初一数学上册合并同类项专项练习题45

合集下载

七年级数学上册 4.5 合并同类项典型例题素材 (新版)浙教版

七年级数学上册 4.5 合并同类项典型例题素材 (新版)浙教版

4.5合并同类项例1 判断下列各式是否正确,如不正确,请改正.(1)22233x x x =-;(2)xy xy xy 32=+-;(3)532m m m =+;(4)22422=-x x ;(5)22222b a b a =+;(6)34433445b a a b b a =-. 例2 把下面各项中和y x xy 2-、是同类项的各项写入指定的括号内. 222,21,5,2,3,2yx xy yx y x yx xy -- {xy , },{y x 2-, }.例3 合并同类项(1)22222232y xy x y xy x +---+-;(2)85323222--+--xy y y x xy .例4 当1,1-==y x , 求代数式:xy y xy x 2222++-的值.例5 已知412b a x --与4831b a 是同类项,求代数式100100)1459()1(--x x 的值.参考答案例1 解:(1)不正确.改为;03322=-x x(2)不正确,改为;2xy xy xy -=+-(3)不正确,此题不能合并同类项;(4)不正确,改为222224x x x =-;(5)不正确,此题不能合并同类项;(6)正确.说明:本例旨在考察同类项概念及合并同类项的法则.例2 分析 如果两项中含有的字母相同,相同字母的指数也相同,这两项就是同类项. 解 ⎭⎬⎫⎩⎨⎧-xy yx xy xy 21,5,2,,⎭⎬⎫⎩⎨⎧--2222,2,3,yx y x yx y x . 说明:两项是否是同类项和系数无关,和字母的排列顺序无关;单独的数都是同类项.例3 分析 首先要找准同类项,然后把同类项的系数相加,字母和字母的指数不变. 解 (1)22222232y xy x y xy x +---+- )2()22()3(2222y y xy xy x x +-+-+--=22)21()22()31(y xy x +-+-+--=2204y xy x ++-==224y x +-(2)85323222--+--xy y y x xy8)3(2)53(222-+-+--=y y x xy xy8)13(2)53(22-+-+--=y x xy.822222----=y x xy说明:(1)在合并同类项时要注意系数的符号;(2)在熟练之后合并的过程可以简化;(3)没有同类项的项应照样写下来.例4 分析 我们可以像前面求值一样把y x ,的值代入代数式直接求得,但通过观察可以发现在代数中有同类项可以合并,所以我们先合并同类项再求值.解 2222222222y x y xy xy x xy y xy x +=++-=++-当1,1-==y x 时,.2)1(122222222=-+=+=++-y x xy y xy x说明:在学习了合并同类项之后,一般的在求代数式的值时我们都要先看代数式是否可以合并同类项;如果可以,我们应先合并,再求值.例5 分析:欲求100100)1459()1(--x x 的值,首先应求出x 的值,已知两个单项式是同类项,说明a 的指数相同,从而可求x .解:12--x a 与4831b a 是同类项. 所以 29 812==-x x 于是100100)1459()1(--x x 1)1()]72()27[()72()27()145929()291(100100100100100100=-=⨯-=-=--= 说明:此题巧妙地利用了27-和72的负倒数的关系.使问题得解.。

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

2.2合并同类项和去、添括号拓展50题一.同类项(共10小题)1.当=m 时,单项式21215−m x y 与328+−m x y 是同类项. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 .3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b .4.若53+n x y 与3−x y 是同类项,则=n .5.已知代数式312+n a b 与243−−m a b 是同类项,则=m ,=n .6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a =b . 7.已知22+−x y a b 与513x a b 的和仍为单项式,求多项式323111263−+x xy y 的值.8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值.9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值.二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n .12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b . 13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值.14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 ;(2) 已知224−=x y ,求23621−−x y 的值 .15.化简:(1)222228234+−−−a b a b b a b ab(2)2222111326−−+m n mn nm n m .16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.18.合并同类项2222(86)2(34)−−−a b ab a b ab19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值.(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值.21.合并同类项:.(1)222233++−x x x x(2)2231253−−−+−a a a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b .23.合并同类项:(1)357−+xy xy xy(2)222243246++−−a b ab a b .24.合并同类项(1)222326+−x x x .(2)2(23)3(23)−+−a b b a25.合并同类项.(1)5(27)3(40)−−−x y x l y(2)2[2(3)3(2)]−+−−x x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y yB .83(47)831221−−+=−−−a ab b a ab bC .222(35)3(2)61063+−−=+−+x y x x y xD .22(34)2()3422−−+=−−+x y x x y x28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d 29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4 30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个32.已知5−=a .33.将()−−a b c 去括号得 .34.当13<m 时,化简|1||3|−−−=m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx ).36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 .38.(1)去括号:()()−−=m n p q .(2)计算:22(52)4(22)+−+=a a a .39.在等式的括号内填上恰当的项,22284(−+−=−x y y x ).40.2543(−+−x x 2+x 2)347=−−x x .41.(235)(235)[3(−+++−=−a b c a b c b )][3(+b )].42.去括号:232(5)−−−=a a b c ;添括号:243+−−=−a b c d a = .43.把下面各式的括号去掉:①3(2)+−+=x y z ;②5(23)−−=x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 .45.去括号,并合并同类项:3(56)2(34)−+−m n m n .46.计算:32[4(3)]−−−−−+b c a c b c .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c②222232[2(2)]−−−a b ab a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y .49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.合并同类项和去、添括号拓展50题参考答案与试题解析一.同类项(共10小题)1.当=m 4 时,单项式21215−m x y 与328+−m x y 是同类项. 【解答】解:项式21215−m x y 与328+−m x y 是同类项,213∴−=+m m ,4∴=m , 故答案为:4. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 1 .【解答】解:关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,∴单项式22+−m x y 与n x y 是同类项,2∴=n ,21+=m ,1∴=−m ,2=n ,1∴+=m n , 故答案为:1.3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b 1− .【解答】解:单项式43−a x y 与849+b x y 是同类项,48∴=a ,41+=b ,2∴=a ,3=−b ,2(3)1∴+=+−=−a b ;故答案为:1−.4.若53+n x y 与3−x y 是同类项,则=n 2− .【解答】解:由同类项的定义可知53+=n ,解得2=−n ,故答案为:2−.5.已知代数式312+n a b 与243−−m a b 是同类项,则=m 5 ,=n .【解答】解:312+n a b 与243−−m a b 是同类项,23∴−=m ,14+=n ,解得:5=m ,3=n , 故答案为:5,3.6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a 3 =b . 【解答】解:22+a b x y 与413−−a b x y 是同类项,∴24−=⎧⎨+=⎩a b a b ,解得:3=a 、1=b , 故答案为:3、1.7.已知22+−x y a b 与53x a b 的和仍为单项式,求多项式32311263−+x xy y 的值. 【解答】解:由22+−x y a b 与513x a b 的和仍为单项式,得22+−x y a b 与513x a b 是同类项, 即2=x ,5+=x y .解得2=x ,3=y .当2=x ,3=y 时,原式323111223310263=⨯−⨯⨯+⨯=. 8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值. 【解答】解:单项式21925−−x m n 和5325y m n 是同类项,215∴−=x ,39=y , 3∴=x ,3=y ,∴11535313.522−=⨯−⨯=−x y . 9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.【解答】解:23m a bc 和322−n a b c 是同类项,3∴=m ,1=n ,222232()3312(313)15∴−+=⨯⨯−⨯+=m n mn m .10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值. 【解答】解:|3|−−m a b 与|4|13n ab 是同类项,|3|1∴−=m ,|4|1=n ,解得:4=m 或2,14=±n , 又m 、n 互为负倒数,4∴=m ,14=−n 113(1)444−∴−−=−−−−=n mn m . 二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n 9 .【解答】解:27−+m n a b 与443−a b 的和仍是一个单项式,24∴−=m ,74+=n , 解得:6=m ,3=−n ,故6(3)9−=−−=m n .故答案为:9.12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b 1− . 【解答】解:由题意,得48=a ,41+=b .解得:2=a ,3=−b .321+=−+=−a b , 故答案为:1−.13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值 .【解答】解:22262351+−+−+−−x ax y bx x y 2(22)(3)65=−++−+b x a x y ,代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关,220∴−=b ,30+=a ,解得:1=b ,3=−a ,则3=−b a .14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 2()−−a b ;(2) 已知224−=x y ,求23621−−x y 的值 .【解答】解:(1)把2()−a b 看成一个整体,则222223()6()2()(362)()()−−−+−=−+−=−−a b a b a b a b a b ;(2)224−=x y ,∴原式23(2)2112219=−−=−=−x y .故答案为:2()−−a b ;9−.15.化简:(1)222228234+−−−a b a b b a b ab ;(2)2222111326−−+m n mn nm n m . 【解答】解:(1)原式222222(824)363=+−−−=−−a b b ab a b b ab ;(2)原式222211121(1)()32633=−+−+=−−m n mn m n mn . 16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .【解答】解:(1)原式322(22)(313)(82)31063=−+−+−++=−−+c c c c c ;(2)原式2222(0.50.2)(0.40.8)0.7 1.2=++−−=−m n mn m n mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.【解答】解:由43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,得 20−+=k ,50+=m .解得2=k ,5=−m .2(5)25=−=k m .18.合并同类项2222(86)2(34)−−−a b ab a b ab【解答】解:原式22228668=−−+a b ab a b ab 2222(86)(68)=−+−+a b a b ab ab 2222=+a b ab .19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值;(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.【解答】解:由题意,得233−=a ,解得3=a ,20152015(722)(1)1−=−=−a .(2)由323250−−=a mx y nx y ,且0≠xy ,得250−=m n .2014(25)0−=m n .20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值. 【解答】解:单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式, ∴单项式522323++m n x y 与632134−−−m n x y 是同类项, ∴52263321++=⎧⎨=−−⎩m n m n ,解得:112=⎧⎪⎨=−⎪⎩m n . 21.合并同类项:.(1)222233++−x x x x ;(2)2231253−−−+−a a a a .【解答】(1)解:原式(1313)=++−x 22=x 2;(2)原式226=+−a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b . 【解答】解:(1)原式322(11)(25)(54)31=−+−++−+=−x x x ;(2)原式222222592661222=−−+=−a b ab ab a b a b ab . 23.合并同类项:(1)357−+xy xy xy ;(2)222243246++−−a b ab a b .【解答】解:(1)357(357)5−+=−+=xy xy xy xy xy ;(2)222222222432464436232++−−=−+−+=−+a b ab a b a a b b ab b ab .24.合并同类项(1)222326+−x x x ;(2)2(23)3(23)−+−a b b a【解答】解:(1)原式22(326)=+−=−x x ;(2)原式4669=−+−a b b a 5=−a .25.合并同类项.(1)5(27)3(40)−−−x y x l y ;(2)2[2(3)3(2)]−+−−x x y x y .【解答】解:(1)原式1035123025=−−+=−−x y x y x y ;(2)原式22636312=−−+−=−x x y x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y【解答】解:A 、2()2+−−=−−y x y y x y ,故选项A 错误;B 、2(35)610−−=−+a a a a ,故选项B 正确;C 、()−−−=++y x y y x y ,故选项C 错误;D 、222()22+−+=−+x x y x x y ,故选项D 错误.故选:B .27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y y B .83(47)831221−−+=−−−a ab b a ab b C .222(35)3(2)61063+−−=+−+x y x x y x D .22(34)2()3422−−+=−−+x y x x y x【解答】解:A 、括号前是“−”,最后一项没有变号,故此选项错误;B 、括号前是“−”,中间一项没有变号,故此选项错误; C 、按去括号法则正确变号,故此选项正确;D 、括号前是“−”,最后一项没有变号,故此选项错误.故选:C .28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d【解答】解:A 、原式=−+−x y z ,不符合题意;B 、原式=−+x y z ,不符合题意; C 、原式222=−−=−−x x y x y ,不符合题意;D 、原式=−+++a b c d ,符合题意, 故选:D .29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4【解答】解:(1)()+−=+−a b c a b c ,故此题正确;(2)()−+=−−a b c a b c ,故此题正确;(3)()−−=−+a b c a b c ,故此题错误;(4)()−−=−+a b c a b c ,故此题正确. 所以运算结果正确的个数为3个,故选:C .30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c 【解答】解:(1)()1+−−+=++−a b c a b c ,故选:D .31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个【解答】解:根据去括号的法则:①应为()−−=−+a b c a b c ,错误;②应为2222()2()22+−−=+−+x y x y x y x y ,错误;③应为()()−+−−+=−−+−a b x y a b x y ,错误;④3()()33−−+−=−++−x y a b x y a b ,错误.故选:D .32.已知5−=a ,则[()]−+−=a 5− .【解答】解:5−=a ,5∴=−a ,[()]()5−+−=−−==−a a a ,故答案为:5−.33.将()−−a b c 去括号得 −+a b c .【解答】解:()−−=−+a b c a b c .故答案为:−+a b c .34.当13<m 时,化简|1||3|−−−=m m 24−m .【解答】解:根据绝对值的性质可知,当13<m 时,|1|1−=−m m ,|3|3−=−m m , 故|1||3|(1)(3)24−−−=−−−=−m m m m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx −ay by ).【解答】解:()(−−+=−−ax bx ay by ax bx )−ay by .故答案是:−ay by .36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 2762−++x x .【解答】解:根据题意得:22(234)(536)=−+−−−−A x x x x 22234536=−+−−++x x x x 2762=−++x x ,故答案为:2762−++x x .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 (32)−−+a b c d .【解答】解:后3项用括号括起来,且括号前面带“−”号,所得结果是(32)−−+a b c d . 故答案为:(32)−−+a b c d .38.(1)去括号:()()−−=m n p q −−+mp mq np nq .(2)计算:22(52)4(22)+−+=a a a .【解答】解:(1)()()−−=−−+m n p q mp mq np nq ;(2)222(52)4(22)328+−+=−+−a a a a a . 39.在等式的括号内填上恰当的项,22284(−+−=−x y y x 284−+y y ).【解答】解:222284(84)−+−=−−+x y y x y y .40.2543(−+−x x 2 2+x 2)347=−−x x .【解答】解:2543(−+−x x 22)347+=−−x x x ,(∴222222)543(347)543347210+=−+−−−=−+−++=+x x x x x x x x x x ,故答案为:2,10.41.(235)(235)[3(−+++−=−a b c a b c b 25−a c )][3(+b )].【解答】解:原式[3(25)][3(25)]=−−+−b a c b a c ,故答案为:25−a c ;25−a c42.去括号:232(5)−−−=a a b c 232210−++a a b c ;添括号:243+−−=−a b c d a = .【解答】解:2232(5)32210−−−=−++a a b c a a b c ,243(243)2(43)+−−=−−++=+−+a b c d a b c d a b c d ,故填232210−++a a b c ;2(43)+−+a b c d .43.把下面各式的括号去掉:①3(2)+−+=x y z 63−+x y z ;②5(23)−−=x y z .【解答】解:①3(2)63+−+=−+x y z x y z ;②5(23)1015−−=−+x y z x y z ;故答案为:①63−+x y z ,②1015−+x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 22()(32)4−+−+−+−x y xy x y .【解答】解:根据题意得:22()(32)4−+−+−+−x y xy x y .故答案为:22()(32)4−+−+−+−x y xy x y45.去括号,并合并同类项:3(56)2(34)−+−m n m n .【解答】解:3(56)2(34)−+−m n m n 151868=−+−m n m n 2126=−m n46.计算:32[4(3)]−−−−−+b c a c b c .【解答】解:32[4(3)]−−−−−+b c a c b c 32(43)=−−−−++b c a c b c 3243=−++−+b c a c b c 4=a .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c ;②222232[2(2)]−−−a b ab a b ab .【解答】解:(1)原式222333=−+−−+a b c a b c (23)(23)(23)=−+−−++a a b b c c 55=−−+a b c ;(2)原式222232(24)=−−+a b ab a b ab 2223104=−+a b ab a b 22710=−a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y . 【解答】解: 原式111033341222=−++−+−+−x x y y 11()(34)12103322=−+++−+−−x x y y 78=−y49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m【解答】解:()(2)(3)(100)+++++++⋯++a a m a m a m a m101(23100)=++++⋯a m m m m101(100)(299)(398)(5051)=+++++++⋯++a m m m m m m m m10110150=+⨯a m1015050=+a m .50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.【解答】解:225+=a b ,12−=−b ,221∴−+++a b b 22(1)()=−−++b a b (2)5=−−+7=.。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

七年级数学(上)练习45合并同类项(3)

七年级数学(上)练习45合并同类项(3)

同步练习A 组1、什么叫做同类项怎样合并同类项2、以下各题中的两个项是不是同类项(1)3x 2y 与-3x 2y ; (2)0.2a 2b 与0.2ab 2;(3)11abc 与9bc ; (4)3m 2n 3与-n 3m 2;(5)4xy 2z 与4x 2yz ; (6)62与x 2;3、以下各题合并同类项的结果对不对不对的,指出错在哪里。

(1)3a +2b =5ab ; (2)5y 2-2y 2=3;(3)4x 2y -5y 2x =-x 2y ; (4)a +a =2a ;(5)7ab -7ba =0; (6)3x 2+2x 3=5x 5;4、合并以下各式中的同类项:(1)15x +4x -10x ; (2)-6ab +ba +8ab ;(3)-p 2-p 2-p 2; (4)m -n 2+m -n 2; (5)31x 3-65x 3+21x 3; (6)41x -0.3y -21x +0.3y ;5、求以下各式的值:(1)3c 2-8c +2c 3-13c 2+2c -2c 3+3,其中c =-4;(2)3y 4-6x 3y -4y 4+2yx 3,其中x =-2,y =3;6、解方程:(1)3x -5-2x =1; (2) -21x +21+4x +3=01、把(a +b )、(x -y )各当作一个因式,合并以下各式中的同类项:(1)4(a +b )+2(a +b )-7(a +b );(2)3(x -y )2-7(x -y )+8(x -y )2+6(x -y );3、解方程:(3)3x -2x =0; (4)-x +1-x +1=0;同步练习(答案)A 组1、(1)所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。

(2)同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

2、(1)是; (2)不是同类项,因为相同字母的指数不同;(5)不是,因为x 的指数不同,y 的指数也不同;(6)不是,因为字母不相同。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

七年级数学上册 4.5 合并同类项典型例题素材 (新版)浙教版

七年级数学上册 4.5 合并同类项典型例题素材 (新版)浙教版

4.5合并同类项例1 判断下列各式是否正确,如不正确,请改正.(1)22233x x x =-;(2)xy xy xy 32=+-;(3)532m m m =+;(4)22422=-x x ;(5)22222b a b a =+;(6)34433445b a a b b a =-. 例2 把下面各项中和y x xy 2-、是同类项的各项写入指定的括号内. 222,21,5,2,3,2yx xy yx y x yx xy -- {xy , },{y x 2-, }.例3 合并同类项(1)22222232y xy x y xy x +---+-;(2)85323222--+--xy y y x xy .例4 当1,1-==y x , 求代数式:xy y xy x 2222++-的值.例5 已知412b a x --与4831b a 是同类项,求代数式100100)1459()1(--x x 的值.参考答案例1 解:(1)不正确.改为;03322=-x x(2)不正确,改为;2xy xy xy -=+-(3)不正确,此题不能合并同类项;(4)不正确,改为222224x x x =-;(5)不正确,此题不能合并同类项;(6)正确.说明:本例旨在考察同类项概念及合并同类项的法则.例2 分析 如果两项中含有的字母相同,相同字母的指数也相同,这两项就是同类项. 解 ⎭⎬⎫⎩⎨⎧-xy yx xy xy 21,5,2,,⎭⎬⎫⎩⎨⎧--2222,2,3,yx y x yx y x . 说明:两项是否是同类项和系数无关,和字母的排列顺序无关;单独的数都是同类项.例3 分析 首先要找准同类项,然后把同类项的系数相加,字母和字母的指数不变. 解 (1)22222232y xy x y xy x +---+- )2()22()3(2222y y xy xy x x +-+-+--=22)21()22()31(y xy x +-+-+--=2204y xy x ++-==224y x +-(2)85323222--+--xy y y x xy8)3(2)53(222-+-+--=y y x xy xy8)13(2)53(22-+-+--=y x xy.822222----=y x xy说明:(1)在合并同类项时要注意系数的符号;(2)在熟练之后合并的过程可以简化;(3)没有同类项的项应照样写下来.例4 分析 我们可以像前面求值一样把y x ,的值代入代数式直接求得,但通过观察可以发现在代数中有同类项可以合并,所以我们先合并同类项再求值.解 2222222222y x y xy xy x xy y xy x +=++-=++-当1,1-==y x 时,.2)1(122222222=-+=+=++-y x xy y xy x说明:在学习了合并同类项之后,一般的在求代数式的值时我们都要先看代数式是否可以合并同类项;如果可以,我们应先合并,再求值.例5 分析:欲求100100)1459()1(--x x 的值,首先应求出x 的值,已知两个单项式是同类项,说明a 的指数相同,从而可求x .解:12--x a 与4831b a 是同类项. 所以 29 812==-x x 于是100100)1459()1(--x x 1)1()]72()27[()72()27()145929()291(100100100100100100=-=⨯-=-=--= 说明:此题巧妙地利用了27-和72的负倒数的关系.使问题得解.。

初一合并同类项经典练习题

初一合并同类项经典练习题

秋季周末班是学习的大好时机, 可以在这学期里, 学习新知识, 总结旧知识, 查漏补缺, 巩固提高。

在这个收获的季节, 祝你学习轻松愉快.秋季周末班是学习的大好时机,可以在这学期里,学习新知识,总结旧知识,查漏补缺,巩固提高。

在这个收获的季节,祝你学习轻松愉快.代数式(复习课)一、典型例题代数式求值例1 当时, 求代数式的值。

例2 已知是最大的负整数, 是绝对值最小的有理数, 求代数式的值。

例3已知, 求代数式的值。

合并同类项例1.合并同类项(1)(3x-5y)-(6x+7y)+(9x-2y)(2)2a-[3b-5a-(3a-5b)](3)(6m2n-5mn2)-6(m2n-mn2)解: (1)(3x-5y)-(6x+7y)+(9x-2y)=3x-5y-6x-7y+9x-2y (正确去掉括号)=(3-6+9)x+(-5-7-2)y (合并同类项)=6x-14y(2)2a-[3b-5a-(3a-5b)] (应按小括号, 中括号, 大括号的顺序逐层去括号)=2a-[3b-5a-3a+5b] (先去小括号)=2a-[-8a+8b] (与时合并同类项)=2a+8a-8b (去中括号)=10a-8b(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)=(6-2)m2n+(-5+3)mn2 (合并同类项)=4m2n-2mn2例2. 已知: A=3x2-4xy+2y2, B=x2+2xy-5y2求:(1)A+B (2)A-B (3)若2A-B+C=0, 求C。

解: (1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)=3x2-4xy+2y2+x2+2xy-5y2(去括号)=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)=4x2-2xy-3y2(按x的降幂排列)(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)=3x2-4xy+2y2-x2-2xy+5y2 (去括号)=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)=2x2-6xy+7y2 (按x的降幂排列)(3)∵2A-B+C=0∴C=-2A+B=-2(3x2-4xy+2y2)+(x2+2xy-5y2)=-6x2+8xy-4y2+x2+2xy-5y2 (去括号, 注意使用分配律)=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)=-5x2+10xy-9y2 (按x的降幂排列)例3. 计算:(1)m2+(-mn)-n2+(-m2)-(-0.5n2)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an) (3)化简: (x-y)2-(x-y)2-[(x-y)2-(x-y)2]解: (1)m2+(-mn)-n2+(-m2)-(-0.5n2)=m2-mn-n2-m2+n2 (去括号)=(-)m2-mn+(-+)n2 (合并同类项)=-m2-mn-n2 (按m的降幂排列)(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)=8an+2-2an-3an-an+1-8an+2-3an (去括号)=0+(-2-3-3)an-an+1 (合并同类项)=-an+1-8an(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)=(1--+)(x-y)2 (“合并同类项”)=(x-y)2例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值, 其中x=2。

浙教版初中数学七年级上册《4.5 合并同类项》同步练习卷

浙教版初中数学七年级上册《4.5 合并同类项》同步练习卷

浙教新版七年级上学期《4.5 合并同类项》同步练习卷一.选择题(共11小题)1.与a2b3是同类项的是()A.a3b2B.b2a3C.﹣5a2b3D.5b2a3 2.下列为同类项的一组是()A.x3与23B.﹣xy2与x2yC.ab与8b D.与﹣3.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz24.已知2x3y2和﹣x3m y2是同类项,则式子m﹣2的值是()A.0B.﹣2C.1D.﹣1 5.如果单项式x m+2y3与y n+4x5是同类项,那么n m=()A.1B.﹣1C.2D.4 6.下列计算正确的是()A.3a+2b=5ab B.5y2﹣2y2=3C.7a2b﹣2ba2=5a2b D.4x2y﹣2xy2=2xy7.下列各式中,运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0C.a3+a2=a5D.5a2﹣4a2=18.下列各式运算正确的是()A.3x+2y=5xy B.3x+5x=8x2C.10x2﹣3x2=7D.10xy2﹣5y2x=5xy29.多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2B.﹣2C.0D.3 10.一个五次六项式加上一个五次三项式合并同类项后一定是()A.十次九项式B.五次六项式C.五次九项式D.不超过五次的整式11.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)2二.填空题(共9小题)12.已知3a m b4与﹣a3b n+2是同类项,则m﹣n=.13.计算:x2y﹣3yx2=.14.单项式2x m+3y4与﹣8x5y3n﹣1是同类项,这两个单项式的和是.15.若﹣x a y3与的和仍是单项式,则a﹣b=.16.若5x6y2m与﹣3x n+9y6和是单项式,那么n﹣m的值为.17.若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.18.当m=,多项式x2﹣mxy﹣3y2+2xy﹣1不含xy项.19.当m=时,多项式x3+2x+2x2﹣mx2中不含x2项.20.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为.三.解答题(共18小题)21.化简:3x2y﹣5xy2+6xy2﹣7x2y22.3y2﹣1﹣2y﹣5+3y﹣y2.23.化简:3a2+2a﹣4a2﹣7a.24.化简:(1)8a2b+2a2b﹣3b2﹣4a2b﹣ab2(2).25.如果关于x的代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.26.合并同类项(1)2xy2﹣3xy2﹣6xy2(2)2a2﹣3a﹣3a2+5a.27.合并同类项(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)a2﹣ab+a2+ab﹣b2.28.化简:﹣5m2n+4mn2﹣2mn+6m2n+3mn.29.计算:4xy+3y2﹣3x2+2xy﹣5xy﹣2x2﹣4y2.30.计算:﹣3x2y+2x2y+3xy2﹣2xy2.31.﹣6a2+b2﹣4ab+8ab+4a2﹣2b2.32.合并同类项:2a3b﹣a3b﹣a2b+a2b﹣ab2.33.合并同类项:6x2y+2xy﹣8x2y﹣5xy+2x2y2﹣6x2y.34.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,求代数式a3﹣2b2的值.35.化简:(1)x2+5y﹣4x2﹣3y﹣1.(2)﹣3(a﹣3b)3+2(3b﹣a)2+4(a﹣3b)2+2(3b﹣a)3.36.﹣5yx2+4xy2﹣2xy+6x2y+2xy+5.37.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b 的值.38.合并同类项:(1)15ab2﹣3a2b﹣8ab2﹣21a2b;(2)(m+2n)2﹣5(m﹣n)﹣(m+2n)2+3(m﹣n).浙教新版七年级上学期《4.5 合并同类项》同步练习卷参考答案与试题解析一.选择题(共11小题)1.与a2b3是同类项的是()A.a3b2B.b2a3C.﹣5a2b3D.5b2a3【分析】根据同类项的定义即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.∴﹣5a2b3与a2b3是同类项,故选:C.【点评】本题考查同类项的定义,解题的关键是熟练运用同类项的定义,本题属于基础题型.2.下列为同类项的一组是()A.x3与23B.﹣xy2与x2yC.ab与8b D.与﹣【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、字母不同不是同类项,故A错误;B、相同字母的指数不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、常数也是同类项,故D正确;故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.3.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【分析】根据同类项的定义即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.4.已知2x3y2和﹣x3m y2是同类项,则式子m﹣2的值是()A.0B.﹣2C.1D.﹣1【分析】直接利用同类项的定义得出m的值,进而得出答案.【解答】解:∵2x3y2和﹣x3m y2是同类项,∴3=3m,解得:m=1,故m﹣2=1﹣2=﹣1.故选:D.【点评】此题主要考查了同类项,正确得出m的值是解题关键.5.如果单项式x m+2y3与y n+4x5是同类项,那么n m=()A.1B.﹣1C.2D.4【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:m+2=5,3=n+4,∴m=3,n=﹣1,∴原式=(﹣1)3=﹣1,故选:B.【点评】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.6.下列计算正确的是()A.3a+2b=5ab B.5y2﹣2y2=3C.7a2b﹣2ba2=5a2b D.4x2y﹣2xy2=2xy【分析】先判断各选项是否为同类项,再根据合并同类项法则计算.【解答】解:A、3a和2b不是同类项,不能合并,故本选项错误;B、5y2﹣2y2=3y2,故本选项错误;C、7a2b﹣2ba2=5a2b,故本选项正确;D、4x2y和﹣2xy2不是同类项,不能合并,故本选项错误;故选:C.【点评】本题考查了合并同类项法则,找到题目中的同类项并熟悉合并同类项法则是解题的关键.7.下列各式中,运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0C.a3+a2=a5D.5a2﹣4a2=1【分析】先判断各选项是否为同类项,再根据合并同类项法则计算.【解答】解:A、3a和2b不是同类项,不能合并,故本选项错误;B、3a2b﹣3ba2=0,故本选项正确;C、a3和a2不是同类项,不能合并,故本选项错误;D、5a2﹣4a2=a2,故本选项错误;故选:B.【点评】本题考查了合并同类项法则,找到题目中的同类项并掌握合并同类项法则是解题的关键.8.下列各式运算正确的是()A.3x+2y=5xy B.3x+5x=8x2C.10x2﹣3x2=7D.10xy2﹣5y2x=5xy2【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:A、3x+2y=3x+2y,错误;B、3x+5x=8x,错误;C、10x2﹣3x2=7x2,错误;D、10xy2﹣5y2x=5xy2,正确;故选:D.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行解答.9.多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2B.﹣2C.0D.3【分析】直接利用多项式的定义得出xy项的系数为零,进而得出答案.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.【点评】此题主要考查了合并同类项,正确得出xy项的系数为零是解题关键.10.一个五次六项式加上一个五次三项式合并同类项后一定是()A.十次九项式B.五次六项式C.五次九项式D.不超过五次的整式【分析】五次多项式,即其次数最高次项的次数五次.也就是说,每一项都可以是五次,也可以低于五次,但不可以超过五次.【解答】解:根据多项式的定义,可知五次多项式最少有两项,并且有一项的次数是5.故选:D.【点评】本题考查了多项式.注意多项式最少有两项,多项式里次数最高项的次数,叫做这个多项式的次数.11.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)2【分析】把x﹣y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【解答】解:2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x),=[2(x﹣y)2+5(y﹣x)2]+[3(y﹣x)+3(x﹣y)],=7(x﹣y)2.故选:A.【点评】本题考查了合并同类项的法则,是基础知识比较简单.二.填空题(共9小题)12.已知3a m b4与﹣a3b n+2是同类项,则m﹣n=1.【分析】根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出m,n的值,进而得出答案.【解答】解:已知3a m b4与﹣a3b n+2是同类项,可得:m=3,n+2=4,解得:m=3,n=2,所以m﹣n=3﹣2=1,故答案为:1【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的和.13.计算:x2y﹣3yx2=﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.14.单项式2x m+3y4与﹣8x5y3n﹣1是同类项,这两个单项式的和是﹣6x5y4.【分析】直接利用同类项定义得出m,n的值,进而得出答案.【解答】解:因为单项式2x m+3y4与﹣8x5y3n﹣1是同类项,所以m+3=5且3n﹣1=4,解得:m=2,n=1.∴2x5y4﹣8x5y4=﹣6x5y4.故答案为:﹣6x5y4.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.15.若﹣x a y3与的和仍是单项式,则a﹣b=﹣1.【分析】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出a,b的值,进而解答即可.【解答】解:若﹣x a y3与的和仍是单项式,可得:a=2,b=3,所以a﹣b=2﹣3=﹣1,故答案为:﹣1【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的和.16.若5x6y2m与﹣3x n+9y6和是单项式,那么n﹣m的值为﹣6.【分析】根据合并同类项的法则即可求出答案.【解答】解:由题意可知:6=n+9,2m=6,∴n=﹣3,m=3,∴n﹣m=﹣6,故答案为:﹣6【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.17.若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是﹣6.【分析】根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.【解答】解:﹣4x a+5y3+x3y b=﹣3x3y3,a+5=3,b=3,a=﹣2,ab=﹣2×3=﹣6,故答案为:﹣6.【点评】本题考查了合并同类项,能求出a、b的值是解此题的关键.18.当m=2,多项式x2﹣mxy﹣3y2+2xy﹣1不含xy项.【分析】直接利用多项式中xy项的系数为零即可得出答案.【解答】解:∵多项式x2﹣mxy﹣3y2+2xy﹣1不含xy项,∴﹣m+2=0,解得:m=2.故答案为:2.【点评】此题主要考查了多项式,正确得出xy项的系数为零是解题关键.19.当m=2时,多项式x3+2x+2x2﹣mx2中不含x2项.【分析】先合并同类项,再根据多项式不含x2项得出其系数为0,据此求解可得.【解答】解:∵x3+2x+2x2﹣mx2=x3+2x+(2﹣m)x2,且多项式中不含x2项,∴2﹣m=0,解得:m=2,故答案为:2.【点评】此题考查了合并同类项,本题的突破点为不含x2项即为x2项的系数为0.20.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为9.【分析】直接利用合并同类项法则将原式变形,进而把已知代入求出答案.【解答】解:(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6=(+0.75)(x﹣y)2+(﹣2.3+)(x﹣y)﹣6=(x﹣y)2﹣2(x﹣y)﹣6,∵x=y﹣3,∴x﹣y=﹣3,∴原式=(﹣3)2﹣2×(﹣3)﹣6=9+6﹣6=9.故答案为:9.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.三.解答题(共18小题)21.化简:3x2y﹣5xy2+6xy2﹣7x2y【分析】根据合并同类项的法则作答.【解答】解:原式=(3﹣7)x2y+(6﹣5)xy2=﹣4x2y+xy2.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.22.3y2﹣1﹣2y﹣5+3y﹣y2.【分析】首先找出同类项进而合并求出答案.【解答】解:原式=(3y2﹣y2)+(﹣2y+3y)﹣6=2y2+y﹣6;【点评】此题主要考查了合并同类项,正确找出同类项是解题关键.23.化简:3a2+2a﹣4a2﹣7a.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:3a2+2a﹣4a2﹣7a=3a2﹣4a2+2a﹣7a=(3﹣4)a2+(2﹣7)a=﹣a2﹣5a.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.24.化简:(1)8a2b+2a2b﹣3b2﹣4a2b﹣ab2(2).【分析】(1)根据合并同类项法则计算可得;(2)根据合并同类项法则计算可得.【解答】解:(1)原式=(8+2﹣4)a2b﹣3b2﹣ab2=6a2b﹣3b2﹣ab2;(2)原式=(﹣1)m2n+(﹣+)mn2=﹣m2n﹣mn2.【点评】本题主要考查合并同类项,解题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.25.如果关于x的代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【分析】根据多项式不含有的项的系数为零,负数的偶数次幂是正数,可得答案.【解答】解:3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x=3x4+(k﹣2)x3+(m+5)x2﹣3x+5,由合并同类项后不含x3和x2项,得k﹣2=0,m+5=0,解得k=2,m=﹣5.m k=(﹣5)2=25.【点评】本题考查了合并同类项,利用多项式不含有的项的系数为零得出k,m 是解题关键.26.合并同类项(1)2xy2﹣3xy2﹣6xy2(2)2a2﹣3a﹣3a2+5a.【分析】(1)根据合并同类项的法则把系数相加即可.(2)根据合并同类项的法则把系数相加即可.【解答】解:(1)原式=(2﹣3﹣6)xy2=﹣7xy2;(2)原式=(2﹣3)a2+(﹣3+5)a=﹣a2+2a.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.27.合并同类项(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)a2﹣ab+a2+ab﹣b2.【分析】(1)、(2)根据合并同类项的法则进行解答即可.【解答】解:(1)3x2﹣1﹣2x﹣5+3x﹣x2=(3﹣1)x2﹣(2﹣3)x﹣(1+5)=2x2+x﹣6;(2)a2﹣ab+a2+ab﹣b2=(+)a2+(﹣+1)ab﹣b2=a2+ab﹣b2.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.28.化简:﹣5m2n+4mn2﹣2mn+6m2n+3mn.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=m2n+4mn2+mn.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.29.计算:4xy+3y2﹣3x2+2xy﹣5xy﹣2x2﹣4y2.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=xy﹣y2﹣5x2.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.30.计算:﹣3x2y+2x2y+3xy2﹣2xy2.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:原式=(﹣3+2)x2y+(3﹣2)xy2=﹣x2y+xy2.【点评】此题主要考查了合并同类项,关键是掌握合并同类项计算法则.31.﹣6a2+b2﹣4ab+8ab+4a2﹣2b2.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:原式=(﹣6+4)a2+(1﹣2)b2+(8﹣4)ab=﹣2a2﹣b2+4ab.【点评】此题主要考查了合并同类项,关键是掌握合并同类项计算法则.32.合并同类项:2a3b﹣a3b﹣a2b+a2b﹣ab2.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:2a3b﹣a3b﹣a2b+a2b﹣ab2=(2﹣)a3b+()a2b﹣ab2=a3b﹣a2b﹣ab2.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.33.合并同类项:6x2y+2xy﹣8x2y﹣5xy+2x2y2﹣6x2y.【分析】依据合并同类项法则进行计算即可.【解答】解:原式=(6﹣8﹣6)x2y+(2﹣5)xy+2x2y2=﹣8x2y﹣3xy+2x2y2.【点评】本题主要考查的是合并同类项,熟练掌握合并同类项法则是解题的关键.34.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,求代数式a3﹣2b2的值.【分析】先把2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1合并得到(2﹣2b)x2+(a+3)x﹣6y+5,由于代数式的值与字母x的取值无关,则2﹣2b=0,a+3=0,解得a =﹣3,b=1,然后代入a3﹣2b2计算即可.【解答】解:2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5∵代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1,∴a3﹣2b2=×(﹣3)3﹣2×12=﹣11.【点评】此题考查合并同类项与代数式求值,注意理解代数式的值与字母的取值无关,说明此项的系数为0.35.化简:(1)x2+5y﹣4x2﹣3y﹣1.(2)﹣3(a﹣3b)3+2(3b﹣a)2+4(a﹣3b)2+2(3b﹣a)3.【分析】(1)直接根据合并同类项的法则进行运算;(2)直接根据合并同类项的法则进行运算.【解答】解:(1)原式=x2﹣4x2+5y﹣3y﹣1=﹣3x2+2y﹣1;(2)原式=﹣3(a﹣3b)3+2(3b﹣a)3+2(3b﹣a)3+4(a﹣3b)2=﹣3(a﹣3b)3﹣2(a﹣3b)3+2(a﹣3b)2+4(a﹣3b)2,=﹣5(a﹣3b)3+6(a﹣3b)2.【点评】本题了考查了合并同类项,把多项式中同类项合成一项,叫做合并同类项.关键是记住合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.36.﹣5yx2+4xy2﹣2xy+6x2y+2xy+5.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(﹣5+6)x2y+4xy2+5=x2y+4xy2+5【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.37.已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b 的值.【分析】根据题意可得2﹣2b=0,a+3=0,解出a、b的值,进而可得a b的值.【解答】解:2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5,∵代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,∴2﹣2b=0,a+3=0,解得:b=1,a=﹣3,则a b=﹣3.【点评】此题主要考查了合并同类项,关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.38.合并同类项:(1)15ab2﹣3a2b﹣8ab2﹣21a2b;(2)(m+2n)2﹣5(m﹣n)﹣(m+2n)2+3(m﹣n).【分析】(1)利用合并同类项法则即可求解;(2)首先合并同类项,然后利用完全平方公式展开,最后进行合并同类项计算即可.【解答】解:(1)原式=(15﹣8)ab2﹣(3+21)a2b=7ab2﹣24a2b;(2)原式=(﹣)(m+2n)2+(﹣5+3)(m﹣n)2=﹣(m+2n)2﹣2(m﹣n)2=﹣(m2+4mn+4n2)﹣2(m2﹣2mn+n2)=﹣m2﹣mn﹣n2﹣2m2+4mn﹣2n2=﹣m2﹣3n2+3mn.【点评】本题考查合并同类项,以及完全平方公式,首先把(m+2n)和(m﹣n)当作整体进行合并同类项计算是关键,一定要记准法则才能做题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档