中考数学专题练习 轴对称与轴对称图形(无答案)
中考数学专项复习轴对称练习(2021年整理)

2018年中考数学专项复习轴对称练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学专项复习轴对称练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学专项复习轴对称练习的全部内容。
轴对称下列交通指示标识中,不是轴对称图形的是( )2.下列图案中,有且只有三条对称轴的是()3.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()4.下面的图形中,左边的图形与右边的图形成轴对称的是( )5.下面几何图形中,一定是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个6.下面四个手机应用图标中是轴对称图形的是( )7.下列图形中有且只有一条对称轴的是()8.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()9。
经过轴对称变换后所得的图形,与原图形相比( )A.形状没有改变,大小没有改变 B.形状没有改变,大小有改变C.形状有改变,大小没有改变 D.形状有改变,大小有改变10.下列关于轴对称性质的说法中,不正确的是()A.对应线段互相平行 B.对应线段相等C.对应角相等 D.对应点连线与对称轴垂直11. 李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,图中各种作法中,符合要求的是( )12.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( )A.3种 B.4种 C.5种 D.6种13. 如图所示的各组图形中,左边的图形与右边的图形关于某条直线成轴对称的是(填序号即可).14.观察下图中各组图形,其中成轴对称的为(只填序号).15. 如图,在Rt△ABC中,沿ED折叠,点C落在点B处,已知△ABE的周长是15cm,BD=6cm,求△ABC的周长.16。
中考数学专题复习练习:轴对称与轴对称图形

典型例题一例01.下列图形中,不是轴对称图形的是( )(A )有两个角相等的三角形(B )有一个内角是的直角三角形︒45(C )有一个内角是,另一个内角为的三角形︒30︒120(D )有一个角是的直角三角形︒30分析:在(A )中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B )和(C )中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D )中三角形的三个内角各不相等,不是等腰三角形,所以(D )不是轴对称图形.解答:选(D )说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.典型例题二例02.已知:直线MN ,同侧两点A 、B (如图)求作:点P ,使P 在MN 上,并且最小.BP AP +作法 1.作点A 关于直线MN 的对称点.A '2.连结交MN 于PA A '点P 就是所求作的点.说明 这类问题经常遇到,可以和生活中的问题结合衍生出许多应用问题,但本质都是这道题.典型例题三例03.在图(a )中,分别作出点P 关于OA 、OB 的对称点,,连结交OA 1P 2P 21P P 于M ,交OB 于N ,若,则的周长为多少?cm P P 521=PMN ∆作法:略.解答:如图(b )所示,∵,P 关于OA 对称,1P ∴PMM P =1同理可得.PN N P =2∴的周长PMN ∆MN PN PM ++=N P MN M P 21++=cmP P 521==∴的周长为. PMN ∆cm 5 说明 准确作图是关键.典型例题四例04.已知:(如图)四边形ABCD 和过点D 的直线MN ,求作:四边形,使四边形与四边形ABCD 关于MN 对称.D C B A ''''D C B A ''''作法 1.作,垂足为E ;延长BE 到,使,得到点B 的对称MN BE ⊥B 'BE E B ='点.2.同法作点A 和点C 的对称点.C A ''3.因为D 在对称轴MN 上,所以点D 的对称点重合.D '4.连结、、.B A ''C B ''D C ''四边形即为所求.D C B A '''' 说明 关键是掌握概念和基本作图.典型例题五例05.有一条小河(如图所示),两岸有A 、B 两地,要设计道路并在河上垂直于河岸架一座桥,用来连接A 、B 间路线怎样走,桥应架在何处,才能使A 到B 的距离最短.分析:桥梁无论架在何处均垂直于河岸,因此桥梁的长度是定值,决定路程长度的关键是选取建桥点的位置,相对应地在河岸A 地同测取一点,使B 与河岸距离等于与河B 'B '岸到桥头的距离之和,于是,这个总是转化为“直线同侧有两点A 、,欲在直线上求一B '点,使这一点与A 、距离之和最短.B '已知:如图,河岸AB 两地求作:线段CD ,使CD 与、均互相垂直,并且最小.1l 2l BD CD AC ++作法:(1)作,与、分别交点、E ,并且1l B B ⊥'1l 2l E 'BEE B =''(2)在上取一点使(或者找到点关于的对称点)E E 'B ''E B E B ''='''B '1l B ''(3)连结,与交于C 点,作,与交于D 点,CD 即为所求作的线段.B A ''l 2l CD ⊥2l 典型例题六例06.如图所示,P 是平分线AD 上一点,P 与A 不重合,.BAC ∠AB AC >求证:ABAC PB PC -<-分析:用对称法. 可利用轴对称图形的知识找出点B 关于直线AD 的对称点,因AD B '为的平分线,故在AC 上,连结,从而构造与两个轴对称图BAC ∠B 'P B 'P B A '∆ABP ∆形,再利用三角形两边之差小于第三边来证明.证明:作点B 关于直线AD 的对称点,连结.B 'P B '∵AD 是的平分线,BAC ∠∴点在AC 上(是以角平分线AD 所在直线为对称轴的轴对称图形),B 'BAC ∠又∵AP 在对称轴AD 上,∴,P B BP B A AB '='=,在中,C B P '∆∵,C B B P PC '<'-,AB AC B A AC C B -='-=' ,P B BP '=∴.AB AC BP PC -<-说明:和就是利用角平分线AD 构造出的轴对称图形,这种方法对于证BAC ∆P B A '∆明有关线段的不等关系非常方便、有效.典型例题七例07.如图,E 、F 是的边AB 、AC 上的点,在BC 上求一点M ,使的ABC ∆EMF ∆周长最小.分析 因为E 、F 是定点,所以EF 是定值. 要使△EMF 的周长最小,只要MF ME +最小.解答 (1)作点F 关于直线BC 的对称点.F '(2)连结交BC 于M ,点M 就是所求.F E '说明 这类问题在日常生活中经常可以遇到.典型例题八例08.如图,过C 作的平分线AD 的垂线,垂足为D ,作交AC 于BAC ∠AB DE //E .求证:.CE AE =分析 由已知条件容易得到,从而. 要证明,只须证明32∠=∠DE AE =CE AE =,联想到AD 是角平分线又是垂线,若延长CD 交AB 的延长线于P ,则C 、P 关CE DE =于直线AD 对称,于是问题可以解决.解答 延长CD 交AB 的延长线于P .在和中,ADP ∆ADC ∆⎪⎩⎪⎨⎧∠=∠=∠=∠ADP ADC ADAD 21∴(角边角)ADC ADP ∆≅∆故.ACD P ∠=∠又∵,AP DE //∴,P ∠=∠4则.,4CE DE ACD =∠=∠∵,AB DE //∴,31∠=∠又∵,21∠=∠∴,32∠=∠∵(等边对等角),AE DE =∴.CE AE =说明 全等三角形是证明角或线段相等的一种方法,但不是惟一方法,不要一证线段相等就找全等三角形. 等腰三角形的判定定理及其推论,中垂线的性质,都是证线段相等的重要途径.典型例题九例09.如图,AD 是中的平分线,且.ABC ∆BAC ∠AC AB >求证:.DC BC>分析 由于AD 是的平分线,所以可以以AD 为轴构造轴对称图形,即把BAC ∠ADC ∆沿AD 翻折,这样,就可以在中解决问题.︒180DC DE =BED ∆证明 在AB 上截取AE ,使,连结DE .AC AE =∵AD 是的平分线,BAC ∠∴,21∠=∠在和中,AED ∆ACD ∆⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已证作图AD AD AC AE ∴(边角边),ACD AED ∆≅∆∴,DC DE =∴(全等三角形对应边对应角相等),43∠=∠∵,(内角和定理的推论),3∠>∠BED B ∠>∠4∴(大角对大边),ED BD B BED >∠>∠,∴.DC BD >说明 本题中的的就是利用角平分线构造出来的轴对称图形. 本题还有AED ∆ACD ∆其他构造轴对称图形的方法,比如把沿AD 翻折,也可证明结论.ADB ∆︒180选择题1.选择题(1)在下列命题中:①两个全等三角形是轴对称图形②两个关于直线对称的图形是全等形l ③等边三角形是轴对称图形④线段有三条对称轴正确命题的个数是()(A )1 (B )2 (C )3 (D )4(2)下列图形是一定轴对称图形的是()(A )任意三角形 (B )有一个角等于的三角形︒60(C )等腰三角形 (D )直角三角形(3)P 为内一点,且,则P 点是()ABC ∆PC PB PA ==(A )三条中线的交点 (B )三条高的交点(C )三个角的平分线的交点 (D )三边垂直平分线的交点(4)已知:D 为的边BC 的中点,且,下面各结论不正确的是()ABC ∆BC AD ⊥(A ) (B )ACD ABC ∆≅∆CB ∠=∠(C )AD 是的平分线 (D )是等边三角形BAC ∠ABC ∆(5)正五角星的对称轴有()(A )1条 (B )2条 (C )5条 (D )10条(6)等边三角形的对称轴共有()(A )1条 (B )3条 (C )6条 (D )无数条(7)下列四个图形①等腰三角形 ②等边三角形 ③等腰直角三角形 ④直角三角形中,一定是轴对称图形的有()(A )1个 (B )2个 (C )3个 (D )4个(8)下列图形中,不一定是轴对称图形的是()(A )线段 (B )角 (C )三角形 (D )等腰直角三角形参考答案:1.选择题(1)B (2)C (3)D (4)D (5)C (6)B (7)C (8)C 填空题1.填空题(1)等边三角形的对称轴有______条.(2)如果沿着一条直线折叠,两个点能互相重合,那么这两个点叫做_______.(3)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形_______.(4)如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做_______.参考答案1.填空题(1)3 (2)对称点 (3)轴对称 (4)轴对称图形解答题1.如图,已知线段AB 及直线MN ,求作线段AB 关于MN 的对称图形.2.如图,已知及直线EF ,求作关于EF 的对称图形.ABC ∆ABC ∆3.如图,已知折线ABC 及直线PQ ,求作折线ABC 关于直线PQ 的对称图形.4.如图,已知,分别以OM ,ON 为对称轴作三角形与它对称.ABC ∆5.在中,,,垂足为H ,点B 关于AH 的对称点是. ABC ∆C B ∠=∠2BC AH ⊥B '求证:.AB C B ='6.如图,已知:在直线MN 的同侧有两点A 和B .求作:MN 上一点,使.BCN ACM ∠=∠7.如图,EFGH 是一个矩形的台球台面,有黑白两球分别位于A ,B 两点位置上,试问:怎样撞击黑球A ,求能使A 先碰撞台边EF 反弹后两击中白球B ?参考答案1.略 2.略 3.略 4.略5.证明:连结,则易证,B A 'B A AB '=B B A B '∠=∠∵,∴,即.B CAC B B A '∠+∠='∠B ∠=C ∠=2B CA C '∠=∠AB C B AB =''=6.作法:作点A 关于MN 的对称点,连结,与MN 的交点为C ,则点C 就是所A 'A B '要求作的点. 证明:略.7.作点A 关于EF 的对称点,连结与EF 的交点为C ,则沿AC 方向撞击黑球A 'B A '就可以满足要求.。
初三数学中考复习专题图形的轴对称 练习试题

初三数学中考复习专题图形的轴对称 练习试题1 / 19图形的轴对称一、选择题1. 下列图案属于轴对称图形的是( )A.B.C.D.2. 下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有( )A. 4个B. 3个C. 2个D. 1个3. 下列大学的校徽图案是轴对称图形的是( )A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学4. 给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.B.C.D. 7cm6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △是等腰三角形B. MN垂直平分,C. △与△面积相等D. 直线AB、的交点不一定在MN上7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.9.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A. 1个初三数学中考复习专题图形的轴对称 练习试题3 / 19B. 2个C. 3个D. 4个10. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A. B. C. D. 11. 如图,在等腰△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A.B.C.D.12. 如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在直线折叠得到△AGE ,延长AG 交CD 于点F ,已知CF =2,FD =1,则BC 的长是()A. 5cmB. 10cmC. 20cmD. 15cm二、填空题13.如图,在A BCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为______.14.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,则∠BGD′的度数为______ .15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有________种选择.16.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是______.17.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(-4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为______.三、解答题(本大题共3小题,共24.0分)18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答初三数学中考复习专题图形的轴对称 练习试题5 / 19了此题,按小明的思路探究并解答下列问题:(1)分别以AB ,AC 所在直线为对称轴,画出△ABD 和△ACD 的对称图形,点D 的对称点分别为点E ,F ,延长EB 和FC 相交于点G ,求证:四边形AEGF 是正方形;(2)设AD =x ,建立关于x 的方程模型,求出AD 的长.19. 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1.(2)画出△ABC 关于点O 的中心对称图形△A 2B 2C 2.(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A 1B 1C 1与△A 2B 2C 2组成的图形______(填“是”或“不是”)轴对称图形.20.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.初三数学中考复习专题图形的轴对称练习试题答案和解析1.【答案】A【解析】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.2.【答案】C【解析】解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.7 / 19要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.3.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.4.【答案】D【解析】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.此题主要考查了轴对称图形,关键是找出图形的对称轴.5.【答案】A【解析】初三数学中考复习专题图形的轴对称练习试题解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN-MQ=4-2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ 的长,即可得出QR的长.此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.6.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.【答案】C【解析】9 / 19解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.【答案】C【解析】解:如图,展开后图形为正方形.故选:C.由图可知减掉的三角形为等腰直角三角形,展开后为正方形.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.9.【答案】C【解析】【分析】本题考查了画轴对称图形.找出对称轴,根据对称轴的性质画图是解题的关键.根据网格可知,画三角形ABC的对称图形共有3个符号题意得对称轴,所以可以画3个符合题意的三角形即可解答.【解答】解:根据题意画出图形如下:初三数学中考复习专题图形的轴对称 练习试题11 / 19,共有三条对称轴,分别是a ,b ,c ,根据画轴对称图形的方法可以画3个符合题意的三角形.故选C.10.【答案】D【解析】【分析】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴)∴BH==,则BF=, ∵FE=BE=EC ,∴∠BFC=90°,∴CF==.故选D.11.【答案】C【解析】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠CEF=∠CEO=50°.故选:C.连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.初三数学中考复习专题图形的轴对称 练习试题13 / 1912.【答案】B【解析】解:连接EF ,∵E 是BC 的中点,∴BE=EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE=EG ,∴EG=EC ,∵在矩形ABCD 中,∴∠C=90°, ∴∠EGF=∠B=90°, ∵在Rt △EFG 和Rt △EFC 中,,∴Rt △EFG ≌Rt △EFC (HL ),∴FG=CF=2,∵在矩形ABCD 中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选B .首先连接EF ,由折叠的性质可得BE=EG ,又由E 是BC 边的中点,可得EG=EC ,然后证得Rt △EFG ≌Rt △EFC (HL ),继而求得线段AF 的长,再利用勾股定理求解,即可求得答案.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC 是关键.17.【答案】80°【解析】 【分析】本题主要考查的是平行线的性质和轴对称的性质.首先由平行线的性质得出∠DEF=∠EFG=50°,然后由折叠性质得出∠DEG=100°,最后根据对顶角相等得出∠BGD′的度数即可.【解答】解:∵四边形ED′C′F 由四边形EDCF 折叠而成,∴∠DEG=2∠DEF=2∠D′EF.∵AD∥BC,∴∠DEF=∠EFG=50°,∠AEG=∠EGF,∴∠GEF=∠DEF=50°,∴∠DEG=∠GEF+∠DEF=100°.∴∠AEG=180°-∠DEG=80°∴∠EGF=80° ,∴∠BGD′=∠EGF=80°.故答案为80°.18.【答案】3【解析】【分析】本题主要考查轴对称图形的概念.此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有多种画法.根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有3个位置使之成为轴对称图形.故答案为3.19.【答案】(-10,3)【解析】解:设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,初三数学中考复习专题图形的轴对称练习试题设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(-,)【解析】【分析】本题考查的是一次函数的应用和轴对称的性质,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求.求出AB两点的坐标,据此可得出∠BAO及∠ACC′的度数,根据轴对称的性质得出△ACC′是等腰直角三角形,故可得出C′点的坐标,利用待定系数法求出直线OC′的坐标,进而可得出P点坐标.【解答】解:如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,15 / 19∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(-6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(-6,2).设直线OC′的解析式为y=kx(k≠0),则2=-6k,解得k=-,∴直线OC′的解析式为y=-x,∴,解得,∴P(-,).故答案为(-,).21.【答案】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD初三数学中考复习专题图形的轴对称 练习试题17 / 19∴AE =AF .∴矩形AEGF 是正方形;(2)解:设AD =x ,则AE =EG =GF =x .∵BD =6,DC =4,∴BE =6,CF =4,∴BG =x -6,CG =x -4,在Rt △BGC 中,BG 2+CG 2=BC 2,∴(x -6)2+(x -4)2=102.化简得,x 2-10x -24=0解得x 1=12,x 2=-2(舍去)所以AD =x =12.【解析】(1)先根据△ABD ≌△ABE ,△ACD ≌△ACF ,得出∠EAF=90°;再根据对称的性质得到AE=AF ,从而说明四边形AEGF 是正方形;(2)利用勾股定理,建立关于x 的方程模型(x-6)2+(x-4)2=102,求出AD=x=12.本题考查图形的翻折变换和利用勾股定理,建立关于x 的方程模型的解题思想.要能灵活运用.22.【答案】是【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图,△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形,其对称轴为直线l .(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点中心对称.23.【答案】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,初三数学中考复习专题图形的轴对称 练习试题19 / 19 在Rt △ADF 中,AD 2+DF 2=AF 2,∴122+(18-x )2=x 2.解得x =13.∵△ADF ≌△AB ′E (已证),∴AE =AF =13,∴S △AEF = = =78.【解析】(1)根据折叠的性质以及矩形的性质,运用ASA 即可判定△ADF ≌△AB′E ;(2)先设FA=FC=x ,则DF=DC-FC=18-x ,根据Rt △ADF 中,AD 2+DF 2=AF 2,即可得出方程122+(18-x )2=x 2,解得x=13. 再根据AE=AF=13,即可得出S △AEF==78.本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
中考数学轴对称专项测试卷含答案

轴对称单元测试卷一、选择题(共10个小题,每题3分,共30分) ( )1.如图所示,图中不是轴对称图形的是( )2.如图所示,设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,能表示它们之间关系的是( )3.在△ABC 中,∠A 和∠B 的度数如下,其中能判定△ABC 是等腰三角形的是A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60° ( )4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是A .9 cmB .12cmC .9 cm 或12cmD .在9 cm 或12cm 之间( )5.在等边三角形ABC 中,CD 是ACB ∠的平分线,过D 作DE//BC 交于E ,若ABC ∆的边长为a ,则ADE ∆的周长为A .2aB .3a 4C .1.5aD .a( )6.在等腰ABC ∆中,AB=AC ,O 为不同于A 的一点,且OB=OC 则直线AO 与底边BC 的关系为A .平行B .垂直且平分底边C .斜交D .垂直BC 但不平分BC ( )7.下列说法中,不正确的是A .等腰三角形底边上的中线就是它的顶角平分线B .等腰三角形底边上的高就是底边的垂直平分线的一部分C .一条线段可看作以它的垂直平分线对称轴的轴对称图形D .两个三角形能够重合,他们一定是轴对称的 ( )8.如图,AB=AC ,1A=36,1=2,ADE=EDB 2∠∠∠∠∠,则图中等腰三角形有A .3B .4C .5D .6( )9.下列说法中正确的是① 角平分线上任意一点到角的两边的线段长相等 ② 角是轴对称图形 ③线段不是轴对称图形 ④ 线段垂直平分线上的点到这条线段两个端点的距离相等A.①②③④B.①②③C.②④D.②③④( )10.已知等腰三角形的两边a ,b ,满足532+-b a +(2a +3b-13)2=0,则此等腰三角形的周长为 A.7或8B.6或10C.6或7D.7或10二、填空题(共5个小题,每题3分,共15分)11.如图,ABC ∆中,OB 平分ABC ∠,OC 平分ACB ∠经过点O 且平行BC ,BE=3 cm ,CF =2cm ,则EF= ________ cm 。
中考数学复习《轴对称》专题训练-带含有参考答案

中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
中考数学复习《轴对称》专项练习题-带含有答案

中考数学复习《轴对称》专项练习题-带含有答案一、单选题1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.若点与关于x轴对称,则点的坐标为()A.B.C.D.3.在中,和的度数如下,能判定是等腰三角形的是()A.B.C.D.4.如图,PD垂直平分AB,PE垂直平分BC,若PA的长为7,则PC的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.B.BC=2DE C.∠ABE=15°D.DE=2AE7.如图,矩形中,对角线的垂直平分线分别交,于点,若AM=1,BN=2,则的长为()A.B.C.D.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM、MC下列结论:①DF=DN;②ABE≌△MBN;③△CMN 是等腰三角形;④AE=CN;,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.10.已知等腰三角形ABC,其中两边,满足,则ABC的周长为.11.在中,点D为斜边上的一点,若为等腰三角形,那么的度数为.12.如图,在中AB=AC,∠A=120°,AB的垂直平分线分别交,于D,E,BE=3,则的长为.13.如图,在中,∠ACB=90°,∠A=30°,将绕点C逆时针旋转得到,点M是的中点,点N是的中点,连接,若,则线段的最大值是.三、解答题14.如图,在正方形网格上的一个△ABC.(其中点A. B. C均在网格上)①作△ABC关于直线MN的轴对称图形△A′B′C′;②以P点为一个顶点作一个与△ABC全等的△EPF(规定点P与点B对应,另两顶点都在图中网格交点处).③在MN上画出点Q,使得QA+QC最小。
中考数学复习《轴对称》专项练习-附带有答案

中考数学复习《轴对称》专项练习-附带有答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,△ABC与△DEF关于直线对称,其中A与D对应,B与E对应,则∠E=()A.120°B.110°C.80°D.100°3.在平面直角坐标系中,点P(5,﹣3)关于y轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)4.如图,在△ACB中,∠C=90°, AB的垂直平分线交AB、AC于点M、N,若AC=8,BC=4,则NC的长度为().A.2 B.3 C.4 D.55.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.已知点A(a,4),B(3,b)关于x轴对称,则a+b=.10.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是度.11.如图,在△ABC中,BD为AC边上的中线,F为AB上一点,连接CF,交BD于点E,若AB=CE=4,5AF=4AB 则EF=.12.如图,点E,F分别为▱ABCD的边AB,BC的中点DE=√5,DF=2√5,∠EDF=60°则AD=.13.如图,在梯形ABCD中AD∥BC,AB=AC且AB⊥AC,BC=BD则∠DBC=.三、解答题14.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1)。
人教版八年级数学上册13.2 画轴对称图形练习题(无答案)

13.2画轴对称图形1.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A 的坐标是()A.(4,1) B.(-1,4) C.(-4,-1) D.(-1,-4)2.在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标为()A.(-2,-3) B.(2,-3) C.(-2,3) D.(2,3)3.在平面直角坐标系中,点A(-1,2)与点B(-1,-2)关于()A.y轴对称B.x轴对称C.原点对称D.直线y=x对称4.将点A(3,2)向左平移4个单位长度得到点A′,则点A′关于y轴对称的点的坐标是() A.(-3,2) B.(-1,2) C.(1,-2) D.(1,2)5.若点A和点B(2,-3)关于y轴对称,则A,B两点间的距离为()A.4 B.5 C.6 D.106.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是()A.-5 B.-3 C.3 D.17.如图是小明画的正方形风筝图案,他以图中的对角线AB所在的直线为对称轴,在对角线的下方再画一个三角形,使得到的新风筝图案成为轴对称图形.若图中有一图形为此轴对称图形,则此图形为()8.将一张正方形纸片按图所示步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是图13-2-9中的()9.在平面直角坐标系中,若点P(m-1,m+1)在x轴上,则它关于y轴的对称点的坐标是________.10.如图,在平面直角坐标系xOy 中,已知A (-1,4),B (4,2),C (-1,0)三点. (1)点A 关于y 轴的对称点A ′的坐标为________,点B 关于x 轴的对称点B ′的坐标为________,线段AC 的垂直平分线与y 轴的交点D 的坐标为________;(2)以(1)中的点A ′,B ′,D 为顶点的△A ′B ′D 的面积为________.11.在平面直角坐标系中,点A 的坐标是(-1,2),作点A 关于y 轴的对称点,得到点A ′,再将点A ′向下平移4个单位长度,得到点A ″,则点A ″的坐标是(________,________).12.平面直角坐标系中的点P (2-m ,12m )关于x 轴的对称点在第四象限,则m 的取值范围为__________.13.如图在正三角形网格中,已有两个小正三角形被涂黑,再将图中的一个空白小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形的方法有________种.14.如图,以长方形ABCD 的两条对称轴为x 轴和y 轴建立直角坐标系,若点A 的坐标为(4,3).(1)写出长方形的另外三个顶点B ,C ,D 的坐标; (2)求该长方形的面积.15.如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).分别写出点D,C,B关于y轴对称的点F,G,H的坐标,并画出点F,G,H.顺次连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说说它具有怎样的性质,它像我们熟知的什么图形?16.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(1,2),B(3,4),C(2,9).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向右平移8个单位长度后得到的△A2B2C2,并写出点C2的坐标.17.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形.18.如图,已知四边形ABCD和直线l,在图中作出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称(不要求写作法,保留作图痕迹).19.图①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上,在图①、图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.20.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.21.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标(点A,B,C的对应点分别为A1,B1,C1);(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标(点A,B,C的对应点分别为A2,B2,C2);(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图中画出这条对称轴;(4)求△ABC的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称与轴对称图形
一、选择题
1.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()
A.转化思想
B.三角形的两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的任意一个内角
2.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB上的动点,E是BC上的动点,则AE+DE的最小值为()
A.3+2B.10 C.D.
3.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()
A.2 B.4 C.D.2
4.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB 最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()
A.B. C.D.
5.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()
A.(0,0) B.(0,1) C.(0,2) D.(0,3)
6.如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径
MN上一动点.若MN=2,则PA+PB的最小值是()
A.2 B.C.1 D.2
7.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,
),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()
A.B.C.D.2
8.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P 是直径MN上一动点,则PA+PB的最小值为()
A.B.1 C.2 D.2
9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()
A.B.4 C.D.5
二、填空题
10.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.
11.在⊙O中,AB是⊙O的直径,AB=8cm, ==,M是AB上一动点,CM+DM的最小值是cm.
12.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC 的最小值是.
13.如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.
14.如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.
15.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE 的最小值是.
16.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ 的最小值为.
17.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.
18.如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PD+PE的最小值为.
19.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC 上的动点,则△BEQ周长的最小值为.
20.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是.
21.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是
x轴上的两点,则PA+PB的最小值为.
22.菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.
23.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.
24.如图,在等腰梯形ABCD中,AB=AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.
25.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P 到A,B两点的距离之和最小,则P点的坐标是.
26.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.
27.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .
28.如图,已知正方形ABCD的边长为4,点P在BC边上,且BP=1,Q为对角线AC上的一个动点,则△BPQ周长的最小值为.
三、解答题
29.问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P 为直径CD上一动点,则BP+AP的最小值为.
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
30.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点,点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)当PA+PB的值最小时,求点P的坐标.。