,则 y 与 x 的函数关系式为 _______________ 。
3.下列函数中 , 不是二次函数的是 ( )
A.y=1- 2 x 2
B.y=2(x-1) 2+4 C.y= 1 (x-1)(x+4) D.y=(x-2)
式 :a____0,b____0,c_____0;a+b+c_____0,a-b+c_____0.
2.函数 y=(x+1)(x-2) 的图像的对称轴是 _____, 顶点为 ____.
2
3.若二次函数 y=x - 2x+c 图象的顶点在 x 轴上,则 c 等于 ( )
A. - 1 B.1 4.已知一次函数
3 . 如 果 二 次 函 数 y x2 2 x c 的 图 象 过 点 ( 1 , 2 ), 则 这 个 二 次 函 数 的 解 析 式 为
_____________ 。
4.抛物线 y=x2+1 的图象大致是(
)
y
y
y
y
O
-1
x
O
-1
x
1
O
x
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26章二次函数 同步学习检测(一)班级 _______________座号 姓名 ___ 得分_____一、填空题:(每小题2分,共80分)1、(2009年北京市)若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m+k= __________ .2、(2009年安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为3、(2009 黑龙江大兴安岭)当=x 时,二次函数222-+=x x y 有最小值. 4、(2009年郴州市)抛物线23(1)5y x =--+的顶点坐标为_______________________. 5、(2009年上海市)将抛物线22y x =-向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 ______________ .6、(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 ____ 个.7、(2009湖北省荆门市)函数(2)(3)y x x =--取得最大值时,x =____________. 8、(2009年齐齐哈尔市)当x =_____________时,二次函数222y x x =+-有最小值. 9、(2009年贵州省黔东南州)二次函数322--=x x y 的图象关于原点O (0, 0)对称的图象的解析式是_________________。
10、已知二次函数2122y x x =-+, 当x______________时,y 随x 的增大而增大. 11、(2009襄樊市)抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为 .12、(2009年娄底)如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 .13、(2009年甘肃庆阳)如图为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)14、(2009年甘肃定西)抛物线2y x bx c =-++的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)15、(2009年鄂州)把抛物线y =ax+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x -3x+5,则a+b+c=__________ 16、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 17、(2009年黄石市)若抛物线23y ax bx =++与232y x x =-++的两交点关于原点对称,则a b 、分别为 .18.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增 加利润,尽快减少库存,商场决定采取适当的降价措施。
经调查发现:如果每件衬衫降价1元,商场平均每天可多售出2件。
则商场降价后每天盈利y (元)与降价x (元)的函数关系式为 _________ 。
19、(2009年莆田)出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y 最大.20.(2009年湖州)已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)21.(2009年咸宁市)已知A 、B 是抛物线243y x x =-+上位置不同的两点,且关于抛物线的对称轴对称,则点A 、B 的坐标可能是_____________.(写出一对即可) 22、(2009年本溪)如图所示,抛物线2y ax bx c =++(0a ≠)与x 轴的两个交点分别为(10)A -,和(20)B ,,当0y <时,x 的取值范围是 . 23、(2009年兰州)二次函数223y x =的图象如图所示,点0A 位于坐标原点, 点1A ,2A ,3A ,…,2008A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2008B 在二次函数223y x =位于第一象限的图象上, 若△011A B A ,△122A B A ,△233A B A ,…,△200720082008A B A都为等边三角形,则△200720082008A B A 的边长=24. (2009年金华市)如图,在第一象限内作射线OC ,与x 轴的夹角为30o ,在射线OC 上取一 点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2 (x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是.25. 已知抛物线y =x 2-3x -4,则它与x 轴的交点坐标是 .26.(10年广州市中考七模)、抛物线x x y 522-=+3与坐标轴的交点共有 个。
27.抛物线3422+--=x x y 的顶点坐标是 ; 抛物线1822-+-=x x y 的顶点坐标为 。
28. 用长度一定的绳子围成一个矩形,如果矩形的一边长x (m )与面积y (m 2)满足函数 关系y =-(x -12)2+144(0<x <24),那么该矩形面积的最大值为 _____ m 2。
29.(2010年山东宁阳一模)根据c bx ax y ++=2的图象,思考下面五个结论①o c <;②0>abc ;③0>+-c b a ;④032=-b a ;⑤04>-b c 正确的结论有_____________.230.(2009年淄博市) 请写出符合以下三个条件的一个函数的解析式 ___ . ①过点(31),;②当0x >时,y 随x 的增大而减小;③当自变量的值为2时,函数值小于2. 31.(2010福建模拟)抛物线322-+=x x y 的对称轴是直线 ___ .32. (江西南昌一模)二次函数1422--=x x y 的最小值是 _______33.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为________________. 34、二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴.给出四个结论:① 0a >;② 0b >;③ 0c >;④ 0a b c ++=.其中正确结论的序号是 ;35.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 。
36.将抛物线y=-3x 2向上平移一个单位后,得到的抛物线解析式是 。
37.用铝合金型材做一个形状如图(1)所示的矩形窗框,设窗框的一边为x m ,窗户的透光面积为y m 2,y 与x 的函数图象如图(2)所示。
观察图象,当x = 时,窗户透光面积最大。
38.如图,二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴交于负半轴.给出四个结论:①abc <0;②2a +b >0;③a +c =1;④a >1. 其中正确结论的序号是_______________(少选、错选均不得分).39.如图,二次函数y=ax2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴相交于负半轴。
给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0;⑤abc<0;⑥2a+b>0;⑦a+c=1;⑧a>1.其中正确结论的序号是 _____________________ 。
40.如图,△ABC 是直角三角形,∠A =90°, AB =8cm ,AC =6cm 点P 从点A 出发,沿AB方向以2cm/s 的速度向点B 运动;同时点Q 从点A 出发,沿AC 方向以1cm/s 的速度向点C 运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ 的最大面积是_____.二、解答题(共40分) 1.已知二次函数215222y x x =+-. (1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x 轴、y 轴交点坐标;2. (09浙江)如图抛物线254y ax x a =-+与x轴相交于点A、B,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标. (2)请你设计一种..平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.3.已知抛物线c bx x y ++=2-的部分图象如图所示.(1)求b 、c 的值; (2)求y 的最大值;(3)写出当0<y 时,x 的取值范围.4.(09贵州黔东南)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
⑴ 设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式。
⑵ 为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。
5.(09哈尔滨)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围) (2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数y =ax 2+bx +c (a≠0),当x =-a2b 时,y 最大(小)值=a 4b ac 42-)6.(2009年包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于 成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合 一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.参考答案1、-3;2、2y x x =+,21133y x =-+;3、-1;4、(15),;5、12-=x y ;6、4; 7、52;8、1- ;9、322+--=x x y ;10、<2 11、223y x x =-++;12、2π;13、①②④;14、答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等;15、11;16、252或12.5;17、3,23-;18、;19、3;20、> 21、(1,0),(3,0); 22、1x <-或2x >;23、2008; 24、(3,3) , (133,13) ,(23,2) , (233,23).;25、(-1,0),(4,0);26、3;27、(-1,5);28、 ;29、①②③⑤;30、如213152362y x y y x x =-+==-+,,; 31、1-=x ;32、()212+-=x y ;33、 ;34、①④;35、-3;36、 ; 37、y=-3x 2+1;38、 ;39、;40、 ; 二、解答题(共40分) 1.(1)(1)求出抛物线的顶点坐标、对称轴、最小值;解:∵215222y x x =+-=12(x+2)2-4.5∴ 顶点坐标(-2,-4.5),对称轴:直线x =-2;因为二次项系数大于0,所以函数有最小值-4.5. (2)求出抛物线与x 轴、y 轴交点坐标; 解:令y =0,则2152022x x +-=,解得x =-5,x =1. 所以抛物线与x 轴的交点坐标为(-5,0),(1,0).令x =0,则y =52-. 所以抛物线与y 轴的交点坐标为(0,52-) 2. 解:(1)把点(54)C ,代入抛物线254y ax ax a =-+得,252544a a a -+=, 解得1a =.∴ 该二次函数的解析式为254y x x =-+.22595424y x x x ⎛⎫=-+=-- ⎪⎝⎭∴ 顶点坐标为5924P ⎛⎫- ⎪⎝⎭,. (2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位, 得到的二次函数解析式为225917342424y x x ⎛⎫⎛⎫=-+-+=++ ⎪ ⎪⎝⎭⎝⎭,即22y x x =++3. 答案:(1)b=-2,c=3 (2) 4 (3) x <-3或x >14. (1)x y +=1001,y 2=x2.(2))21100()100(x x y -∙+= 即:y 11250)50(212+--=x 因为提价前包房费总收入为100×100=10000。