非线性方程
计算方法21-非线性方程

区间,如此反复,直到求出满足精度要求的近似根.
具体步骤如下:
10
令 (a, b) (a0 , b0 )
取a0 , b0 中点 x0
a0 b0 2
将其二分,
这时有三种情况: 若 f x0 0 , 则 x x0 ; 否则, x f a f x 0 , 则 a , x0 , 令 a1 a , b1 x0 ; 若 0
1 1 b2 a2 (b1 a1 ) 2 (b a ) , 2 2 ba bk ak k 2
ak bk 区间 ak , bk 的中点 xk 形成一个序列 x0 , x1 ,, xk ,, 2
显然有 lim x k x .
k
13
实际计算中,对于给定的根的允许误差 0 ,
5
求方程根的近似值,需要解决的问题:
⑴ 根的存在性. ⑵ 根的隔离. 要判断方程有没有根,有几个; 找出有根区间,使得在较小的区间内
方程只有一个根,以得到根的近似值.
⑶ 根的精确化. 利用合适的数值计算方法,逐步 把根精确化,直至满足精度要求.
6
二、逐步搜索法
假设f(x)在有根区间[a,b]单值连续,且f(a)<0.
一般步骤:
取合适的步长
y
ba h , n
f(x) 0 a x* b x
从x0=a出发,按步长逐步向右跨进行搜索,
若发现f(xk)与f(a)异号,则确定一个缩小的有根区间
[ xk 1 , xk ], 其宽度等于步长h.
特别地,若f(xk)=0,则xk就是所求的根.
7
例 对方程f (x)=x3-x-1=0 搜索有根区间.
12
求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法非线性方程是指未知数的高次幂或三角函数、指数函数等构成的方程。
非线性方程的求解是数值计算中的一个重要问题,常用的方法有迭代法、试位法、牛顿法等。
下面介绍三种新的迭代法。
1. 牛顿法的改进牛顿法是一种求解非线性方程的常用方法,通过选择合适的初始值,可以得到方程的一个根。
在某些情况下,牛顿法的收敛速度较慢,甚至可能发散。
为了克服这个问题,有人提出了牛顿法的改进方法。
改进的思想是在每一步的迭代中引入一个修正因子,使得每一步的迭代都能够加速收敛。
这个修正因子可以选择为方程导数的逆矩阵,或者通过数值计算方法来估计。
通过引入修正因子,可以使得牛顿法的收敛速度更快,提高求解非线性方程的效率。
2. 弦截法弦截法是一种求解非线性方程的迭代法,它可以看作是牛顿法的一种变形。
在牛顿法中,通过选择切线与x轴的交点作为新的逼近解,而在弦截法中,通过选择切线与两个初始逼近解的连线的交点作为新的逼近解。
弦截法的迭代公式为:Xn+1 = Xn - f(Xn) * (Xn - Xn-1) / (f(Xn) - f(Xn-1))在每一步迭代中,选择两个初始逼近解Xn和Xn-1,代入上述迭代公式即可求得新的逼近解Xn+1。
通过不断迭代,可以逐渐接近方程的根。
3. 牛顿-拉夫逊法牛顿-拉夫逊法是一种变步长的牛顿法,它的主要思想是通过动态调整迭代步长的大小来提高求解非线性方程的效率。
在牛顿-拉夫逊法中,首先根据初始解得到牛顿法的逼近解,然后根据逼近解和方程的误差,动态调整迭代步长。
如果逼近解接近方程的根,将步长增加,以加快收敛速度;如果逼近解偏离方程的根,将步长减小,以避免迭代发散。
λ为步长调整因子,可以根据迭代过程中的收敛情况进行动态调整。
牛顿法的改进、弦截法和牛顿-拉夫逊法是三种求解非线性方程的新的迭代法。
这些方法通过引入修正因子、变化逼近解和动态调整步长等方法,可以提高求解非线性方程的效率和收敛速度。
求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法迭代法是一种通过反复递推计算得到逼近解的方法,对于非线性方程求解而言,迭代法通过不断更新变量的值,使得方程逐渐趋近于真实解。
下面将介绍三种新的迭代法:逐次缩小区间法、割线法和弦截法。
第一种迭代法是逐次缩小区间法。
逐次缩小区间法是一种通过不断递推缩小变量的取值范围来求解非线性方程的方法。
算法步骤如下:1. 选取一个初始区间[a, b],使得f(a)和f(b)异号,即f(a)*f(b)<0。
2. 将区间[a, b]均分,得到区间的中点c=(a+b)/2。
3. 比较f(a)*f(c)和f(b)*f(c),如果f(a)*f(c)<0,则说明解在区间[a, c]内;如果f(b)*f(c)<0,则说明解在区间[c, b]内。
4. 重复步骤2和步骤3,直到得到精度要求的解。
逐次缩小区间法的优点是简单易懂,计算量较小;但缺点是需要事先给出一个初始区间,初始区间的选择对结果有影响,并且对于复杂的方程可能需要很多次均分才能逼近解。
第二种迭代法是割线法。
割线法是一种通过利用连续两个点的斜率来逼近解的方法。
算法步骤如下:1. 选取两个初始点x0和x1,计算出对应斜率f(x0)和f(x1)。
2. 利用斜率和已知点构造直线方程,得到直线和x轴的交点x2,并将x1更新为新的x0,x2更新为新的x1。
3. 重复步骤2,直到满足精度要求。
割线法的优点是不需要计算导数,因此适用于不易求导的情况;但缺点是可能出现迭代过程不收敛的情况,需要事先给出两个初始点,并且计算量相对较大。
弦截法与割线法相似,也是通过利用连续两个点的连线来逼近解的方法,但不同之处在于弦截法的直线是通过前两个点的连线来构造的。
弦截法的优缺点与割线法类似,不需要计算导数,但迭代过程可能不收敛。
三种新的迭代法均有各自的特点和适用范围,适合于不同类型的非线性方程。
在实际应用中,需要根据具体的方程和精度要求选择合适的迭代方法。
数学的非线性方程研究

数学的非线性方程研究在数学领域,非线性方程是一类相对复杂的方程,与线性方程不同,非线性方程包含了一个或多个非线性项。
非线性方程的研究对于理解自然界中的各种现象和解决实际问题具有重要意义。
本文将讨论非线性方程的研究内容和方法。
一、非线性方程的基本概念非线性方程是指方程中某些未知量的函数与其导数以及积分的各项不全为一次、且相互不只线性关系的方程。
非线性方程的一般形式可以表示为:F(x) = 0其中F(x)是一个非线性函数,x是未知量。
非线性方程不具有线性方程那样简单的解析解,需要借助数值计算方法或者近似解法进行求解。
二、求解非线性方程的数值方法求解非线性方程的数值方法主要包括迭代法和牛顿法。
1. 迭代法迭代法是一种通过不断逼近的方法求解非线性方程的近似解。
具体步骤如下:(1)选择一个初始值x₀;(2)根据递推关系式xᵢ₊₁ = G(xᵢ),进行迭代计算;(3)当满足停止准则时停止迭代,否则返回(2)继续迭代。
迭代法的优点是简单、易于实施,但对于某些非线性方程可能会求得不收敛或收敛速度较慢的近似解。
2. 牛顿法牛顿法是一种基于切线逼近的迭代方法,其基本思想是通过构造连续函数的切线来逼近非线性方程的解。
具体步骤如下:(1)选择一个初始值x₀;(2)根据切线方程xᵢ₊₁ = xᵢ - f(xᵢ)/f'(xᵢ),进行迭代计算;(3)当满足停止准则时停止迭代,否则返回(2)继续迭代。
牛顿法的优点是收敛速度较快,但对于初始值的选取较为敏感,可能会导致迭代失败。
三、非线性方程的应用领域非线性方程的研究广泛应用于自然科学和工程技术领域,在以下几个方面有重要应用。
1. 力学非线性方程在力学中的应用十分广泛,如在物体的运动学和动力学分析中,使用非线性方程描述物体的运动规律和力学关系。
2. 经济学经济学中的经验模型和数理经济学模型常常涉及到非线性方程,通过研究非线性方程可以解决经济学中的各种实际问题。
3. 生物学生物学中的生命过程往往是非线性的,研究非线性方程可以揭示生物系统的动力学行为和稳定性。
非线性方程组的求解方法及其应用

非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。
与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。
本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。
1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。
该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。
牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。
具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。
值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。
因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。
2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。
信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。
具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。
在这里我们假设$B_k$为正定矩阵。
显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。
因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。
第十章非线性方程及非线性方程组解法

(
x
)
n
lim
n
x
n
若
{x
}
n
收敛,即
lim xn x*,则:
n
x* (x*) f (x*) 0
迭代过程的几何表示
x (x) :
y x 交点即真根。
y (x)
yx
y
Q1
Q2
P* P2
O x* x2
P1
x1
y (x)
P0
x0
x
例:求方程 f (x) x3 x 1 0 在x0 1.5附近的根x*. 解:(1) 将方程改写为 x 3 x 1
第十章 方程求根
求解非线性方程
f (x) 0 f 是非线性函数,
例:代数方程
a x a x a x a f (x) n
n1 L
0, n 1。
n
n1
1
0
例: 超越方程
f (x) ex sin x 0
§1. 非线性方程实根的对分法(二分法)
设 f (x) 在[a,b] 上连续且 [a,b] 有且仅有一个根又
xn1 (xn ) (n 0,1,L )
均收敛于x*,并有
x* xn
Ln 1 L
x1 x0
收敛充分性定理(一、2)
证:由条件(2)知(x)在[a, b]上连续。 令 (x) x (x),则 (x)在[a,b]上连续,且
(a) a (a) 0, (b) b (b) 0 故存在 [a,b],使得() 0,即 (), 所以方程x (x)在[a,b]内有根。
可先用二分法或经验确定迭代初值x0 0.5,再按牛
顿公式进行迭代。
Newton法具有收敛快,稳定性好,精度高等优点,是求 解非线性方程的有效方法之一。但它每次迭代均需计算函 数值与导数值,故计算量较大。而且当导数值提供有困难 时, Newton法无法进行。
各类非线性方程的解法

各类非线性方程的解法非线性方程是一类数学方程,其中包含了一个或多个非线性项。
求解非线性方程是数学研究中的重要问题之一,它在科学、工程和经济等领域具有广泛的应用。
本文将介绍几种常见的非线性方程的解法。
1. 试-and-错误法试-and-错误法是求解非线性方程的最简单方法之一。
它基于逐步尝试的思路,通过不断试验不同的数值来逼近方程的解。
这种方法的缺点在于需要反复试验,效率较低,但对于简单的方程或近似解的求解是有效的。
2. 迭代法迭代法是一种常用的数值计算方法,可以用来求解非线性方程的近似解。
它的基本思想是通过迭代计算逐步逼近方程的解。
不同的迭代方法包括牛顿迭代法、弦截法和割线法等。
这些方法都是基于线性近似的原理,通过不断迭代计算来逼近解。
迭代法的优点是可以得到较为精确的解,适用于多种类型的非线性方程。
3. 数值优化方法数值优化方法是一种求解非线性方程的高级方法,它将问题转化为优化问题,并通过优化算法来寻找方程的最优解。
常用的数值优化方法包括梯度下降法、牛顿法和拟牛顿法等。
这些方法通过不断迭代调整变量的取值,以最小化目标函数,从而求解非线性方程。
数值优化方法的优点是可以处理复杂的非线性方程,并且具有较高的求解精度。
4. 特殊非线性方程的解法对于特殊的非线性方程,还可以使用特定的解法进行求解。
例如,对于二次方程可以使用公式法直接求解,对于三次方程可以使用卡尔达诺法等。
这些特殊解法适用于特定类型的非线性方程,并且具有快速和精确的求解能力。
综上所述,非线性方程的解法有试-and-错误法、迭代法、数值优化方法和特殊非线性方程的解法等。
根据具体的方程类型和求解要求,选择合适的方法进行求解,可以得到满意的结果。
非线性方程的求解方法

非线性方程的求解方法一、引言在数学领域中,非线性方程是指未知量与其对自身的各次幂、指数以及任意函数相乘或相加得到的方程。
求解非线性方程是数学中一个重要而又具有挑战性的问题。
本文将介绍几种常见的非线性方程求解方法。
二、牛顿迭代法牛顿迭代法是一种经典的非线性方程求解方法,它利用方程的切线逼近根的位置。
设f(x)为非线性方程,在初始点x0附近取切线方程y=f'(x0)(x-x0)+f(x0),令切线方程的值为0,则可得到切线方程的解为x1=x0-f(x0)/f'(x0)。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
三、二分法二分法是一种简单而又直观的非线性方程求解方法。
它利用了连续函数的中间值定理,即若f(a)和f(b)异号,则方程f(x)=0在[a, b]之间必有根。
根据中值定理,我们可以取中点c=(a+b)/2,然后比较f(a)和f(c)的符号,若同号,则根必然在右半区间,否则在左半区间。
重复这个过程直到满足精确度要求或迭代次数达到指定次数。
四、割线法割线法是一种基于切线逼近的非线性方程求解方法,它与牛顿迭代法相似。
由于牛顿迭代法需要求解导数,而割线法不需要。
设f(x)为非线性方程,在两个初始点x0和x1附近取一条直线,该直线通过点(x0,f(x0))和(x1, f(x1)),它的方程为y=f(x0)+(f(x1)-f(x0))/(x1-x0)*(x-x0),令直线方程的值为0,则可得到直线方程的解为x2 = x1 - (f(x1)*(x1-x0))/(f(x1)-f(x0))重复这个过程直到满足精确度要求或迭代次数达到指定次数。
五、试位法试位法是一种迭代逼近的非线性方程求解方法。
它利用了函数值的变化率来逼近根的位置。
设f(x)为非线性方程,选取两个初始点x0和x1,然后计算f(x0)和f(x1)的乘积,如果结果为正,则根位于另一侧,否则根位于另一侧。
然后再选取一个新的点作为下一个迭代点,直到满足精确度要求或迭代次数达到指定次数。