对顶角余角补角
余角、补角、对顶角(1)

其理由是___等__角__的__补__角__相__等__.
课堂小结
两角间的 数量关系
对应图形
互余
1 2 90
互补
1 2 180 (1 180 2)
性质 同角或等角的余角相等 同角或等角的补角相等
45°
30°
(90-n) °
动手操作
➢请你借助直角三角板,在原图上画出∠1所有的余角。
(1)图中有哪几对互余的角?
A
1与2; 1与3
(2)猜想:图中∠2、∠3的大小有什么关系?
2
O3
2=3
(3)你的猜想正确吗?
B (4)你能用一句话概括以上规律吗?
同角的余角相等。
思考:如果两个角相等,它们的余角相等吗?
∠1是∠2的余角,还可以说 ∠2是∠1的余角语言:
因为∠α+∠β=90°,
所以∠α与∠β互余.
反之:因为∠α与∠β互余,
所以∠α+∠β=90°
即∠α=90°-∠β, 或∠β=90°-∠α.
课堂互学
填写下面的表格
∠α的度数 500
450
600
n0 (0<n<90)
∠α的余角 40°
6.3.1 余角、补角
观察思考
如图所示,∠α与∠β 的度数之间有怎样的关系?
α
β
旋转上面这块三角板, ∠α、∠β 有怎样的变化? ∠α + ∠β有怎样的变化?
∠α+∠β=90°
概念生成
余角的概念
如果两个角的和等于 一个直角 ,就说这两个角互为余角, 简称互余,即其中的一个角是另外一个角的余角.
余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
对顶角余角和补角的定义

对顶角余角和补角的定义
顶角、余角和补角是在几何学和三角学中常见的概念。
顶角指的是两条直线相交时,形成的相对的两个角,这两个角的顶点是同一个点。
余角是指一个角的补角,即与该角相加为90度的角。
而补角则是两个角的和为90度的角。
从几何学的角度来看,顶角是指两条直线相交时形成的相对的两个角,它们共享一个公共顶点。
例如,在一个三角形中,顶角通常指的是三角形的顶点所对的角。
余角是指一个角的补角,也就是与该角相加为90度的角。
例如,如果一个角的度数是x度,那么它的余角就是90度减去x度。
补角是指两个角的和为90度的角。
例如,如果一个角的度数是x度,那么它的补角就是90度减去x度。
从三角学的角度来看,顶角、余角和补角也有特定的定义。
在三角函数中,余角是指角A的余角是90度减去角A的度数。
补角是指两个角的和为90度的角,例如,如果角A的度数是x度,那么角A的补角就是90度减去x度。
这些概念在解题和推导三角函数的过程中经常被用到。
总的来说,顶角、余角和补角是几何学和三角学中非常基础和
重要的概念,它们帮助我们理解角的关系,解决各种几何和三角学问题。
通过理解这些概念,我们能更好地应用它们解决实际问题,并且在数学推导和证明中起到重要的作用。
对顶角、余角和补角

为___互__为__余__角__. (3)已知∠α =32°,则∠α 的补角为
_____1_4__8_°__,余角为_____5_8_°___.
小试牛刀
1.下列说法正确的是( A )
(A)一个锐角的余角是一个锐角 (B)任何一个角都有余角 (C)若∠1+∠2+∠3=90°,则∠1,∠2,∠3 互余 (D)一个角的补角一定大于这个角
1
2
E
D
F
1
2
A
B
C
合作探究
由题目知,∠1=∠2, ∠EDC=90º,小组讨论并回 答下列问题;
问题一:哪些角互为补角?哪些角互为余角?
问题二: ∠3与∠4有打什么关系?为什么?
问题三: ∠ADF与BDE有什么关系?为什么?
E
D
F
性质:
1
2
34
等角或同角的补角相等. A
ቤተ መጻሕፍቲ ባይዱ
B
等角或同角的余角相等.
C
巩固练习
第2章 相交线与平行线
2.1 两条直线的位置关系 第1课时 对顶角、余角和补角
学习目标
1.掌握两条直线的位置关系。 2.了解余角,补角,对顶角的定义。 3.掌握余角,补角,对顶角的性质。
请同学们观察这几张图片,图中的线段所在的直线呈 现的位置关系是什么?
探究定义
在生活中,你常见的两条直线有哪些位 置关系?你你能给它下定义吗?
课堂小结
1、对顶角的概念和性质; 2、余角、补角的概念和性质.
谢 谢!
1、∠1与∠2有公共顶A 点O 2、角的两边互为反向 延长线
相交线与平行线重点难点

相交线与平行线重难点知识点拨一.余角、补角、对顶角1,余角:如果两个角的和是直角,那么称这两个角互为余角.2,补角:如果两个角的和是平角,那么称这两个角互为补角.3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线.4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6,对顶角的性质:对顶角相等.二.同位角、内错角、同旁内角的认识及平行线的性质7,同一平面内两条直线的位置关系是:相交或平行.8,“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同位”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.平行线的性质与判定9,平行线的定义:在同一平面内,不相交的两条直线是平行线.10,平行公理:过直线外一点有且只有一条直线和已知直线平行.11,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.12,如果两条直线都与第三条直线平行,那么这两条直线互相平行. 13,平行线的判定定理:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.14,平行线的性质定理:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.难题巧解点拨例1求证三角形的内角和为180度.例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.AB C例4如图,∠1+∠2=∠BCD,求证AB∥D E.ABCED典型热点考题例1如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗AC∥BD 吗为什么例2 已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.小试牛刀一、选择题1.图2—17中,同旁内角共有A .4对B .3对C .2对D .1对2、光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=A .50°B .55°C .66°D .65°3、如图3,把长方形纸片沿EF 折叠,使D ,C 分别落在D ',C '的位置,若65EFB =∠,则AED '∠等于A .50B .55C .60D .65第2题图 第3题图4.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么A .8角均相等B .只有这一对内错角相等C. 凡是内错角的两角都相等,凡是同位角的两角也相等 D .凡是内错角的两角都相等,凡是同位角的两角都不相等 5、如图,在ABC 中,已知AB=AC,点D 、E 分别在AC 、AB 上,且BD=BC,AD=DE=EB,那么A ∠的度数是 BA 、30°B 、45°C 、35°D 、60°6、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上CABDE平行前进,则这两次拐弯的角度可以是 A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40° 7、已知:如图,AB A 、++=360 B 、++=180 C 、+-=180 D 、--=908、如图,把三角形纸片沿DE 折叠,当点A 落在四边形BCED 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是 . A ∠A =∠1+∠2 B2∠A =∠1+∠2 C3∠A =2∠1+∠2 D3∠A=2∠1十∠2 二、填空题1、用等腰直角三角板画45AOB =∠,并将三角板沿OB 方向平移到如图17所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______ 2、如图2—30,直线CD 、EF 相交于点A,则在∠1、∠2、∠3、∠4、∠B 和∠C 这6个角中.1同位角有______; 2内错角有______; 3同旁内角有_____.OM BA22α第1题图第2题图3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,1∠1和∠2是_______角;2若∠1与∠2互补,则∠1-∠3=_______.4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.三、解答题1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.2、在3×3的正方形ABCD的方格中,1+2+3+4+5+6+7+8+9之和是多少度解:3、已知:如图,CD 解:4、如图,哪些条件能判定直线AB ∥CD5、如图,已知DE 、BF 平分∠ADC 和∠ABC ,∠ABF =∠AED ,∠ADC =∠ABC ,由此可推得图中哪些线段平行并写出理由.6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.1如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.14 32ADC B2在1中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.3由1、2,请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗7、潜望镜中的两个镜子MN 和PQ 是互相平行的,如图所示,光线AB 经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB 与射出的光线CD 平行吗为什么8、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 1、求证BC EF // ; 2、求21∠∠与的度数P OFBEACQ2 1 321nmba。
第一节 余角与补角、对顶角

第一节 余角、补角与对顶角1.互为余角:如果两个角的和是直角,那么称这两个角互为余角。
注:互为余角仅仅表明了两个角之间的度量关系,与角的位置无关。
2.互为补角:如果两个角的和是平角,那么称这两个角互为补角。
注:和是平角,说明了互为补角仅仅表明了两个角之间的度量关系,与角的位置无关。
3.对顶角直线AB 与CD 相交于点O ,∠AOC 与∠BOD 有公共顶点O ,它们的两边互为反向延长线,这样的两个角叫做对顶角。
注:(1)两条直线相交;(2)有公共顶点;(3)无公共边(4)对顶角是成对的,是具有特殊位置的两个角。
4.角的重要性质:(1)同角或等角的余角相等。
(2)同角或等角的补角相等。
(3)对顶角相等。
例1:判断题(1).若∠1+∠2=90°,则∠1与∠2互余.( ) (2).若∠A 与∠B 互补,则∠A +∠B =180°.( )(3).若∠1与∠2互补,∠2与∠3互补,则∠1与∠3互补.( ) (4).若∠AOB +∠BOC =180°,则点A 、O 、C 必在同一直线上.( ) (5).若∠α+∠β+∠γ=90°,则∠α、∠β、∠γ互余.( )例2:如图1,直线l 1与l2相交,∠1=50°,则∠2=_________,∠3=_________.图1 图2例3:如图2,直线AB 与CD 相交于O 点,且∠AOD =90°,则∠AOC =_________=_________=_________=_________.例4:如图3,若AO ⊥CO ,BO ⊥DO ,∠BOC=150°,则∠DOC=________,∠AOD =________.图3 图4 图5AOBCA BCODOBA C例5:如图4,直线AB 与CD 相交于O ,∠EOD =90°,正确填写下列两角关系的名称.∠1与∠2:______________________ ∠2与∠3:______________________ ∠2与∠4:______________________ ∠1与∠4:______________________ 例6:如图5,AO ⊥BO ,直线CD 经过点O ,∠AOC =30°,求∠BOD 的度数. 例7:两条直线相交于一点,则共有对顶角的对数为( )A.1对B.2对C.3对D.4对例8:下面说法正确的个数为( )①对顶角相等 ②相等的角是对顶角 ③若两个角不相等,则这两个角一定不是对顶角 ④若两个角不是对顶角,则这两个角不相等A.1个B.2个C.3个D.4个例9:若∠1和∠2互余,∠2与∠3互余,∠1=40°,则∠3等于( )A.40°B.130°C.50°D.140°例10:如图,∠1和∠2是对顶角的图形有( )A.(1)(3)B.(2)(3)C.(3)D.(3)(4)例11:如图,已知直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,:4:1AOD DOC ∠∠=,AOF ∠的度数。
七年级数学上册知识讲义-6.3认识余角、补角、对顶角-苏科版

初中数学认识余角、补角、对顶角精讲精练【考点精讲】1. 互为余角与互为补角(1)概念:若,则称、互为余角;若则称、互为补角。
(2)记法的余角记作;的补角记作。
2. 余角(补角)的性质同角或等角的余(补)角相等。
3. 对顶角:如下图中,我们把叫做对顶角,也是对顶角。
OADBC4. 对顶角的性质:对顶角相等。
【典例精析】例题1 如图所示,O是直线AB上的一点,,平分,平分,则图中互为补角的对数有()A. 6对B. 7对C. 8对D. 9对思路导航:是直线AB上的一点,,又,,平分,,,,。
答案:互补的角有:,,,,,共8对。
答案选C。
点评:本题涉及互补的角较多,根据题意计算有关角的度数,再根据互为补角的定义,按照一定的顺序来写,做到既不重复又不遗漏。
例题2 一个角的补角与它的余角的2倍的差是平角的,请你求出这个角的度数。
思路导航:可以直接设元(题中问什么就设什么,直接求出结果),也可以间接设元(先求出这个角,再求出它的余角),然后列方程求解。
答案:设这个角的度数为,则它的补角、余角分别为,(),根据题意得,解得,所以这个角的度数为60度。
点评:有关余角和补角的计算题目,常设未知数,根据题意列方程求解。
所设的未知数不同,所得到的方程也不同。
例题3 如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线。
D(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?思路导航:(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分得∠AOD的两部分角的度数即可说明。
答案:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°-80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°。
∵∠1+∠2+∠3=180°,∴∠3=180°-∠1-∠2=180°-40°-100°=40°。
余角、补角、对顶角

余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF 平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是( )A .两个互补的角中必有一个是钝角B .一个角的补角一定比这个角大C .互补的两个角中至少有一个角大于或等于直角D .相等的角一定互余4.轮船航行到C 处测得小岛A 的方向为北偏东32○,那么从A 处观测到C 处的方向为( )A .南偏西32○B .东偏南32○C .南偏西58○D .东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图 l -2-2,AB ⊥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( )A .0个B .l 个C .2个D .3个9.如果一个角的补角是150○ ,那么这个角的余角是____________10.已知∠A 和∠B 互余,∠A 与∠C 互补,∠B 与∠C 的和等于周角的13 ,求∠A+∠B+∠C 的度数.11.如图如图1―2―3,已知∠AOC 与∠B 都是直角,∠BOC=59○.(1)求∠AOD 的度数;(2)求∠AOB 和∠DOC 的度数;(3)∠A OB 与∠DOC 有何大小关系;(4)若不知道∠BOC 的具体度数,其他条件不变,这种关系仍然成立吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对顶角余角补角
一、选择题
1.(2012·孝感中考)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( )
(A)45°(B)60°(C)90°(D)180°
2.如图所示为一直角三角板,∠1+∠2=( )
(A)60°(B)90°(C)110°(D)180°
3.(2012·北京中考)如图,直线AB,CD交于点O.射线OM平分∠AOC,若∠BOD=
76°,则∠BOM等于( )
(A)38°(B)104°(C)142°(D)144°
二、填空题
4.(2012·扬州中考)一个锐角是38度,则它的余角是________度.
5.(2012·泰州中考)已知∠α的补角是130°,则∠α=________度.
6.一个角等于它的补角的4倍,则这个角的补角等于________.
三、解答题
7.已知α的余角是β的补角的错误!未找到引用源。
,并且β的补角的度数是150°,试求α+β的值.
8.小明和同学们到郊外游玩,发现了一口井,他们很想知道井底的情况.于是,他
们找来了一面镜子.当时太阳光线跟水平方向成20°角(如图),要想使太阳光线
垂直射向井底,小明他们应当使镜子PQ与水平线OM之间所形成的锐角∠POM等
于多少度?(根据光学知识,∠POA=∠QOB)
【拓展延伸】
9.如图,∠AOC与∠EOC有公共顶点O,OC是它们的公共边,它们的另一条边OA与OE互为反向延长线.我们把这样的两个角叫做邻补角.
(1)试再写出图中的一对邻补角.
(2)邻补角一定互补吗?互补的两个角一定是邻补角吗?为什么?
(3)如果OB,OD分别是∠AOC与∠EOC的平分线,那么找出图中互为余角的角,互为补角的角,并说明理由.
答案解析
1.【解析】选 C.由题意,得∠α+∠β=180°,∠α+∠γ=90°,两式相减得∠β-∠γ=90°.故选C.
2.【解析】选B.根据平角的定义可得,∠1+90°+∠2=180°,∴∠1+∠2=90°.
3.【解析】选C.∵∠BOD=76°,∠AOC与∠BOD是对顶角,∴∠AOC=76°,又∵∠BOC与∠AOC 互补,∴∠BOC=104°,又∵OM平分∠AOC,∴∠COM=
38°,∴∠BOM=142°.
4.【解析】∵这个角是38度,∴这个角的余角为90-38=52(度).
答案:52
5.【解析】∵∠α的补角是130°,∴∠α=180°-130°=50°.
答案:50
6.【解析】设这个角的度数为x°,则它的补角为(180-x)°,根据题意列方程得:x=4(180-x),解得x=144,∴这个角的补角等于180°-144°=36°.
答案:36°
7.【解析】∵β的补角的度数是150°,∴β=180°-150°=30°,∴α=
90°-错误!未找到引用源。
×150°=40°,∴α+β=40°+30°=70°.
【归纳整合】本题主要考查互为余角与互为补角的概念,首先要弄清楚题目中一共涉及几个角,除了要求的角外,还有余角和补角;其次将其表示出来;最后根据等量关系求解.
8.【解析】由题意知∠BOM=90°,∠AOM=20°,
又∵∠POA+∠QOB +∠BOM +∠AOM=180°.
∠POA=∠QOB,
∴∠POA=∠QOB=错误!未找到引用源。
=35°,
∴∠POM=∠POA +∠AOM=55°.
9.【解析】(1)∠AOB与∠EOB或∠AOD与∠EOD.
(2)邻补角一定互补,互补的两个角不一定是邻补角,∵互补的角不一定有共同的顶点.
(3)互为余角的有:∠DOE与∠AOB,∠DOE与∠BOC,∠DOC与∠BOC,∠DOC与∠AOB;互为补角的有:∠DOE与∠AOD,∠DOC与∠AOD,∠AOB与∠BOE,∠BOC与∠BOE,
∠EOC与∠AOC.
∵∠BOC=错误!未找到引用源。
∠AOC,∠DOC =错误!未找到引用源。
∠EOC,∠AOC+∠EOC=180°,∴∠BOC+∠DOC=
错误!未找到引用源。
(∠AOC +∠EOC)=90°,即∠BOD=90°,∴∠DOE+∠AOB=90°,∠DOC+∠AOB=
90°,∠BOC+∠DOE=90°.
∵∠DOE+∠AOD=180°,∠AOB+∠BOE=180°,
∴∠DOC+∠AOD=180°,∠BOC+∠BOE=180°.
垂直学案
1.垂直的定义及表示方法
(1)两条直线相交成四个角,如果有一个角是 ,那么称这两
条直线互相垂直,其中一条直线叫做另一条直线的 ,它们的
交点叫做
(2)垂直的符号是 ,直线AB 与直线CD 垂直,记作 ,直线m
与直线n 垂直,记作
几何语言:
例1如图,直线AB,CD,EF 都经过点O,且AB ⊥CD,∠COE=35°,求∠DOF,∠BOF 的度数.
例2如图所示,O 为直线AB 上一点,∠AOC=13
∠BOC,OC 是 ∠AOD 的平分线.
(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
2.垂线的性质
(1)平面内,过一点 一条直线与已知直线垂直.
(2)直线外一点与直线上各点连接的所有线段中, 最短
(3)点到直线的 的长度,叫点到直线的距离
练习1下列说法中,不正确的是( )
(A)在同一平面内,经过一点只能画一条直线和已知直线垂直
(B)一条直线可以有无数条垂线
(C)在同一平面内,过射线的端点与该射线垂直的直线只有一条
(D)过直线外一点并过直线上一点可画一条直线与该直线垂直
练习2已知直线l 外一点P,则点P 到直线l 的距离是指( )
(A)点P 到直线l 的垂线的长度
(B)点P 到直线l 的垂线
(C)点P 到直线l 的垂线段的长度
(D)点P 到直线l 的垂线段
练习3点P 是直线l 外一点,点A ,B ,C 是直线l 上三点,且PA=10,PB=8,PC=6,那么点P 到直线l 的距离为( )
(A)6 (B)8 (C)大于6的数 (D)不大于6的数
练习4如图所示,A,D 是直线m 1上的两点,B,C 是直线m 2上的两点,且AB ⊥BC,CD ⊥AD.
(1)点A到直线m
的距离是.
2
的距离是.
(2)点C到直线m
1
(3)点C到点A的距离是
认识垂线及其性质的两点注意
1.线段和射线都有垂线.
2.点到直线的距离是垂线段的长度,是一个数值,而垂线段是一个图形,对此要分清楚.例3:作垂直:(1)看下图,过点A做直线AB⊥CD,垂足为B
过一点画已知直线的垂线的三个步骤
1.靠,让三角尺的一条直角边紧靠在已知直线上.
2.移,移动三角尺,使三角尺的另一条直角边过已知点.
3.画,沿不与已知直线重合的直角边画一直线,则该直线就是已知直线的垂线.
(2)方格纸上画垂直
若取定A,B 两点,怎样再取两点 C,D才能使CD⊥AB?
有什么规律?
练习1.在上图中找出互相垂直的直线是.
课后训练:
1.若AO⊥BO,垂足为O,∠AOC∶∠AOB=2∶9,则∠BOC的度数是.
2.画一条线段的垂线,垂足在()
(A)线段上(B)线段的端点处
(C)线段的延长线上(D)以上都有可能
3.下列时刻中,时针与分针互相垂直的是()
(A)2点20分(B)3点整
(C)12点10分(D)5点40分。