2019-2020学年高中数学 4.11数学归纳法A导学案新人教版选修4-5.doc
最新人教版高中数学选修4-5《数学归纳法》目标导引

一数学归纳法
一览众山小
诱学·导入
材料:同学们都听说或看见过玩多米诺骨牌的情形吧.
(1)第一张牌能倒下;
(2)任意相邻的两张牌只要前一张能倒下,并且能压倒紧挨的后一张牌,则所有的牌都能倒下.
问题:无穷多块多米诺骨牌倒下的必要条件是什么?
导入:两个必要条件:(1)起始的第一块骨牌倒下;(2)如果任意相邻的两块骨牌中前一块倒下导致后一块倒下.那么我们就可保证在启动第一块骨牌后,所有的骨牌都会倒下.在数学的学习和研究中,我们会遇到很多类似米诺骨牌倒下情形的数学问题,比如证明与自然数有关的某些命题.这就是学习本节内容的目的所在.
温故·知新
1.数学归纳法是证明与自然数有关的命题的重要方法,在我们所学过的知识中,哪些内容是与自然数紧密相关的呢?
答:我们熟悉的数列问题大多都是与自然数有关的命题,如数列的通项公式a n、前n项和S n都是关于自然数n的函数表达式,还有数列求和问题也是如此.除数列外,比如整除性问题、几何计数问题等也都是与自然数有关的问题.因此它们是我们学习数学归纳法的重要载体.
2.初学数学归纳法除了要熟练掌握两个基本步骤,还要巩固哪些知识和方法呢?
答:在使用数学归纳法的过程中,关键是第二个步骤,证明一种递推关系:即由n=k(k∈N,k≥n0)时命题成立去证明n=k+1时命题成立,在这个过程中我们常常需要使用因式分解、通分、凑项、配方等代数变形方法,所以我们还必须熟练掌握这些变形方法.。
人教A版选修4-5 4.1 数学归纳法 学案

一 数学归纳法 第12课时 数学归纳法一般地,当要证明一个命题对于不小于某个正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:(1)证明当n =n 0时命题成立;(2)假设n =k (k ∈N +,且k ≥n 0)时命题成立,证明n =k +1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立,这种证明方法称为数学归纳法.知识点一 用数学归纳法证明恒等式1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:观察分母知,首项为n ,末项为n 2,公差为1,共有n 2-n +1项,且f (2)=12+13+14.答案:D2.(2019·江西师大附中模拟)用数学归纳法证明:⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝⎛⎭⎪⎫1-1n 2=n +12n (n ≥2,n ∈N +).证明:①当n =2时,左边=1-14=34,右边=2+12×2=34.∴等式成立.②假设当n =k (k ≥2,k ∈N +)时,等式成立,即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1k 2=k +12k (k ≥2,k ∈N +).当n =k +1时,⎝⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎡⎦⎥⎤1-1k +12=k +12k ·k +12-1k +12=k +1k ·k +22k ·k +12=k +22k +1=k +1+12k +1, ∴当n =k +1时,等式成立.根据①和②知,对n ≥2,n ∈N +时,等式成立. 知识点二 用数学归纳法证明整除问题3.(2019·湖南邵东一中月考)用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:假设n =k 时,即k 3+(k +1)3+(k +2)2能被9整除,那么当n =k +1时,则(k +1)3+(k +2)3+(k +3)3=(k +1)3+(k +2)3+(k 3+3k 2×3+3k ×32+33)=k 3+(k +1)3+(k +2)3+(9k 2+27k +27).故只需展开(k +3)3即可,故选A.答案:A4.用数学归纳法证明“5n -2n 能被3整除”时,在第二步中,当n =k +1时,为了使用归纳假设应将5k +1-2k +1变形为________.解析:假设n =k 时,应有5k -2k 能被3整除,当n =k +1时,应变形为5k+1-2k +1=5(5k -2k )+3·2k . 答案:5(5k -2k )+3·2k知识点三 用数学归纳法证明几何问题5.(2019·福清东张中学期中)平面内原有k 条直线,他们的交点个数记为。
12新人教A版高中数学(选修4-5)《数学归纳法》

上面四个式子的结果分 别是 2,3,4,5,由此猜想: 1 3 5 1 2n 1 1 n .
n n
怎样证明它呢?
分析 这个问题的特点是 要证不等式 在 n 为 :
任何正整数时都成立虽然我们可以验证n 1, 2, . 3,4,5, 甚至 n 1 000,100 000, 时这个等式成立 , 但是正整数是无限多个我们无法对它们一一验 , 证.所以, 通过验证的方法无法完 成证明 .
由 1 , 2 可知 , 对于 n n N , n 3 个点 , 相应的直 1 线共有 n n 1 条 . 2
思考 结合上述证明过程你认为 , 数学归纳法有什么特殊 作用?
数学归纳法是证明一些 与无限多 个正整数相关的命题的 有力工具, 它用有限的步骤
1奠基和2
一般地, 当要证明一个命题对于不小于某个 正整数n0的所有正整数 都成立时, 可以用以 n 下两个步骤:
1证明当n n0时命题成立 ;
2假设当n k k N , 且k n0 时命题成立,
证明n k 1时命题也成立 .
在完成这两个步骤后就可以断定命题对于 , 不小于n0 的所有正整数都成立 .这种证明方
3
被6整除.
证明
1 当 n
1 时 , n 5 n 显然能够被
3
2
6 整除 ,
命题成立 .
2 假设当
n k k 1 时 , 命题成立 .即 k 5 k 能
够被 6 整除 .
当 n k 1时 ,
k
1 5 k 1 k 3 k 3 k 1 5 k 5
数学归纳法mathematical induction . 法称为
2019-2020学年度最新高中数学人教A版选修4-5教学案:第一讲本讲知识归纳与达标验收

2019-2020学年度最新高中数学人教A 版选修4-5教学案:第一讲本讲知识归纳与达标验收 对应学生用书P16考情分析从近两年的高考试题来看,绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.真题体验1.(江西高考)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3D .4解析:|x -1|+|x |+|y -1|+|y +1|≥|x -1-x |+|y -1-(y +1)|=1+2=3. 答案:C2.(湖南高考)不等式|2x +1|-2|x -1|>0的解集为________. 解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x >143.(陕西高考)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.解析:(am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2mnab +mn (a 2+b 2)=mn (a +b )2=mn =2,当且仅当m =n =2时等号成立. 答案:24.(福建高考)设不等式|x -2|<a (a ∈N +)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N +,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.(江苏高考)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.解:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,由题设知|x +y |<13,|2x -y |<16, 从而3|y |<23+16=56,所以|y |<518.对应学生用书P16利用不等式的性质判断不等式或有关结论是否成立,再就是利用不等式性质,进行数值或代数式大小的比较,常用到分类讨论的思想.[例1] “a +c >b +d ”是“a >b 且c >d ”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件[解析] 易得a >b 且c >d 时必有a +c >b +d .若a +c >b +d 时,则可能有a >b 且c >d . [答案] A利用基本不等式求最值问题一般有两种类型:①和为定值时, 积有最大值;②积为定值时,和有最小值,在具体应用基本不等式解题时, 一定要注意适用的范围和条件:“一正、二定、三相等”.[例2] x ,y ,z ∈R +,x -2y +3z =0,y 2xz 的最小值为________.[解析] 由x -2y +3z =0得y =x +3z2,则y 2xz =x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz=3, 当且仅当x =3z 时取“=”. [答案] 3[例3] (新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. [证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.[例4] 解下列关于x 的不等式: (1)|x +1|>|x -3|; (2)|x -2|-|2x +5|>2x ; [解] (1)法一:|x +1|>|x -3|,两边平方得(x +1)2>(x -3)2,∴8x >8.∴x >1. ∴ 原不等式的解集为{x |x >1}. 法二:分段讨论:当x ≤-1时,有-x -1>-x +3,此时x ∈∅; 当-1<x ≤3时,有x +1>-x +3, 即x >1,.∴此时1<x ≤3;当x >3时,有x +1>x -3成立,∴x >3. ∴原不等式解集为{x |x >1}.(2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-52. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35.∴解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x , 解得x <-73,∴原不等式无解.综上可得,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-35.对于不等式恒成立求参数范围问题,常见类型及其解法如下: (1)分离参数法:运用“f (x )≤a ⇔f (x )max ≤a ,f (x )≥a ⇔f (x )min ≥a ”可解决恒成立中的参数范围问题. (2)更换主元法:不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法:在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.[例5] 设函数f (x )=|x +1|+|x -4|-a . (1)当a =1时,求函数f (x )的最小值;(2)若f (x )≥4a +1对任意的实数x 恒成立,求实数a 的取值范围.[解] (1)当a =1时,f (x )=|x +1|+|x -4|-1≥|x +1+4-x |-1≥4, ∴f (x )min =4.(2)f (x )≥4a+1对任意的实数x 恒成立⇔|x +1|+|x -4|-1≥a +4a 对任意的实数x 恒成立⇔a +4a≤4.当a <0时,上式成立; 当a >0时,a +4a≥2a ·4a=4, 当且仅当a =4a ,即a =2时上式取等号,此时a +4a ≤4成立.综上,实数a 的取值范围为(-∞,0)∪{2}.对应学生用书P47(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x 2-5x +6≤0},集合B ={x ||2x -1|>3},则集合A ∩B 等于( ) A .{x |2≤x ≤3} B .{x |2≤x <3} C .{x |2<x ≤3}D .{x |-1<x <3}解析:A ={x |2≤x ≤3},B ={x |x >2或x <-1}. ∴A ∩B ={x |2<x ≤3|}. 答案:C2.(陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2D .v =a +b2解析:设甲、乙两地的距离为S ,则从甲地到乙地所需时间为Sa ,从乙地到甲地所需时间为S b ,又因为a <b ,所以全程的平均速度为v =2S S a +S b =2ab a +b <2ab 2ab =ab ,2ab a +b >2ab 2b =a ,即a <v <ab .答案:A3.已知|x -a |<b 的解集为{x |2<x <4},则实数a 等于( ) A .1 B .2 C .3D .4解析:由|x -a |<b 得,a -b <x <a +b ,由已知得⎩⎪⎨⎪⎧ a -b =2,a +b =4.解得⎩⎪⎨⎪⎧a =3,b =1.答案:C4.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C.b a +a b>2 D .|a |-|b |=|a -b |解析:法一(特殊值法):令a =-1,b =-2,代入A ,B ,C ,D ,知D 不正确.法二:由1a <1b <0,得b <a <0,所以b 2>ab ,ab >a 2,故A ,B 正确.又由b a >1,a b >0,且b a ≠a b ,即b a +ab >2正确.从而A ,B ,C 均正确,对于D ,由b <a <0⇔|a |<|b |. 即|a |-|b |<0,而|a -b |≥0,故D 错. 答案:D5.函数y =|x -4|+|x -6|的最小值为( ) A .2 B. 2 C .4D .6解析:y =|x -4|+|x -6|≥|x -4+6-x |=2. 答案:A6.若a >b >c ,且a +b +c =0,则( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>c |b |解析:∵a +b +c =0,a >b >c . ∴a >0,又b >c .∴ab >ac . 答案:C7.已知x +2y +3z =6,则2x +4y +8z 的最小值为( ) A .336 B .2 2 C .12D .1235 解析:∵2x >0,4y >0,8z >0,∴2x +4y +8z =2x +22y +23z ≥332x ·22y ·23z =332x +2y +3z =3×4=12. 当且仅当2x =22y =23z ,即x =2,y =1,z =23时,等号成立.答案:C8.已知x >1,y >1,且lg x +lg y =4,则lg x lg y 的最大值是( ) A .4 B .2 C .1D.14解析:由x >1,y >1,故lg x >0,lg y >0.∴4=lg x +lg y ≥2lg x lg y .∴lg x lg y ≤4,当且仅当x =y 时取等号. 答案:A9.不等式|sin x +tan x |<a 的解集为N ;不等式|sin x |+|tan x |<a 的解集为M ;则解集M 与N 的关系是( )A .N ⊆MB .M ⊆NC .M =ND .M N解析:|sin x +tan x |≤|sin x |+|tan x |,则M ⊆N (当a ≤0时,M =N =∅). 答案:B10.(安徽高考)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4D .-4或8解析:当a ≥2时,f (x )=⎩⎨⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a2,如图1可知,当x =-a2时,f (x )min =f ⎝⎛⎭⎫-a 2=a 2-1 =3,可得a =8;当a <2时,f (x )=⎩⎨⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,当x =-a 2时,f (x )min =f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,答案为D.答案:D二、填空题(本大题共4个小题,每小题5分,满分20分.把正确答案填在题中横线上) 11.函数f (x )=3x +12x2(x >0)的最小值为________.解析:f (x )=3x +12x 2=3x 2+3x 2+12x 2≥333x 2·3x 2·12x 2=9,当且仅当3x 2=12x 2即x =2时取等号.答案:912.定义运算x ·y =⎩⎪⎨⎪⎧x ,x ≤y ,y ,x >y ,若|m -1|·m =|m -1|,则m 的取值范围是________.解析:依题意,有|m -1|≤m ,所以-m ≤m -1≤m ,所以m ≥12.答案:⎣⎡⎭⎫12,+∞ 13.以下三个命题: (1)若|a -b |<1,则|a |<|b |+1;(2)若a ,b ∈R ,则|a +b |-2|a |≤|a -b |; (3)若|x |<2,|y |>3,则|x y |<23.其中正确的有__________个.解析:(1)∵|a |-|b |≤|a -b |<1,∴|a |<|b |+1. ∴(1)正确.(2)∵|a +b |-2|a |=|a +b |-|2a |≤|a +b -2a |=|b -a |=|a -b |,∴(2)正确. (3)∵|x |<2,|y |>3,∴|x y |=|x ||y |<23.∴(3)正确.答案:314.设函数f (x )=|2x -1|+x +3,则f (-2)=________,若f (x )≤5,则x 的取值范围是________.解析:f (-2)=|2×(-2)-1|+(-2)+3=6. ∵|2x -1|+x +3≤5 ⇔|2x -1|≤2-x ⇔x -2≤2x -1≤2-x⇔⎩⎪⎨⎪⎧2x -1≥x -22x -1≤2-x∴-1≤x ≤1.答案:6 [-1,1]三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)解不等式: |2x -1-x |<2;解:原不等式⇔⎩⎪⎨⎪⎧2x -1-x <2,2x -1-x >-2.因为2x -1-x <2⇔2x -1<x +2⇔⎩⎪⎨⎪⎧2x -1≥0,x +2≥0,2x -1<(x +2)2⇔⎩⎪⎨⎪⎧x ≥12,x 2+2x +5>0⇔x ≥12.又2x -1-x >-2⇔⎩⎪⎨⎪⎧2x -1≥0,x -2≥0,2x -1>(x -2)2.或⎩⎪⎨⎪⎧ 2x -1≥0,x -2<0. ⇔⎩⎪⎨⎪⎧x ≥2,x 2-6x +5<0或12≤x <2,⇔⎩⎨⎧x ≥2,1<x <5或12≤x <2⇔2≤x <5或12≤x <2⇔12≤x <5. 所以,原不等式组等价于⎩⎨⎧x ≥12,12≤x <5⇔12≤x <5. 因此,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x <5. 16.(本小题满分12分)(新课标全国卷Ⅰ)若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.17.(本小题满分12分)已知|2x -3|≤1的解集为[m ,n ].(1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.18.(本小题满分14分)已知函数f (x )=|x -2|,g (x )=-|x +3|+m .(1)解关于x 的不等式f (x )+a -1>0(a ∈R );(2)若函数f (x )的图像恒在函数g (x )图像的上方,求m 的取值范围. 解:(1)不等式f (x )+a -1>0,即|x -2|+a -1>0,当a =1时,解集为x ≠2,即(-∞,2)∪(2,+∞);当a >1时,解集为全体实数R ;当a <1时,∵|x -2|>1-a ,∴x -2>1-a 或x -2<a -1,∴x >3-a 或x <a +1,故解集为(-∞,a+1)∪(3-a,+∞).(2)f(x)的图像恒在函数g(x)图像的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|>m恒成立.又对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5,即m的取值范围是(-∞,5).。
2019高中数学 第四讲 数学归纳法证明不等式复习课学案 新人教A版选修4-5

第四讲数学归纳法证明不等式复习课[整合·网络构建][警示·易错提醒]1.数学归纳法的两个关注点.(1)关注用数学归纳法证题的步骤.第一步称“归纳奠基”,是递推链的起点;第二步称为“归纳递推”,是递推链具有传递性的保证.两步缺一不可,否则不能保证结论成立.(2)关注适用范围,数学归纳法适用于某些与正整数n有关的问题,这里n是任意的正整数,它可取无限多个值,但是,并不能说所有与正整数n有关的问题都可以用数学归纳法.2.数学归纳法的两个易错点.(1)在数学归纳法中,没有应用归纳假设.(2)归纳推理不到位.专题一数学归纳法在使用数学归纳法证明不等式时,一般来说,第一步,验证比较简明,而第二步归纳步骤情况较复杂.因此,熟悉归纳步骤的证明方法是十分重要的,其实归纳步骤可以看作是一个独立的证明问题,归纳假设“P(k)”是问题的条件,而命题P(k+1)成立就是所要证明的结论,因此,合理运用归纳假设这一条件就成了归纳步骤中的关键.[例❶] 设0<a<1,定义a1=1+a,a n+1=1a n+a,求证:对一切正整数n,有1<a n<11-a.证明:(1)当n=1时,a1>1,a1=1+a<11-a,命题成立.(2)假设n=k(k∈N*)时,命题成立.即1<a k<11-a,当n=k+1时,由递推公式,知a k+1=1a k+a>(1-a)+a=1.同时,a k+1=1a k +a<1+a=1-a21-a<11-a,故当n=k+1时,命题也成立,即1<a k+1<11-a,综合(1)(2)可知,对一切正整数n,有1<a n<11-a.归纳升华用数学归纳法证明不等式的题型多种多样,所以不等式的证明是一个难点,在由n=k 成立,推导n=k+1也成立时,其他证明不等式的方法在此都可以使用,如比较法、放缩法、分析法、反证法等,有时还要考虑与原不等式等价的命题.[变式训练] 证明不等式122+132+…+1n2<1(n≥2,n∈N*).证明:先证明122+132+…+1n2<1-1n(n≥2),(*)对(*)运用数学归纳法证明:(1)当n=2时,(*)显然成立.(2)设n=k时,不等式(*)成立,则122+132+…+1k2<1-1k.当n=k+1时,1 22+132+…+1k2+1(k+1)2<1-1k+1(k+1)2<1-1k+1k(k+1)=1-1k+⎝⎛⎭⎪⎫1k-1k+1=1-1k+1.故当n=k+1时,不等式(*)成立.根据(1)和(2)知,对n∈N*且n≥2,不等式(*)成立,故原不等式成立.专题二归纳、猜想、证明思想的应用归纳、猜想、证明属于探索性问题的一种,一般经过计算、观察、归纳,然后猜想出结论,再利用数学归纳法证明,由于“猜想”是“证明”的前提和“对象”,因此务必要保持猜想的正确性,同时要注意数学归纳法步骤的书写.[例2] 数列{a n}满足S n=2n-a n.(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)用数学归纳法证明(1)的猜想.(1)解:当n=1时,a1=S1=2-a1,所以a1=1.当n =2时,a 1+a 2=S 2=2×2-a 2, 所以a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3, 所以a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, 所以a 4=158.由此猜想a n =2n-12n -1(n ∈N *).(2)证明:①当n =1时,a 1=1,结论成立. ②假设当n =k (k ≥1且k ∈N +)时,结论成立, 即a k =2k-12k -1.当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1 , 即a k +1=2+a k -a k +1,所以a k +1=2+a k 2=2+2k-12k -12=2k +1-12k, 这表明当n =k +1时,结论成立. 由①②知猜想的通项公式a n =2n-12n -1成立.归纳升华归纳—猜想—证明的三步曲(1)计算:根据条件,计算若干项.(2)归纳猜想:通过观察、分析、综合、联想、猜想出一般结论. (3)证明:用数学归纳法证明.[变式训练] “设f (n )=1+12+13+…+1n (n ∈N +),有f (1)=1>12,f (3)>1,f (7)>32,f (15)>2,…”.试问:f (2n-1)与n 2大小关系如何?试猜想并加以证明. 解:数列1,3,7,15,…,通项公式为a n =2n-1,数列12,1,32,2,…,通项公式为a n =n2,所以猜想:f (2n-1)>n2.下面用数学归纳法证明:(1)当n =1时,f (21-1)=f (1)=1>12,不等式成立.(2)假设当n =k (k ≥1,k ∈N +)时不等式成立, 即f (2k-1)>k2.当n =k +1时,f (2k +1-1)=f (2k -1)+12k +12k+1+…+12k +1-2+12k +1-1> f (2k -1)+12k +1+…+12k +1,2k 个=f (2k -1)+12>k 2+12=k +12.所以当n =k +1时不等式也成立. 据(1)(2)知对任何n ∈N +原不等式均成立. 专题三 转化和化归思想把所要证的平面几何问题转化,运用数学归纳法来解决,这体现了转化和化归的思想.一般将待解决的平面几何问题进行转化,使之化为我们熟悉的或容易解决的问题.[例3] 设平面α内有n 条直线,这n 条直线把平面α分成互不垂叠的区域个数的最大值为f (n ),求f (n )的解析式,并用数学归纳法证明.解:设平面α内k (k ≥1)条直线把平面α分成区域个数的最大值为f (k ),则第k +1条直线与前k 条直线最多有k 个交点,因此第k +1条直线最多可以被分成k +1段,每一段可把所在的区域分为两部分,所以比原来的区域增加k +1个,即有f (k +1)=f (k )+k +1,所以f (k +1)-f (k )=k +1.于是f (2)-f (1)=2,f (3)-f (2)=3,…,f (n )-f (n -1)=n . 把以上n -1个等式相加得f (n )-f (1)=2+3+…+n . 因为f (1)=2,所以f (n )=f (1)+(2+3+…+n )=12(n 2+n +2).下面用数学归纳法证明:(1)n =1时,一条直线可以把平面分成2个, 即f (1)=2,而12(n 2+n +2)=12(1+1+2)=2,所以命题成立.(2)假设n =k 时,f (k )=12(k 2+k +2)成立,当n =k +1时,f (k +1)=f (k )+(k +1)=12(k 2+k +2)+(k +1)=12(k 2+2k +1+k +3)=12[(k +1)2+(k +1)+2],所以命题仍成立. 由(1)(2)知,当n ∈N *时,f (n )=12(n 2+n +2)成立.归纳升华有关几何图形的性质、公式等与自然数n 有关的命题,主要是抓住递推关系,明确要证明的表达式,然后转化用数学归纳法进行证明.[变式训练] 用数学归纳法证明:对于任意正整数n ,整式a n -b n都能被a -b 整除. 证明:(1)当n =1时,a n -b n=a -b 能被a -b 整除.(2)假设当n =k (k ∈N +,k ≥1)时,a k -b k 能被a -b 整除,那么当n =k +1时,ak +1-bk+1=ak +1-a k b +a k b -bk +1=a k (a -b )+b (a k -b k).因为(a -b )和a k-b k都能被a -b 整除,所以上面的和a k(a -b )+b (a k-b k)也能被a -b 整除. 这也就是说当n =k +1时,ak +1-bk +1能被a -b 整除.根据(1)(2)可知对一切正整数n ,a n -b n 都能被a -b 整除.。
2019-2020学年度最新高中数学人教A版选修4-5教学案:第二讲本讲知识归纳与达标验收

2019-2020学年度最新高中数学人教A 版选修4-5教学案:第二讲本讲知识归纳与达标验收 对应学生用书P27考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(福建高考)设不等式|2x -1|<1的解集为M . ①求集合M ;②若a ,b ∈M ,试比较ab +1与a +b 的大小. 解:①由|2x -1|<1得-1<2x -1<1, 解得0<x <1, 所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1. 所以(ab +1)-(a +b )=(a -1)(b -1)>0, 故ab +1>a +b .2.(辽宁高考)设f (x )=ln x +x -1,证明: (1)当x >1时,f (x )<32(x -1);(2)当1<x <3时,f (x )<9(x -1)x +5.解:(1)法一:记g (x )=ln x +x -1-32(x -1),则当x >1时,g ′(x )=1x +12x -32<0.又g (1)=0,故g (x )<0,即f (x )<32(x -1).法二:由均值不等式,当x >1时,2x <x +1, 故x <x 2+12.①令k (x )=ln x -x +1,则k (1)=0,k ′(x )=1x -1<0,故k (x )<0,即ln x <x -1.②由①②得,当x >1时,f (x )<32(x -1).(2)法一:记h (x )=f (x )-9(x -1)x +5,当1<x <3时,由(1)得h ′(x )=1x +12x -54(x +5)2=2+x 2x -54(x +5)2<x +54x -54(x +5)2=(x +5)3-216x 4x (x +5)2.令l (x )=(x +5)3-216x,1<x <3, l ′(x )=3(x +5)2-216<0,因此l (x )在(1,3)内是递减函数,又由l (1)=0,得l (x )<0,所以h ′(x )<0. 因此h (x )在(1,3)内是递减函数,又由h (1)=0,得h (x )<0. 于是当1<x <3时,f (x )<9(x -1)x +5.法二:记h (x )=(x +5)f (x )-9(x -1), 则当1<x <3时,由(1)得h ′(x )=f (x )+(x +5)f ′(x )-9 <32(x -1)+(x +5)⎝⎛⎭⎫1x +12x -9 =12x [3x (x -1)+(x +5)(2+x )-18x ] <12x[3x (x -1)+(x +5)⎝⎛⎭⎫2+x 2+12-18x ] =14x (7x 2-32x +25)<0, 因此h (x )在(1,3)内单调递减,又h (1)=0,所以h (x )<0, 即f (x )<9(x -1)x +5.对应学生用书P27比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.[例1] 设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n ≥(a +b )2.[证明] ∵a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn ≥0,∴a 2m +b 2n≥(a +b )2.综合法证明不等式的思维方向是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.[例2] 已知a ,b ,c 为△ABC 的三条边,求证: a 2+b 2+c 2<2(ab +bc +ca )[证明] 设a ,b 两边的夹角为θ,则由余弦定理: cos θ=a 2+b 2-c 22ab∵因为0<θ<π, ∴cos θ<1. ∴a 2+b 2-c 22ab <1.即a 2+b 2-c 2<2ab .同理可证:b 2+c 2-a 2<2bc , c 2+a 2-b 2<2ac .将上面三个同向不等式相加,即得: a 2+b 2+c 2<2(ab +bc +ca ).分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.[例3] 已知a >b >0.求证:a -b <a -b . [证明] 要证a -b <a -b只需证:a <a -b +b , 只需证:(a )2<(a -b +b )2,只需证:a <a -b +b +2b (a -b ),只需证:0<2b (a -b ).∵a >b >0.上式显然成立, ∴原不等式成立.即a -b <a -b .用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.[例4] 已知:在△ABC 中,∠CAB >90°,D 是BC 的中点,求证:AD <12BC (如右图所示).[证明] 假设AD ≥12BC .(1)若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .(2)若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD , 从而∠B >∠BAD . 同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD . 即∠B +∠C >∠A .因为∠B +∠C =180°-∠A ,所以180°-∠A>∠A即∠A<90°,与已知矛盾,故AD>12BC不成立.由(1)(2)知AD<12BC成立.放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性,作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达不到目的.[例5]已知|x|<3,|y|<6,|z|<9,求证:|x+2y-3z|<ɛ.[证明]∵|x|<3,|y|<6,|z|<9,∴|x+2y-3z|=|x+2y+(-3z)|≤|x|+|2y|+|-3z|=|x|+2|y|+3|z|<3+2×6+3×9=ɛ.∴原不等式成立.对应学生用书P49(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分析法证明不等式的推论过程一定是()A.正向、逆向均可进行正确的推理B.只能进行逆向推理C.只能进行正向推理D.有时能正向推理,有时能逆向推理解析:在用分析法证明不等式时,是从求证的不等式出发,逐步探索使结论成立的充分条件即可,故只需能进行逆向推理即可.答案:B2.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤bD .a ≥b解析:∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0,∴a ≥b . 答案:D3.已知a ,b ,c ,d 为实数,ab >0,-c a <-db ,则下列不等式中成立的是( )A .bc <adB .bc >ad C.a c >bdD.a c <b d解析:将-c a <-db 两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 答案:B4.用反证法证明命题“如果a >b ,那么3a >3b ”时,假设的内容应是( ) A.3a =3bB.3a <3bC.3a =3b 且3a <3bD.3a =3b 或3a <3b解析:3a 与3b 大小包括3a >3b ,3a =3b ,3a <3b 三方面的关系,所以3a >3b 的反设应为3a =3b 或3a <3b .答案:D5.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根解析:至少有一个实根的否定是没有实根,故做的假设是“方程x 3+ax +b =0没有实根”.答案:A6.使不等式3+8>1+a 成立的正整数a 的最大值为( ) A .10 B .11 C .12D .13解析:用分析法可证a =12时不等式成立,a =13时不等式不成立. 答案:C7.设a ,b ∈R +,且a ≠b ,P =a 2b +b 2a ,Q =a +b ,则( )A .P >QB .P ≥QC .P <QD .P ≤Q解析:P -Q =a 2b +b 2a -(a +b )=a 3+b 3-ab (a +b )ab=(a +b )(a 2+b 2-2ab )ab=(a +b )(a -b )2ab,∵a ,b 都是正实数,且a ≠b , ∴(a +b )(a -b )2ab >0.∴P >Q .答案:A8.已知a ,b 为非零实数,则使不等式:a b +ba ≤-2成立的一个充分而不必要条件是( )A .ab >0B .ab <0C .a >0,b <0D .a >0,b >0 解析:因为a b 与b a 同号,由a b +b a ≤-2,知a b <0,b a <0,即ab <0,又若ab <0,则ab <0,ba<0, 所以a b +b a=-⎣⎡⎦⎤⎝⎛⎭⎫-a b +⎝⎛⎭⎫-b a≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2, 综上,ab <0是a b +ba≤-2成立的充要条件,所以a >0,b <0是a b +ba ≤-2成立的一个充分而不必要条件.答案:C9.如果log a 3>log b 3,且a +b =1,那么( ) A .0<a <b <1 B .0<b <a <1 C .1<a <bD .1<b <a解析:法一:∵a ,b 为对数底数,∴a >0,b >0,又a +b =1,故a <1,b <1,利用对数函数图像的特点:当底数小于1大于0时,底数越小,图像越接近x 轴,∴a <b .法二:由log a 3>log b 3⇒1log 3a -1log 3b >0⇒log 3b -log 3a log 3a ·log 3b >0,由0<a <1,0<b <1,得log 3a ·log 3b >0, ∴log 3b -log 3a >0,log 3b >log 3a .故b >a . 答案:A10.若a >b >0,下列各式中恒成立的是( ) A.2a +b a +2b >ab B.b 2+1a 2+1>b 2a 2C .a +1a >b +1bD .a a >b b 解析:利用不等式性质得,当a >b >0时,1a <1b ,由此可知,C 不恒成立;当0<a <1,a >b时,可知a a<b b,D 不能恒成立;选取适当的特殊值,若a =2,b =1,可知2a +b a +2b =54,ab=2,由此可见A 不恒成立.由于本题为单选题,仅有一个结论成立,综上可知排除A ,C ,D.答案:B二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 一定是锐角”时,应假设________________.解析:“∠B 一定是锐角”的否定是“∠B 不是锐角”. 答案:∠B 不是锐角12.如果a a +b b >a b +b a ,则实数a ,b 应该满足的条件是________.解析:由a 知a ≥0,b 知b ≥0,而a a +b b ≠a b +b a ,知b ≠a .此时a a +b b -(a b +b a )=(a -b )2(a +b )>0,不等式成立.答案:a ≥0,b ≥0,a ≠b13.记A =1210+1210+1+1210+2+…+1211-1,则A 与1的大小关系为________.解析:∵211-1=210+(210-1), ∴A 是210项之和.∵A =1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210=1210×210=1.答案:A <114.已知a >1,a lg b =100,则lg(ab )的最小值是________. 解析:对a lg b =100两边取常用对数得lg a lg b =2, ∵lg a lg b ≤⎝⎛⎭⎪⎫lg a +lg b 22=⎣⎡⎦⎤lg (ab )22, ∴lg(ab )≥2 2.当且仅当lg a =lg b =2时,等号成立. 答案:2 2三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设|a |<1,|b |<1,求证:|a +b |+|a -b |<2. 证明:当a +b 与a -b 同号时,|a +b |+|a -b |=|a +b +a -b |=2|a |<2; 当a +b 与a -b 异号时,|a +b |+|a -b |=|a +b -(a -b )|=2|b |<2. ∴|a +b |+|a -b |<2.16.(本小题满分12分)求证:2(a 2+1)32+1a 2+1≥3. 证明:2(a 2+1)32+1a 2+1=2a 2+1+1a 2+111 / 11=a 2+1+a 2+1+1a 2+1≥33a 2+12·1a 2+1=3. 17.(本小题满分12分)已知a 2+b 2+c 2=1,求证:-12≤ab +bc +ca ≤1. 证明:因为(a +b +c )2≥0,所以a 2+b 2+c 2+2(ab +bc +ca )≥0.又因为a 2+b 2+c 2=1,所以ab +bc +ca ≥-12. 因为ab ≤a 2+b 22,bc ≤b 2+c 22,ac ≤a 2+c 22, 所以ab +bc +ca ≤a 2+b 22+b 2+c 22+a 2+c 22 =a 2+b 2+c 2=1.所以-12≤ab +bc +ca ≤1. 18.(本小题满分14分)设二次函数f (x )=ax 2+bx +c (a ≠0) 中的a ,b ,c 均为整数,且f (0),f (1)均为奇数.求证:方程f (x )=0无整数根.证明:假设方程f (x )=0有一个整数根k ,则ak 2+bk +c =0.①∵f (0)=c ,f (1)=a +b +c 均为奇数,则a +b 必为偶数.当k 为偶数时,令k =2n (n ∈Z ),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数.ak 2+bk +c 必为奇数,与①式矛盾;当k 为奇数时,令k =2n +1(n ∈Z ),则ak 2+bk =(2n +1)(2na +a +b )为一奇数与一偶数之积,必为偶数,也与①式相矛盾, 所以假设不正确,即方程f (x )=0无整数根.。
新人教A版选修4-5高中数学数学归纳法教案

数学归纳法一、教学目标:理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题,会用归纳、猜想、证明这种探索思想解决一些数学问题.二、教学重点:数学归纳法及其原理的理解,归纳、猜想、证明这一探索思想的应用.三、教学过程:(一)主要知识:数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.1.归纳法及其分类2.数学归纳法及其原理3.数学归纳法的基本步骤4.归纳、猜想、证明的探索思想(二)知识点详析1.归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
2.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n0)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n0且n∈N)结论都正确”。
由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
3.数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.4.数学归纳法的应用:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、整除性问题、几何中计算问题,数列的通项与和等等。
高中数学 4.1数学归纳法学案 新人教A版选修4-5 学案

河北省唐山市开滦第二中学高中数学 4.1数学归纳法学案 新人教A 版选修4-5【学习目标】1、掌握数学归纳法及其证明思路。
2、理解数学归纳法的步骤。
【重点难点】 数学归纳法的应用 【学习过程】 一、问题情景导入通过下面的式子: -1+3= -1+3-5= -1+3-5+7= -1+3-5+7-9= 猜想出-1+3-5+7++(1)(21)nn --的结果110,3,n a a +==二、自学探究:(阅读课本第46-48页,完成下面知识点的梳理)一般地,要证明一个命题对于不小于某正整数0n 的所有正整数n 都成立时,可以用以下两个步骤: (1) (2)完成这两个步骤后,就可以判定命题对于不小于0n 的所有正整数都成立,这种证明方法称为数学归纳法 三、例题演练:例1、 证明:35n n +(n ∈N +)能够被6整除。
例2、 平面上有n (n ∈N +,n ≥3)个点,其中任何三点都不在同一条直线上。
过这些点中任意两点作直线,这样的直线共有多少条?证明你的结论。
例3、 用数学归纳法证明: 1111111234(21)212n n n n n n+++=+++⨯⨯-⨯+++【课堂小结与反思】【课后作业与练习】a) 用数学归纳法证明不等式(n+1)(n+2)()n n + =213(21)(nn n - ∈N +)时,从“n=k 到n=k+1”左端需乘以的代数式为 ( )A.2k+1B.2(2k+1)C.211k k ++ C.231k k ++b) 用数学归纳法证明时:设2()1427(31)(1)f k k k k k =⨯+⨯+++=+,求(1)f k +3、用数学归纳法证明:(3n+1)71n-能被9整除(n ∈N +)4、证明凸n 边形的对角线的条数1()(3)(4)2f n n n n =-≥5、已知{}n a 是由非负整数组成的数列,满足120,3,a a == 1n n a a +=12(2)(2),n n a a --++ n=3,4,5(1)求3a ;(2)证明:2n n a a -=+2, n=3,4,56、平面内有n 个圆,任意两个圆都相交于两点,任意三个圆不相交于同一点,求证:这n 个圆将平面分成()f n =22n n -+个部分(n ∈N +)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 4.11数学归纳法A 导学案新人教版选修4-5
【学习目标】1.了解数学归纳法的原理.2.了解数学归纳法的使用范围.
3.会用数学归纳法证明一些简单问题.
【重点难点】数学归纳法的原理及应用. 【学习过程】 一、自主学习 要点1:由有限多个个别的特殊事例得出 的推理方法,通常称为 . 要点2.一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:
(1)证明当 时命题成立;
(2)假设当 时命题成立,证明 时命题也成立. 在完成了这两个步骤后,就可以断定命题对于从初始值n 0开始的所有自然数都正确.这种证明方法称为数学归纳法.
二、合作,探究,展示,点评 题型一 利用数学归纳法证明等式
【例1】 通过计算下面的式子,猜想出-1+3-5+…+(-1)n
(2n -1)的结果,并加以证明.
【变式1】 用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+1
2n
.
【例2】 证明12+122+123+…+12n -1+12n =1-12
n (其中n ∈N *
)成立的过程如下,请判断证明是否正确?
为什么?
证明:(1)当n =1时,左边=12,右边=1-12=1
2
.∴当n =1时,等式成立.
(2)假设当n =k (k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-1
2
k ,
那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k +11-12
=1-1
2
k +1=右边.
这就是说,当n =k +1时,等式也成立.
根据(1)和(2),可知等式对任何n ∈N *
都成立.
【变式2】 用数学归纳法证明:⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1n 2=n +12n
(n ≥2).
题型二 用数学归纳法证明不等式
【例3】 用数学归纳法证明:1+122+132+…+1n 2<2-1
n
(n ≥2).
【变式3】 1+122+132+…+1n 2≥3n 2n +1
(n ∈N *
).
三、知识小结
《数学归纳法(一)》课时作业
一、选择题
1.用数学归纳法证明:1+12+13+…+1
2n -1
<n (n >1).在验证n =2时成立,左式是( ).
A .1
B .1+12
C .1+12+13
D .1+12+13+1
4
2.用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22
(n ∈N *
),则从n =k 到n =k +1时,左边应添
加的项为 ( ).
A .k 2+1
B .(k +1)2
C.k +4+k +22
D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2
3.某个与正整数n 有关的命题,如果当n =k (k ∈N *
且k ≥1)时该命题成立,则一定可推得当n =k +1时该命题也成立,现已知n =5时该命题不成立,那么应有 ( ). A .当n =4时该命题成立 B .当n =6时该命题成立 C .当n =4时该命题不成立 D .当n =6时该命题不成立
4.已知f (x )是定义域为正整数集的函数,对于定义域内任意的k ,若f (k )≥k 2
成立,则f (k +1)≥(k
+1)2
成立,下列命题成立的是 ( ).
A .若f (3)≥9成立,则对于任意的k ≥1,均有f (k )≥k 2
成立
B .若f (4)≥16成立,则对于任意的k ≥4,均有f (k )<k 2
成立
C .若f (7)≥49成立,则对于任意的k <7,均有f (k )<k 2
成立
D .若f (4)=16成立,则对于任意的k ≥4,均有f (k )≥k 2
成立
二、填空题
5.用数学归纳法证明:“1×4+2×7+3×10+…+n (3n +1)=n (n +1)2
,n ∈N +”,当n =1时,左端为___ _____.
6.用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n
·1·…·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为____________.
7.观察下列等式
1=1, 3+5=8,
7+9+11=27,
13+15+17+19=64, ……
请猜想第n 个等式是________________________.
三、解答题
8.求证:1n +1+1n +2+…+13n >56
(n ≥2,n ∈N *
).
9.求证:11×2+1
3×4+…+
1n -
n =
1n +1+1n +2+…+1n +n .
10.是否存在常数a 、b 、c ,使得等式1×22+2×32+…+n ·(n +1)2
=n n +
12
(an 2
+bn +c )对一
切正整数n 都成立?。