高考数学一轮复习 课后作业(四十三)直线、平面平行的判定及其性质 文
高考数学(理)一轮规范练【41】直线、平面平行的判定及其性质(含答案)

课时规范练41 直线、平面平行的判定及其性质课时规范练第65页一、选择题1.已知直线a∥平面α,P∈α,那么过点P且平行于直线a的直线( )A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,在平面α内D.有无数条,一定在平面α内答案:C解析:过直线外一点作已知直线的平行线有且只有一条.2.空间中,下列A.若a∥α,b∥a,则b∥αB.若a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥β[:D.若α∥β,a⊂α,则a∥β答案:D解析:A项,若a∥α,b∥a,则b∥α或b⊂α;B项,只有在a和b是相交直线时才成立;C项,若α∥β,b∥α,则b∥β或b⊂β.3.下列①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4答案:B解析:a∩α=A时,a⊄α,故①错;直线l与α相交时,l上有无数个点不在α内,故②错;l∥α时,α内的直线与l平行或异面,故③错;l∥α,l与α无公共点,所以l与α内任一条直线都无公共点,④正确;长方体中的相交直线A1C1与B1D1都与面ABCD平行,所以⑤正确.4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.①④C.②③D.②④答案:B解析:①由平面ABC∥平面MNP,可得AB∥平面MNP.④由AB∥CD,CD∥NP,得AB∥NP,所以AB∥平面MNP.5.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FGB.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台答案:D[:解析:∵EH∥A1D1,A1D1∥BC,∴EH∥BC.∴EH∥平面BCGF.∵FG⊂平面BCGF,∴EH∥FG,故A对.∵B1C1⊥平面A1B1BA,EF⊂平面A1B1BA,∴B1C1⊥EF.则EH⊥EF.由上面的分析知,四边形EFGH为平行四边形,故它也是矩形,故B对.由EH∥B1C1∥FG,故Ω是棱柱,故C对.6.“直线a∥平面β”是“直线a至少平行于平面β内的一条直线”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:B解析:直线a∥平面β,则“直线a至少平行于平面β内的一条直线”一定成立.反之不能成立.7.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A'DE是△ADE绕DE旋转过程中的一个图形,则下列①动点A'在平面ABC上的射影在线段AF上;②BC∥平面A'DE;③三棱锥A'-FED的体积有最大值.A.①B.①②C.①②③D.②③答案:C解析:①中由已知可得平面A'FG⊥平面ABC,∴点A'在平面ABC上的射影在线段AF上.②∵BC∥DE,∴BC∥平面A'DE.③当平面A'DE⊥平面ABC时,三棱锥A'-FED的体积取最大值.二、填空题8.已知l,m,n是互不相同的直线,α,β,γ是三个不同的平面,给出下列①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中所有真答案:③解析:①中α可能与β相交;②中直线l与m可能异面;③中结合线面平行的判定和性质可以证明m∥n.9.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ= .答案:a解析:如图所示,连接AC,[:易知MN∥平面ABCD,∴MN∥PQ.又∵MN∥AC,∴PQ∥AC.又∵AP=,∴.∴PQ=AC=a.10.设x,y,z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真①x为直线,y,z为平面;②x,y,z为平面;③x,y为直线,z为平面;④x,y为平面,z为直线;[:⑤x,y,z为直线.答案:①③④三、解答题11.(2018广东高考)如图(1),在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图(2)所示的三棱锥A-BCF,其中BC=.图(1)图(2)(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F-DEG的体积V F-DEG.解:(1)证明:在等边三角形ABC中,∵AD=AE,∴.又,在折叠后的三棱锥A-BCF中也成立,∴DE∥BC.∵DE⊄平面BCF,BC⊂平面BCF,∴DE∥平面BCF.(2)证明:在等边三角形ABC中,∵F是BC的中点,BC=1,∴AF⊥CF,BF=CF=.∵在三棱锥A-BCF中,BC=,∴BC2=BF2+CF2.∴CF⊥BF.∵BF∩AF=F,∴CF⊥平面ABF.(3)解由(1)可知GE∥CF,结合(2)可得GE⊥平面DFG.∴V F-DEG=V E-DFG=·DG·FG·GE=.12.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(1)证明:EF∥平面PAD;(2)求三棱锥E-ABC的体积V.解:(1)证明:在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD.又∵AD⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(2)解连接AE,AC,EC,过E作EG∥PA交AB于点G,则EG⊥平面ABCD,且EG=PA.在△PAB中,AP=AB,∠PAB=90°,BP=2,∴AP=AB=,EG=.∴S△ABC=AB·BC=×2=.∴V E-ABC=S△ABC·EG=.。
新高考数学一轮复习考点知识专题讲解与练习 34 空间直线、平面的平行

新高考数学一轮复习考点知识专题讲解与练习考点知识总结34 空间直线、平面的平行高考概览高考中本考点各种题型都有考查,分值为5分或10分,中等难度考纲研读1.以立体几何的定义、基本事实和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理2.能运用基本事实、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题一、基础小题1.两条直线a,b满足a∥b,b⊂α,则a与平面α的位置关系是()A.a∥αB.a⊂αC.a与α相交D.a与α不相交答案D解析由于b⊂α且a∥b,则a∥α或a⊂α.故a与α不相交.故选D.2.如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能答案B解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.3.下列命题中错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面答案C解析由面面平行的判定定理和性质知A,B,D正确.对于C,位于两个平行平面内的直线也可能异面,故C错误.4.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析因为l⊄α,若在平面α内存在与直线l平行的直线,则l∥α,这与题意矛盾.故选B.5.给出下面结论:①过不在平面内的一点,有且只有一个平面与这个平面平行;②过不在平面内的一条直线,有且只有一个平面与这个平面平行;③过不在直线上的一点,有且只有一条直线与这条直线平行;④过不在直线上的一点,有且只有一个平面与这条直线平行.其中正确结论的序号为()A.①②B.③④ C.①③D.②④答案C解析对于①,过不在平面内的一点,有且只有一个平面与这个平面平行,正确;对于②,当已知直线与平面相交时,不存在平面与已知平面平行,错误;对于③,过不在直线上的一点,有且只有一条直线与这条直线平行,正确;对于④,过不在直线上的一点,有无数个平面与已知直线平行,错误.故选C.6. 在三棱锥A-BCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD ∥平面EFGH时,下面结论正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC答案D解析由BD∥平面EFGH,得BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.7.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案D解析若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交;若α∥β,则存在一条直线a,使得a∥α,a∥β,所以A是α∥β的一个必要条件;同理,B,C也是α∥β的一个必要条件而不是充分条件;可以通过平移把两条异面直线平移到一个平面内,成为相交直线,则有α∥β,所以D是α∥β的一个充分条件.故选D.8. (多选)在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是()A.FG∥平面AA1D1D B.EF∥平面BC1D1C.FG∥平面BC1D1D.平面EFG∥平面BC1D1答案AC解析∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵BC1∥AD1,∴FG∥AD1,∵FG⊄平面AA1D1D,AD1⊂平面AA1D1D,∴FG∥平面AA1D1D,故A正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故B错误;∵FG∥BC1,FG⊄平面BC1D1,BC1⊂平面BC1D1,∴FG∥平面BC1D1,故C正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故D 错误.二、高考小题9.(2022·浙江高考) 如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B 的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C .直线A 1D 与直线D 1B 相交,直线MN ∥平面ABCDD .直线A 1D 与直线D 1B 异面,直线MN ⊥平面BDD 1B 1答案 A解析 解法一:连接AD 1,则易得点M 在AD 1上,且AD 1⊥A 1D .因为AB ⊥平面AA 1D 1D ,所以AB ⊥A 1D ,所以A 1D ⊥平面ABD 1,所以A 1D 与D 1B 异面且垂直.在△ABD 1中,由中位线定理可得MN ∥AB ,所以MN ∥平面ABCD .易知直线AB 与平面BDD 1B 1成45°角,所以MN 与平面BDD 1B 1不垂直,所以A 正确,B ,C ,D 错误.故选A.解法二:以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.设AB =2,则A 1(2,0,2),D (0,0,0),D 1(0,0,2),B (2,2,0),所以M (1,0,1),N (1,1,1),所以A 1D →=(-2,0,-2),D 1B →=(2,2,-2),MN →=(0,1,0),所以A 1D →·D 1B →=-4+0+4=0,所以A 1D ⊥D 1B .又由图易知直线A 1D 与直线D 1B 是异面直线,所以直线A 1D与直线D 1B 异面且垂直.因为平面ABCD 的一个法向量为n =(0,0,1),MN →·n =0,所以MN ∥平面ABCD .设直线MN 与平面BDD 1B 1所成的角为θ,因为平面BDD 1B 1的一个法向量为a =(-1,1,0),所以sin θ=|cos 〈MN →,a 〉|=|MN →·a ||MN→||a |=12=22,所以直线MN 与平面BDD 1B 1不垂直.故选A.10.(2022·全国Ⅱ卷)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D.α,β垂直于同一平面答案B解析若α∥β,则α内有无数条直线与β平行,反之则不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行,反之也成立.因此,B中条件是α∥β的充要条件.故选B.11.(2022·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m ∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A解析∵m⊄α,n⊂α,m∥n,∴m∥α,故充分性成立.而由m∥α,n⊂α,得m∥n 或m与n异面,故必要性不成立.故选A.12.(2022·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案A解析A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD与平面MNQ交于点Q,∴直线AB与平面MNQ相交.B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ.又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ.C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ.又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ.D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ.又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.故选A.13.(2016·全国Ⅱ卷)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β;②如果m⊥α,n∥α,那么m⊥n;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).答案②③④解析由m⊥n,m⊥α,可得n∥α或n在α内,当n∥β时,α与β可能相交,也可能平行,故①错误.易知②③④都正确.三、模拟小题14.(2022·辽宁铁岭六校高三模拟)已知m,n是两条不同的直线,α,β,γ是三个不同平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n答案D解析若m∥α,n∥α,则m,n平行、相交或异面,故A错误;若α⊥γ,β⊥γ,则α,β平行或相交,故B错误;若m∥α,m∥β,则α,β平行或相交,故C错误;若m⊥α,n⊥α,由线面垂直的性质定理得m∥n,故D正确.故选D.15.(2022·江苏如皋市模拟)四棱锥P-ABCD中,底面ABCD为平行四边形,Q为AD的中点,点M在线段PC上,PM=tPC,P A∥平面MQB,则实数t的值为()A.15 B .14 C.13 D .12答案 C解析 四棱锥P -ABCD 中,连接AC 分别交BQ ,BD 于点N ,O .因为底面ABCD 为平行四边形,所以O 是AC 中点,也是BD 中点,而点Q 是AD 中点,于是得点N 是△ABD 的重心,从而得AN =23AO =13AC .连接MN ,如图.因为P A ∥平面MQB ,P A ⊂平面P AC ,平面P AC ∩平面MQB =MN ,所以P A ∥MN ,所以t =PM PC =AN AC =13.所以实数t 的值为13.故选C.16.(2022·河北石家庄期中)已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是它们所在线段的中点,则满足A 1F ∥平面BD 1E 的图形的个数为( )A .0B .1 C.2 D .3答案 B解析 ①中,平移A 1F 至D 1F ′,可知D 1F ′与平面BD 1E 只有一个交点D 1,则A 1F 与平面BD 1E 不平行;②中,由于A 1F ∥D 1E ,而A 1F ⊄平面BD 1E ,D 1E ⊂平面BD 1E ,故A1F∥平面BD1E;③中,平移A1F至D1F′,可知D1F′与平面BD1E只有一个交点D1,则A1F与平面BD1E不平行.故选B.17. (2022·福建宁德高三三模)如图,在直四棱柱ABCD-A1B1C1D1中,BC⊥CD,AB ∥CD,BC=3,AA1=AB=AD=2,点P,Q,R分别在棱BB1,CC1,DD1上,若A,P,Q,R四点共面,则下列结论错误的是()A.任意点P,都有AP∥QRB.任意点P,四边形APQR不可能为平行四边形C.存在点P,使得△APR为等腰直角三角形D.存在点P,使得BC∥平面APQR答案C解析对于A,在直四棱柱ABCD-A1B1C1D1中,因为AB∥CD,BB1∥CC1,所以平面ABB1A1∥平面DCC1D1,又因为平面APQR∩平面ABB1A1=AP,平面APQR∩平面DCC1D1=QR,所以AP∥QR,故A正确;对于B,若四边形APQR为平行四边形,则AR∥QP,而AD与BC不平行,即平面ADD1A1与平面BCC1B1不平行,又平面APQR∩平面BCC1B1=QP,平面APQR∩平面ADD1A1=AR,所以直线QP与直线AR不平行,与AR∥QP矛盾,所以四边形APQR不可能是平行四边形,故B正确;对于C,假设存在点P,使得△APR为等腰直角三角形,令BP=x,过点D作DE⊥AB,则DE=BC=3,在线段DR上取一点M使得DM=BP=x,连接BD,PM,则四边形BDMP为矩形,所以MP=BD=2,则PR=PM2+MR2=4+(DR-x)2,AP=BP2+AB2=x2+4,AR=DR2+AD2=4+DR2,显然AR≠PR,若由AP=PR,得x=DR2,则AP=PR=4+DR24,由AR=2AP,即4+DR2=2·4+DR24,得DR=22>2,故舍去,若由AP=AR,则BP=DR=x且BP∥DR⇒四边形BPRD为平行四边形,所以RP=BC2+CD2=2=2AP=8+2BP2=2x2+8,无解,故C错误;对于D,当BP=CQ,且DR=12CQ时,满足BC∥平面APQR,故D 正确.故选C.18. (2022·湖北省襄阳市第四中学高三最后一模)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E,F,G分别是棱AB,BC,CC1的中点,P是底面ABCD内一动点,若直线D1P与平面EFG不存在公共点,则△PBB1的面积的最小值为()A.22B.1 C.2D.2答案C解析延展平面EFG,可得截面EFGHQR,其中H,Q,R分别是所在棱的中点,直线D1P与平面EFG不存在公共点,所以D1P∥平面EFGHQR,由中位线定理可得AC∥EF,EF⊂平面EFGHQR,AC⊄平面EFGHQR,所以AC∥平面EFGHQR,因为Q,R分别是A1D1,AA1的中点,所以QR∥AD1,又AD1⊄平面EFGHQR,QR⊂平面EFGHQR,则AD1∥平面EFGHQR.又AC∩AD1=A,AC⊂平面AD1C,AD1⊂平面AD1C,所以平面AD1C∥平面EFGHQR,又D1P∥平面EFGHQR,所以点P在AC上,因为BO与AC垂直,所以P与O重合时BP最小,此时△PBB1的面积最小,最小值为12×2×2= 2.故选C.19. (多选)(2022·河北衡水中学高三模拟预测)如图,一张矩形白纸ABCD,AB=10,AD=102,E,F分别为AD,BC的中点,BE交AC于点G,DF交AC于点H.现分别将△ABE,△CDF沿BE,DF折起,且点A,C在平面BFDE同侧,则下列命题为真命题的是()A.当平面ABE∥平面CDF时,AC∥平面BFDEB.当平面ABE∥平面CDF时,AE∥CDC.当A,C重合于点P时,PG⊥PDD.当A,C重合于点P时,三棱锥P-DEF的外接球的表面积为150π答案AD解析当平面ABE∥平面CDF时,如图,由已知矩形ABCD中,AB=10,AD=102,E,F分别为AD,BC的中点,可得AC⊥BE,AC⊥DF,且求得AG=GH=CH=1033.则BE⊥平面AGH,DF⊥平面CHG,由BE∥DF,可得平面AGH与平面CHG重合,即四边形AGHC为平面四边形,∵平面ABE∥平面CDF,∴AG∥CH,又AG=CH,可得四边形AGHC为平行四边形,则AC∥GH,可得AC∥平面BFDE,故A正确;假设AE∥CD,则四边形AEDC为平面图形,而GH∥AC,可得GH∥平面AEDC,又由GH⊂平面BFDE,平面BFDE∩平面AEDC=DE,则GH∥DE,即四边形GHDE为平行四边形,可得GH=DE,与GH≠DE矛盾,∴假设错误,故B 错误;当A ,C 重合于点P 时,如图,连接GD ,PG =1033,PD =GD =10,不满足PG 2+PD 2=GD 2,∴PG 与PD 不垂直,故C 错误;在三棱锥P -DEF 中,PE =PF =52,EF =10,∴△EPF 为直角三角形,PE =DE =52,PD =10,∴△PED 为直角三角形,而△FPD 为直角三角形,∴由补形法可知,三棱锥P -DEF 外接球的直径为PF 2+PE 2+DE 2=150,则三棱锥P -DEF 的外接球的表面积为4π×⎝ ⎛⎭⎪⎫15022=150π,故D 正确.故选AD. 20.(多选)(2022·河北唐山高三开学摸底考试)在直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AB ⊥AD ,AB =2AD =2DC =2DD 1=4.则( )A .在棱AB 上存在点P ,使得D 1P ∥平面A 1BC 1B .在棱BC 上存在点P ,使得D 1P ∥平面A 1BC 1C .若P 在棱AB 上移动,则A 1D ⊥D 1PD .在棱A 1B 1上存在点P ,使得DP ⊥平面A 1BC 1答案 ABC解析 对于A ,当P 是AB 的中点时,依题意可知D 1C 1∥DC ∥PB ,D 1C 1=DC =PB ,所以四边形D 1PBC 1是平行四边形,所以D 1P ∥C 1B ,由于D 1P ⊄平面A 1BC 1,C 1B ⊂平面A 1BC 1,所以D 1P ∥平面A 1BC 1,A 正确;对于B ,设E 是AB 的中点,P 是BC 的中点,由上述分析可知D 1E ∥平面A 1BC 1.由于PE ∥AC ∥A 1C 1,PE ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1,所以PE ∥平面A 1BC 1.由于D 1E ∩PE =E ,所以平面D 1PE ∥平面A 1BC 1,所以D 1P ∥平面A 1BC 1,B 正确;对于C ,根据已知条件可知四边形ADD 1A 1是正方形,所以A 1D ⊥D 1A ,由于AB ⊥AD ,AB ⊥AA 1,AD ∩AA 1=A ,所以AB ⊥平面ADD 1A 1,所以AB ⊥A 1D .由于D 1A ∩AB =A ,所以A 1D ⊥平面AD 1P ,所以A 1D ⊥D 1P ,C 正确;对于D ,建立如图所示的空间直角坐标系,则A 1(2,0,2),B (2,4,0),C 1(0,2,2),A 1B →=(0,4,-2),A 1C 1→=(-2,2,0).设P (2,t,2),t ∈[0,4].⎩⎪⎨⎪⎧ DP →·A 1B →=4t -4=0,DP →·A 1C 1→=-4+2t =0,此方程组无解,所以在棱A 1B 1上不存在点P ,使得DP ⊥平面A 1BC 1,D 错误.故选ABC.一、高考大题1.(2022·天津高考) 如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱BC 的中点,F为棱CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A-A1C1-E的正弦值.解(1)证法一:以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(2,0,0),C(2,2,0),D(0,2,0),C1(2,2,2),D1(0,2,2),因为E 为棱BC 的中点,F 为棱CD 的中点,所以E (2,1,0),F (1,2,0),所以D 1F →=(1,0,-2),A 1C 1→=(2,2,0),A 1E →=(2,1,-2),设平面A 1EC 1的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·A 1C 1→=2x 1+2y 1=0,m ·A 1E →=2x 1+y 1-2z 1=0,令x 1=2,则m =(2,-2,1)为平面A 1EC 1的一个法向量,因为D 1F →·m =2-2=0,所以D 1F →⊥m ,因为D 1F ⊄平面A 1EC 1,所以D 1F ∥平面A 1EC 1.证法二:连接B 1D 1与A 1C 1交于点G ,连接EF ,EG ,BD .则GD 1=12B 1D 1=12BD ,GD 1∥BD .又E ,F 分别为BC ,CD 的中点,可知EF ∥BD ,且EF =12BD ,所以EF =GD 1,且EF ∥GD 1.所以四边形GEFD 1为平行四边形.所以D 1F ∥GE .又GE ⊂平面A 1EC 1,D 1F ⊄平面A 1EC 1,所以D 1F ∥平面A 1EC 1.(2)由(1)得,AC 1→=(2,2,2), 设直线AC 1与平面A 1EC 1所成的角为θ,则sin θ=|cos 〈m ,AC 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪m ·AC 1→|m ||AC 1→|=23×23=39. (3)如图,连接DB .由正方体的特征可得,平面AA 1C 1的一个法向量为DB →=(2,-2,0),则cos 〈DB →,m 〉=DB →·m |DB→||m |=822×3=223, 所以二面角A -A 1C 1-E 的正弦值为1-cos 2〈DB →,m 〉=13. 2.(2022·北京高考) 如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. 解 (1)证明:在正方体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1,∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,∴BC 1∥AD 1.∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,∴BC 1∥平面AD 1E .(2)以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2,则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1),AA 1→=(0,0,2),AD 1→=(2,0,2),AE →=(0,2,1). 设平面AD 1E 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·AD 1→=0,n ·AE →=0,得⎩⎨⎧2x +2z =0,2y +z =0, 令z =-2,则x =2,y =1,则n =(2,1,-2)为平面AD 1E 的一个法向量.设直线AA 1与平面AD 1E 所成的角为θ,则sin θ=|cos 〈n ,AA 1→〉|=|n ·AA 1→||n ||AA 1→|=43×2=23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.3. (2022·全国Ⅱ卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.解(1)证明:∵M,N分别为BC,B1C1的中点,∴MN∥BB1.又AA1∥BB1,∴AA1∥MN.∵△A1B1C1为等边三角形,N为B1C1的中点,∴A1N⊥B1C1.又侧面BB1C1C为矩形,∴B1C1⊥BB1.∵MN∥BB1,∴MN⊥B1C1.又MN∩A1N=N,MN,A1N⊂平面A1AMN,∴B1C1⊥平面A1AMN.又B1C1⊂平面EB1C1F,∴平面A1AMN⊥平面EB1C1F.(2)解法一:连接NP,∵AO∥平面EB1C1F,平面AONP∩平面EB1C1F=NP,∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N , ∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m . ∴AP =ON =3m .∵BC ∥B 1C 1,B 1C 1⊂平面EB 1C 1F ,BC ⊄平面EB 1C 1F , ∴BC ∥平面EB 1C 1F .又BC ⊂平面ABC ,平面ABC ∩平面EB 1C 1F =EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP3m,解得EP=m.在B1C1截取B1Q=EP=m,连接PQ,故QN=2m.∵B1Q=EP且B1Q∥EP,∴四边形B1QPE是平行四边形,∴B1E∥PQ.由(1)可知B1C1⊥平面A1AMN,故∠QPN为直线B1E与平面A1AMN所成的角.在Rt△QPN中,根据勾股定理可得PQ=QN2+NP2=(2m)2+(6m)2=210m,∴sin∠QPN=QNPQ =2m210m=1010.∴直线B1E与平面A1AMN所成角的正弦值为1010.解法二:由(1)知B1C1⊥平面A1AMN,又BC∥B1C1,∴BC⊥平面A1AMN,∴平面A1AMN⊥平面ABC,作NQ⊥AM,垂足为Q,则NQ⊥平面ABC.由已知得AM⊥BC,以Q为坐标原点,QA→的方向为x轴正方向,QN→的方向为z轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,则AB =2,AM = 3.设M (-a,0,0).连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2, ∴PQ =⎪⎪⎪⎪⎪⎪233-a, NQ =NP 2-PQ 2=4-⎝ ⎛⎭⎪⎫233-a 2, ∴B 1⎝⎛⎭⎪⎫0,1,4-⎝ ⎛⎭⎪⎫233-a 2,E ⎝ ⎛⎭⎪⎫233-a ,13,0, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 设直线B 1E 与平面A 1AMN 所成的角为θ, ∴sin θ=|cos 〈n ,B 1E →〉|=|n ·B 1E →||n ||B 1E →|=1010. ∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.4. (2022·全国Ⅰ卷)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.解(1)证明:如图,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)由已知可得DE ⊥DA ,以D 为坐标原点,DA→的方向为x 轴正方向,DE →的方向为y 轴正方向,DD 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量, 则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0,所以⎩⎨⎧-x +3y -2z =0,-4z =0,可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量, 则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎨⎧-3q =0,-p -2r =0,可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,sin 〈m ,n 〉=1-⎝⎛⎭⎪⎫1552=105, 所以二面角A -MA 1-N 的正弦值为105.5. (2022·天津高考)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长.解 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB→=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB→=0, 又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0,即⎩⎨⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1)为平面BDE 的一个法向量. 设直线CE 与平面BDE 所成的角为θ,则sin θ=|cos 〈CE →,n 〉|=|CE →·n ||CE →||n |=49.所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量, 则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎨⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h 为平面BDF 的一个法向量.由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h 2=13,解得h =87.经检验,符合题意. 所以线段CF 的长为87. 二、模拟大题6. (2022·浙江省名校协作体高三上学期开学考试)如图所示,在三棱柱BCD -B 1C 1D 1与四棱锥A -BB 1D 1D 的组合体中,已知BB 1⊥平面BCD ,四边形ABCD 是菱形,∠BCD =60°,AB =2,BB 1=1.(1)设O是线段BD的中点,求证:C1O∥平面AB1D1;(2)求直线B1C与平面AB1D1所成角的正弦值.解(1)证明:取B1D1的中点为E,连接C1E,OA,AE,易知C1E=OA且C1E∥OA,所以四边形C1EAO为平行四边形,所以C1O∥EA,又C1O⊄平面AB1D1,AE⊂平面AB1D1,所以C1O∥平面AB1D1.(2)解法一:过点C作平面AB1D1的垂线,垂足为G,连接B1G(图略),则∠CB1G 就是直线B1C与平面AB1D1所成的角.又CG是点O到平面AB1D1的距离的2倍,连接EO,由B1D1⊥EC1,B1D1⊥EO,知B1D1⊥平面AEO,所以平面AEO⊥平面AB1D1,在△AEO中,作OH⊥AE,垂足为H,即OH⊥平面AB1D1.由题可得AO=3,B1C=5,AE=2,所以在Rt△AEO中,OH=AO·OEAE =32,所以点C 到平面AB 1D 1的距离为3, 所以sin ∠CB 1G =CG B 1C =155.解法二:如图所示,以O 为坐标原点,OA ,OB ,OE 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系Oxyz ,得A (3,0,0),B 1(0,1,1),D 1(0,-1,1),C (-3,0,0),所以AB 1→=(-3,1,1),D 1B 1→=(0,2,0),B 1C →=(-3,-1,-1), 设平面AB 1D 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·D 1B 1→=0,得⎩⎨⎧-3x +y +z =0,2y =0,令x =1,有y =0,z =3,所以n =(1,0,3)为平面AB 1D 1的一个法向量. 记α为直线B 1C 与平面AB 1D 1所成的角, 则sin α=|n ·B 1C →||n ||B 1C →|=155.7. (2022·河北张家口第一次模拟)如图,四边形ABCD 是正方形,P A ⊥平面ABCD ,P A ∥EB ,且P A =AB =3.(1)求证:CE∥平面P AD;(2)若BE=13P A,求直线PD与平面PCE所成角的正弦值.解(1)证明:因为四边形ABCD是正方形,所以BC∥AD.又AD⊂平面P AD,BC⊄平面P AD,所以BC∥平面P AD.因为P A∥EB,P A⊂平面P AD,EB⊄平面P AD,所以EB∥平面P AD,又BC∩EB=B,所以平面EBC∥平面P AD,又因为CE⊂平面EBC,所以CE∥平面P AD.(2) 以A为坐标原点,AD,AB,AP所在直线分别为x,y,z轴建立如图所示的空间直角坐标系.因为P A=AB=3,所以BE=13P A=1,则P(0,0,3),D(3,0,0),C(3,3,0),E(0,3,1),则PD→=(3,0,-3),PC→=(3,3,-3),PE→=(0,3,-2).设平面PCE的法向量为m=(x,y,z),则由⎩⎪⎨⎪⎧ m ·PC →=(x ,y ,z )·(3,3,-3)=3x +3y -3z =0,m ·PE →=(x ,y ,z )·(0,3,-2)=3y -2z =0, 得⎩⎪⎨⎪⎧ x =z 3,y =2z 3,令z =3,得平面PCE 的一个法向量为m =(1,2,3),设直线PD 与平面PCE 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·m |PD →||m |=⎪⎪⎪⎪⎪⎪(3,0,-3)·(1,2,3)32×14=77. 所以直线PD 与平面PCE 所成角的正弦值为77.8. (2022·湖南省汨罗市二中高三入学考试)如图,在四棱锥P -ABCD 中,底面ABCD 为边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2)当二面角D -FC -B 的余弦值为24时,求直线PB 与平面ABCD 所成的角.解 (1)在棱AB 上存在点E ,使得AF ∥平面PCE ,点E 为棱AB 的中点.理由如下: 取PC 的中点Q ,连接EQ ,FQ ,由题意,FQ ∥CD 且FQ =12CD ,AE ∥CD 且AE =12CD ,则AE ∥FQ 且AE =FQ .所以四边形AEQF 为平行四边形.所以AF ∥EQ ,又EQ ⊂平面PCE ,AF ⊄平面PCE ,所以AF ∥平面PCE .(2)由题意,知△ABD 为正三角形,所以ED ⊥AB ,亦即ED ⊥CD ,又∠ADP =90°,所以PD ⊥AD ,且平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD ,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图所示的空间直角坐标系, 设FD =a (a >0),则由题意知D (0,0,0),F (0,0,a ),C (0,2,0),B (3,1,0), FC→=(0,2,-a ),CB →=(3,-1,0), 设平面FBC 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·FC →=0,m ·CB →=0,得⎩⎨⎧2y -az =0,3x -y =0, 令x =1,则y =3,z =23a , 所以取m =⎝⎛⎭⎪⎫1,3,23a ,显然可取平面DFC 的一个法向量n =(1,0,0),由题意知24=|cos〈m,n〉|=11+3+12a2,所以a= 3.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD即为直线PB与平面ABCD所成的角,易知在Rt△PBD中,tan∠PBD=PDBD=a=3,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.。
新高考一轮复习人教版 直线、平面平行的判定和性质 作业

8.3直线、平面平行的判定和性质基础篇固本夯基考点一直线与平面平行的判定和性质1.(2021江苏扬州大学附中2月检测,5)已知直三棱柱ABC-A1B1C1中,M,N分别是A1B1,AB的中点,P点在线段B1C上,则NP与平面AMC1的位置关系是()A.垂直B.平行C.相交但不垂直D.要依P点的位置而定答案B2.(2021济南二模,7)已知正四面体ABCD的棱长为2,平面α与棱AB、CD均平行,则α截此正四面体所得截面面积的最大值为()A.1B.√2C.√3D.2答案A3.(多选)(2021山东青岛胶州调研,10)在三棱柱ABC-A1B1C1中,E,F,G分别为线段AB,A1B1,AA1的中点,下列说法正确的是()A.平面AC1F∥平面B1CEB.直线FG∥平面B1CEC.直线CG与BF异面D.直线C1F与平面CGE相交答案AC4.(2020福建漳州适应性测试,16)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q的轨迹的长为.答案√105.(2022届山东潍坊10月过程性测试,18)如图,平面ABCD⊥平面AEBF,四边形ABCD为矩形,△ABE和△ABF 均为等腰直角三角形,且∠BAF=∠AEB=90°.(1)求证:平面BCE⊥平面ADE;(2)若点G为线段FC上任意一点,求证:BG∥平面ADE.证明(1)因为四边形ABCD为矩形,所以BC⊥AB,又因为平面ABCD⊥平面AEBF,BC⊂平面ABCD,平面ABCD∩平面AEBF=AB,所以BC⊥平面AEBF,又因为AE⊂平面AEBF,所以BC⊥AE.因为∠AEB=90°,即AE⊥BE,且BC、BE⊂平面BCE,BC∩BE=B,所以AE⊥平面BCE,又因为AE⊂平面ADE,所以平面ADE⊥平面BCE.(2)因为BC∥AD,AD⊂平面ADE,BC⊄平面ADE,所以BC∥平面ADE.因为△ABF和△ABE均为等腰直角三角形,且∠BAF=∠AEB=90°,所以∠EAB=∠ABF=45°,所以AE∥BF,又AE⊂平面ADE,BF⊄平面ADE,所以BF∥平面ADE,又BC∩BF=B,所以平面BCF∥平面ADE.又BG⊂平面FBC,所以BG∥平面ADE.6.(2022届广东佛山一中10月月考,20)如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD=√2,四边形ABCD为等腰梯形,BC∥AD,BC=CD=1AD=1,E为PA的中点.2(1)证明:EB∥平面PCD;(2)求平面PAD与平面PCD所成的二面角θ的正弦值.解析(1)证明:取AD的中点O,连接EO,OB,∵E为PA的中点,O为AD的中点,∴OE∥PD,又OE⊄平面PCD,PD⊂平面PCD,∴OE∥平面PCD,又∵BC ∥AD,BC=12AD,∴四边形BCDO 为平行四边形,∴BO ∥CD, 又OB ⊄平面PCD,CD ⊂平面PCD,∴BO ∥平面PCD,又OE ∩BO=O,∴平面EBO ∥平面PCD, 又∵BE ⊂平面EBO,∴BE ∥平面PCD.(2)连接PO,∵PA=PD,O 为AD 的中点,∴PO ⊥AD, 又平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD, 所以PO ⊥平面ABCD,取BC 的中点M,连接OM, ∵四边形ABCD 是等腰梯形,∴OM ⊥AD, 建立如图所示的空间直角坐标系,则P(0,0,1),A(0,-1,0),D(0,1,0),C (√32,12,0),∴PD⃗⃗⃗⃗ =(0,1,-1),CD ⃗⃗⃗⃗ =(−√32,12,0),设平面PCD 的法向量为n=(x,y,z),则{n ·PD ⃗⃗⃗⃗ =y −z =0,n ·CD⃗⃗⃗⃗ =−√32x +12y =0,令x=1,则y=z=√3,则n=(1,√3,√3), 易知平面PAD 的一个法向量为m=(1,0,0), ∴|cos θ|=|cos<m,n>|=|m·n||m||n|=√7,则sin θ=√427. 7.(2019江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为BC,AC 的中点,AB=BC.求证: (1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE ⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE⊥C1E.8.(2020江苏,15,14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.证明(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C,又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.9.(2020北京,16,13分)如图,在正方体ABCD-A1B1C1D1中,E为BB1的中点.(1)求证:BC1∥平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.解析 (1)证明:∵ABCD-A 1B 1C 1D 1为正方体,∴D 1C 1∥A 1B 1,D 1C 1=A 1B 1.又AB ∥A 1B 1,AB=A 1B 1,∴D 1C 1∥AB,D 1C 1=AB,∴四边形ABC 1D 1为平行四边形,∴AD 1∥BC 1,又AD 1⊂平面AD 1E,BC 1⊄平面AD 1E,∴BC 1∥平面AD 1E.(2)不妨设正方体的棱长为2,如图,以{AD ⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗ }为正交基底建立空间直角坐标系A-xyz,则A(0,0,0),A 1(0,0,2),D 1(2,0,2),E(0,2,1),∴AA 1⃗⃗⃗⃗⃗⃗ =(0,0,2),AD 1⃗⃗⃗⃗⃗⃗ =(2,0,2),AE ⃗⃗⃗⃗ =(0,2,1),设平面AD 1E 的法向量为n=(x,y,z),直线AA 1与平面AD 1E 所成的角为θ, 则{n ·AD 1⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗ =0,即{2x +2z =0,2y +z =0,令z=-2,则{x =2,y =1,此时n=(2,1,-2),∴sin θ=|cos<n,AA 1⃗⃗⃗⃗⃗⃗ >|=|n·AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√4+1+4×2=23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.考点二 平面与平面平行的判定和性质1.(2022届重庆巴蜀中学11月月考,8)在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点E,F,G,H 分别为棱AB,BC,C 1D 1,A 1D 1的中点,若平面α∥平面EFGH,且平面α与棱A 1B 1,B 1C 1,B 1B 分别交于点P,Q,S,其中点Q 是棱B 1C 1的中点,则三棱锥B 1-PQS 的体积为( ) A.1 B.12C.13D.16答案 D2.(2019课标Ⅱ文,7,5分)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面 答案 B3.(2021河北邢台月考,19)在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB=4,M,N,P 分别是AD,DD 1,CC 1的中点.(1)证明:平面MNC ∥平面AD 1P;(2)求直线DP 与平面MNC 所成角的正弦值.解析 (1)证明:因为M,N,P 分别是AD,DD 1,CC 1的中点,所以MN ∥AD 1,CN ∥PD 1.又AD 1⊄平面MNC,MN ⊂平面MNC,所以AD 1∥平面MNC,同理PD 1∥平面MNC, 又AD 1∩PD 1=D 1,所以平面MNC ∥平面AD 1P.(2)以D 为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),P(0,2,2),M(1,0,0),N(0,0,2),C(0,2,0),则DP ⃗⃗⃗⃗ =(0,2,2),MN ⃗⃗⃗⃗⃗ =(-1,0,2),MC⃗⃗⃗⃗⃗ =(-1,2,0). 设平面MNC 的法向量为n=(x,y,z),则{MN⃗⃗⃗⃗⃗ ·n =−x +2z =0,MC ⃗⃗⃗⃗ ·n =−x +2y =0,令z=1,得n=(2,1,1). 设直线DP 与平面MNC 所成角为θ,则sin θ=|cos<DP⃗⃗⃗⃗ ,n>|=|DP⃗⃗⃗⃗⃗ ·n||DP ⃗⃗⃗⃗⃗ ||n|=√33, 所以直线DP 与平面MNC 所成角的正弦值为√33.综合篇 知能转换A 组考法一 判断或证明线面平行的方法1.(2022届T8联考,7)如图,已知四棱柱ABCD-A 1B 1C 1D 1的底面为平行四边形,E,F,G 分别为棱AA 1,CC 1,C 1D 1的中点,则( )A.直线BC 1与平面EFG 平行,直线BD 1与平面EFG 相交B.直线BC 1与平面EFG 相交,直线BD 1与平面EFG 平行C.直线BC 1、BD 1都与平面EFG 平行D.直线BC 1、BD 1都与平面EFG 相交 答案 A2.(2022届湖南岳阳一中入学考试,18)如图,在三棱柱ABC-A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA=CB,F 在线段AC 上,且AF=2FC. (1)证明:CB 1∥平面A 1EF;(2)若CA ⊥CB,平面CAB ⊥平面ABB 1A 1,求二面角F-A 1E-A 的余弦值.解析 (1)证明:连接AB 1交A 1E 于点G,连接FG, 易得△AGA 1∽△B 1GE,所以AG GB 1=AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF,FG ⊂平面A 1EF,所以CB 1∥平面A 1EF.(2)过C 作CO ⊥AB 于点O,因为CA=CB,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB,所以CO ⊥平面ABB 1A 1.连接A 1B,OA 1,由题意易知△ABA 1是等边三角形,又O 是线段AB 的中点,所以OA 1⊥AB.以O 为坐标原点,OA ⃗⃗⃗⃗ ,OA 1⃗⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB=2,则A(1,0,0),A 1(0,√3,0),C(0,0,1),B(-1,0,0),F (13,0,23),B 1(-2,√3,0),E (−32,√32,0),则A 1E ⃗⃗⃗⃗⃗⃗ =(−32,−√32,0),A 1F ⃗⃗⃗⃗⃗ =13,-√3,23.设平面A 1FE 的法向量为n 1=(x 1,y 1,z 1), 则{A 1F ⃗⃗⃗⃗⃗ ·n 1=0,A 1E ⃗⃗⃗⃗⃗⃗ ·n 1=0,即{x 13−√3y 1+23z 1=0,−32x 1−√32y 1=0,令x 1=1,则n 1=(1,-√3,-5).易知平面ABB 1A 1的一个法向量为n 2=(0,0,1), 则cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-5√2929,由题图可知,二面角F-A 1E-A 的平面角为锐角,所以二面角F-A 1E-A 的余弦值为5√2929. 3.(2022届南京二十九中10月月考,20)如图,在四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AD ∥BC,AB ⊥AD,AB=2BC=4,E 是棱PD 上的动点(除端点外),F,M 分别为AB,CE 的中点. (1)证明:FM ∥平面PAD;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.解析 (1)证明:取CD 的中点N,连接FN,MN,因为F,N 分别为AB,CD 的中点,所以FN ∥AD,又FN ⊄平面PAD,AD ⊂平面PAD,所以FN ∥平面PAD,因为M,N 分别是CE,CD 的中点,所以MN ∥PD,又MN ⊄平面PAD,PD ⊂平面PAD,所以MN ∥平面PAD,又FN ∩MN=N,所以平面MFN ∥平面PAD,又因为FM ⊂平面MFN,所以FM ∥平面PAD.(2)连接AE,因为平面PAD ⊥平面ABCD,且平面PAD ∩平面ABCD=AD,AB ⊥AD,AB ⊂平面ABCD,所以AB ⊥平面PAD,所以∠AEF 即为直线EF 与平面PAD 所成的角,且tan ∠AEF=AF AE =2AE, 当AE 最小,即AE ⊥PD,亦即E 为PD 中点时,∠AEF 最大,为30°,又因为AF=2,所以AE=2√3,所以AD=4. 取AD 的中点O,连接PO,OC,易知PO ⊥平面ABCD,因为AO ∥BC 且AO=12AD=BC,所以四边形ABCO 为平行四边形,所以AB ∥CO,又AB ⊥AD,所以AO ⊥OC,以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),C(4,0,0),D(0,2,0),P(0,0,2√3),E(0,1,√3),F(2,-2,0),则CE ⃗⃗⃗⃗ =(-4,1,√3),FC ⃗⃗⃗⃗ =(2,2,0),设平面CEF 的法向量为n 1=(x,y,z),则{n 1·FC⃗⃗⃗ =0,n 1·CE ⃗⃗⃗ =0,即{2x +2y =0,−4x +y +√3z =0,可取n 1=(√3,-√3,5).易知平面PAD 的一个法向量为n 2=(1,0,0), 所以cos<n 1,n 2>=n 1·n 2|n 1|·|n 2|=√3√31=√9331,所以平面CEF 与平面PAD 所成锐二面角的余弦值为√9331.4.(2019课标Ⅰ理,18,12分)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE; (2)求二面角A-MA 1-N 的正弦值.解析 (1)证明:连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,则MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz, A(2,0,0),A 1(2,0,4),M(1,√3,2),N(1,0,2),A 1A ⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗ =(0,-√3,0).设m=(x,y,z)为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗ =0.所以{−x +√3y −2z =0,−4z =0.可取m=(√3,1,0).设n=(p,q,r)为平面A 1MN 的法向量,则{n ·MN⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗ =0.所以{−√3q =0,−p −2r =0.可取n=(2,0,-1).于是cos<m,n>=m·n |m||n|=√32×√5=√155, 所以二面角A-MA 1-N 的正弦值为√105.5.(2021广东珠海一模,19)如图,三棱锥P-ABC 中,PA ⊥AB,AB ⊥AC,AB=AC=√2,PB=PC=√6,点M 是PA 的中点,点D 是AC 的中点,点N 在PB 上,且PN=2NB. (1)证明:BD ∥平面CMN;(2)求直线CN 与平面ABC 所成角的正切值.解析 (1)证明:如图,连接PD 交CM 于O,则O 为△PAC 的重心,PO=2OD,连接ON,因为PN=2NB,所以ON ∥BD,因为ON ⊂平面CMN,BD ⊄平面CMN,所以BD ∥平面CMN.(2)因为PB=PC,AB=AC,PA=PA,所以△PAB ≌△PAC,所以∠PAC=∠PAB=90°,所以PA=√PC 2−AC 2=√6−2=2,又因为PA ⊥AB,AB ∩AC=A,所以PA ⊥平面ABC,过N 作NH ⊥AB 于H,连接HC,因为NH ∥PA,所以NH ⊥平面ABC,所以NH ⊥HC,且AH=23AB,直线CN 与平面ABC 所成角为∠NCH,所以直线CN 与平面ABC 所成角的正切值tan ∠NCH=NH HC=13PA √AC 2+(23AB )2=13×2√(√2)2+(23×√2)2=√2613.6.(2017课标Ⅱ理,19,12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.解析 (1)证明:取PA 的中点F,连接EF,BF.因为E 是PD 的中点,所以EF ∥AD,EF=12AD.由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,所以四边形BCEF 是平行四边形,所以CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB.(2)由已知得BA ⊥AD,以A 为坐标原点,AB ⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,√3),则PC⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗ =(1,0,0). 设M(x,y,z)(0<x<1),则BM ⃗⃗⃗⃗⃗ =(x-1,y,z),PM⃗⃗⃗⃗⃗ =(x,y-1,z-√3).因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的一个法向量,所以|cos<BM⃗⃗⃗⃗⃗ ,n>|=sin45°,即√(x−1)+y 2+z 2=√22,即(x-1)2+y 2-z 2=0.①又M 在棱PC 上,设PM⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗ ,则 x=λ,y=1,z=√3-√3λ.②由①,②解得{ x =1+√22,y =1,z =−√62(舍去),或{ x =1−√22,y =1,z =√62,所以M (1−√22,1,√62),从而AM⃗⃗⃗⃗⃗ =(1−√22,1,√62).设m=(x 0,y 0,z 0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗ =0,即{(2−√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m=(0,-√6,2). 于是cos<m,n>=m·n |m||n|=√105. 易知所求二面角为锐二面角. 因此二面角M-AB-D 的余弦值为√105.考法二 判断或证明面面平行的方法(2021太原一模,19)如图,在三棱锥P-ABC 中,△PAB 是正三角形,G 是△PAB 的重心,D,E,H 分别是PA,BC,PC 的中点,点F 在BC 上,且BF=3FC. (1)求证:平面DFH ∥平面PGE;(2)若PB ⊥AC,AB=AC=2,BC=2√2,求二面角A-PC-B 的余弦值.解析 (1)证明:连接BG,GD,由题意得BG 与GD 共线,且BG=2GD, ∵E 是BC 的中点,BF=3FC,∴F 是CE 的中点, ∴BGGD =BEEF=2,∴GE ∥DF,∵GE ⊂平面PGE,DF ⊄平面PGE,∴DF ∥平面PGE, ∵H 是PC 的中点,∴FH ∥PE,∵HF ⊄平面PGE,PE ⊂平面PGE,∴FH ∥平面PGE, ∵DF ∩FH=F,∴平面DFH ∥平面PGE.(2)∵AB=AC=2,BC=2√2,∴AB 2+AC 2=8=BC 2,∴AB ⊥AC,又∵PB ⊥AC,AB ∩PB=B,∴AC ⊥平面PAB,以A 为坐标原点,向量AB ⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗ 的方向为x 轴,y 轴的正方向建立如图所示的空间直角坐标系A-xyz,由题意得A(0,0,0),B(2,0,0),C(0,2,0),P(1,0,√3),则AC⃗⃗⃗⃗ =(0,2,0),AP ⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗ =(-1,2,-√3),BC ⃗⃗⃗⃗ =(-2,2,0),设平面PAC 的法向量是m=(x 1,y 1,z 1),则{m ·AC⃗⃗⃗⃗ =0,m ·AP⃗⃗⃗⃗ =0,∴{2y 1=0,x 1+√3z 1=0,则y 1=0,令z 1=-1,则x 1=√3,∴m=(√3,0,-1), 设平面PBC 的法向量是n=(x 2,y 2,z 2),则{n ·PC⃗⃗⃗ =0,n ·BC⃗⃗⃗⃗ =0,∴{−x 2+2y 2−√3z 2=0,−2x 2+2y 2=0,令z 2=1,则{x 2=√3,y 2=√3,∴n=(√3,√3,1), ∴cos<m,n>=m·n |m||n|=√77,又知二面角A-PC-B 是锐二面角,∴二面角A-PC-B 的余弦值为√77. B 组1.(多选)(2021南京航空航天大学附中期中,10)已知棱长为1的正方体ABCD-A 1B 1C 1D 1,过对角线BD 1作平面α交棱AA 1于点E,交棱CC 1于点F,以下结论正确的是( ) A.四边形BFD 1E 不一定是平行四边形 B.平面α分正方体所得两部分的体积相等 C.平面α与平面DBB 1不可能垂直 D.四边形BFD 1E 面积的最大值为√2答案 BD2.(多选)(2021广东肇庆二模,12)在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,P 是线段BC 1上的一动点,则下列说法中正确的是( ) A.A 1P ∥平面AD 1CB.A 1P 与平面BCC 1B 1所成角的正切值的最大值是2√55C.A 1P+PC 的最小值为√1705D.以A 为球心,√2为半径的球面与侧面DCC 1D 1的交线长是π2答案 ACD。
2020年高考文科数学一轮总复习:直线、平面平行的判定与性质

2020年高考文科数学一轮总复习:直线、平面平行的判定与性质第4讲 直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理平面外一条直线与这个平面内的一条直线平行,则该直线与此一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行一个平面内的两条相交直线与另一个平面平行,则这两个平面如果两个平行平面同交,那么它们的交线常用知识拓展1.垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. 2.垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b . 3.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ) (3)若直线a 与平面α内无数条直线平行,则a ∥α.( )(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) 答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)如果直线a ∥平面α,那么直线a 与平面α内的( ) A .一条直线不相交 B .两条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交解析:选D.因为a ∥平面α,直线a 与平面α无公共点,因此a 和平面α内的任意一条直线都不相交,故选D.如图,在长方体ABCD -A ′B ′C ′D ′中,下列直线与平面AD ′C 平行的是( )A .B ′C ′ B .A ′B C .A ′B ′D .BB ′解析:选B.因为A ′B ∥D ′C ,A ′B ⊄平面AD ′C ,CD ′⊂平面AD ′C ,所以A ′B ∥平面AD ′C .故选B.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题: ①⎭⎪⎬⎪⎫c ∥αc ∥β⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β ③⎭⎪⎬⎪⎫c ∥αa ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒a ∥α 其中正确的命题是________.解析:②正确.①错在α与β可能相交.③④错在a 可能在α内. 答案:②正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为____________. 解析:由题意得四边形BB 1D 1D 为矩形,故BD ∥B 1D 1.同理AB 1∥C 1D .又AB 1∩B 1D 1=B 1,AB 1⊂平面AB 1D 1,B 1D 1⊂平面AB 1D 1,则由面面平行的判定定理可知平面AB 1D 1和平面BC 1D 的位置关系为平行.答案:平行与线、面平行相关命题的判定(师生共研)设m ,n 表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n ∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】 D解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.平面α与平面β平行的条件可以是()A.α内有无数条直线都与β平行B.直线a∥α,a∥β,且直线a不在α内,也不在β内C.α内的任何直线都与β平行D.直线a在α内,直线b在β内,且a∥β,b∥α解析:选C.在选项A中,α内有无数条直线都与β平行,α与β有可能相交,故选项A 错误;在选项B中,直线a∥α,a∥β,且直线a不在α内,也不在β内,则α与β相交或平行,故选项B错误;在选项C中,α内的任何直线都与β平行,由面面平行的判定定理得α∥β,故选项C正确;在选项D中,直线a在α内,直线b在β内,且a∥β,b∥α,则α与β相交或平行,故选项D错误.选C.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG ∥平面BB 1D 1D .【证明】 (1)如图所示,取BB 1的中点M ,连接MH ,MC 1,易证四边形HMC 1D 1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM 綊FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF , 所以BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE 綊D 1G ,所以四边形OEGD 1是平行四边形, 所以GE ∥D 1O .又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . 角度二 线面平行性质的应用如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:GH ∥平面P AD .【证明】 如图,连接AC 交BD 于点O ,连接MO . 因为四边形ABCD 是平行四边形. 所以O 是AC 的中点.又M 是PC 的中点, 所以AP ∥OM .根据直线和平面平行的判定定理,则有P A ∥平面BMD . 因为平面P AHG ∩平面BMD =GH ,根据直线和平面平行的性质定理,所以P A ∥GH . 因为GH ⊄平面P AD ,P A ⊂平面P AD , 所以GH ∥平面P AD .证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.1.如图,在四棱锥P -ABCD 中AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:如图,过M 作MN ∥CD 交PD 于点N ,连接AN .因为PM =2MC . 所以MN =23CD .又AB =23CD ,且AB ∥CD ,所以AB 綊MN .所以四边形ABMN 为平行四边形, 所以BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , 所以BM ∥平面P AD .2.如图所示,已知四边形ABCD 是正方形,四边形ACEF 是矩形,AB =2,AF =1,M 是线段EF 的中点.(1)求证:MA ∥平面BDE .(2)若平面ADM ∩平面BDE =l ,平面ABM ∩平面BDE =m ,试分析l 与m 的位置关系,并证明你的结论.解:(1)证明:如图,记AC 与BD 的交点为O ,连接OE . 因为O ,M 分别是AC ,EF 的中点,四边形ACEF 是矩形, 所以四边形AOEM 是平行四边形,所以AM ∥OE . 又因为OE ⊂平面BDE ,AM ⊄平面BDE , 所以AM ∥平面BDE . (2)l ∥m ,证明如下: 由(1)知AM ∥平面BDE ,又AM ⊂平面ADM ,平面ADM ∩平面BDE =l , 所以l ∥AM ,同理,AM ∥平面BDE ,又AM ⊂平面ABM ,平面ABM ∩平面BDE =m , 所以m ∥AM ,所以l ∥m .面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.[迁移探究1](变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.[迁移探究2](变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM ∥平面A 1BD 1.又由三棱柱的性质知,D 1C 1綊BD , 所以四边形BDC 1D 1为平行四边形, 所以DC 1∥BD 1.又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, 所以DC 1∥平面A 1BD 1,又因为DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D , 所以平面A 1BD 1∥平面AC 1D .1.如图,AB ∥平面α∥平面β,过A ,B 的直线m ,n 分别交α,β于C ,E 和D ,F ,若AC =2,CE =3,BF =4,则BD 的长为( )A.65B.75C.85D.95解析:选C.由AB ∥α∥β,易证 AC CE =BD DF. 即AC AE =BD BF, 所以BD =AC ·BF AE =2×45=85.2.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD =2,P A ⊥平面ABCD ,E ,F 分别为AD ,P A 的中点,点Q 是BC 上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PDQ ; (2)当BD ⊥FQ 时,求BQQC的值.解:(1)因为E ,Q 分别是AD ,BC 的中点,所以ED =BQ ,ED ∥BQ ,所以四边形BEDQ 是平行四边形,所以BE ∥DQ . 又BE ⊄平面PDQ ,DQ ⊂平面PDQ ,所以BE ∥平面PDQ , 又F 是P A 的中点,所以EF ∥PD ,因为EF ⊄平面PDQ ,PD ⊂平面PDQ ,所以EF ∥平面PDQ , 因为BE ∩EF =E ,BE ,EF ⊂平面BEF ,所以平面BEF ∥平面PDQ . (2)如图,连接AQ ,因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD . 因为BD ⊥FQ ,P A ∩FQ =F ,P A ,FQ ⊂平面P AQ ,所以BD ⊥平面P AQ , 因为AQ ⊂平面P AQ ,所以AQ ⊥BD ,在矩形ABCD 中,由AQ ⊥BD 得△AQB 与△DBA 相似,所以AB 2=AD ·BQ ,又AB =1,AD =2,所以BQ =12,QC =32,所以BQ QC =13.[基础题组练]1.(2018·高考浙江卷)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A.若m ⊄α,n ⊂α,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m ⊄α,n ⊂α,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A.2.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D.对于选项A ,若存在一条直线a ,a ∥α,α∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B ,C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.3.如图所示,在空间四边形ABCD 中,E ,F 分别为边AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,又EF ⊄平面BCD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG 綊12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形.4.(2018·四川名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B.由题意可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,BQ =23BB 1,连接MQ ,NP ,PQ ,则MQ 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故MQ 綊NP ,所以四边形MQPN 是平行四边形,则MN ∥QP ,QP ⊂平面BCC 1B 1,MN ⊄平面BCC 1B 1,则MN ∥平面BCC 1B 1,故选B.5.在正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析:如图,连接AC ,BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案:平行6.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长等于________.解析:因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC ,所以F 为DC 的中点. 故EF =12AC = 2.答案: 27.(2019·重庆六校联考)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠DAB =60°,PD ⊥平面ABCD ,PD =AD =2,E ,F 分别为AB 和PD 的中点.(1)求证:AF ∥平面PEC ; (2)求点F 到平面PEC 的距离.解:(1)设PC 的中点为Q ,连接EQ ,FQ (图略),由题意,得FQ ∥DC 且FQ =12CD ,AE ∥CD 且AE =12CD ,故AE ∥FQ 且AE =FQ ,所以四边形AEQF 为平行四边形, 所以AF ∥EQ ,又EQ ⊂平面PEC ,AF ⊄平面PEC . 所以AF ∥平面PEC .(2)由(1),知点F 到平面PEC 的距离等于点A 到平面PEC 的距离,设为d ,连接AC ,由条件易求得EC =7,PE =7,PC =22,AC =23,故S △PEC =12×22×5=10,S △AEC =12×1×3=32,由V A PEC =V P AEC ,得13×10×d =13×32×2,解得d =3010.8.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明:(1)如图,连接SB ,因为E 、G 分别是BC 、SC 的中点, 所以EG ∥SB .又因为SB ⊂平面BDD 1B 1, EG ⊄平面BDD 1B 1, 所以直线EG ∥平面BDD 1B 1. (2)连接SD ,因为F 、G 分别是DC 、SC 的中点,所以FG ∥SD .又因为SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, 所以FG ∥平面BDD 1B 1,又EG ⊂平面EFG , FG ⊂平面EFG ,EG ∩FG =G , 所以平面EFG ∥平面BDD 1B 1.[综合题组练]1.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B.因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,MN∥AC.所以PNBD=ANAD,MNAC=DNAD,而AN≠DN,PN=MN,所以BD≠AC.B错误.故选B.2.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)3.(2019·南昌市摸底调研)如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC =∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)因为M ,N 分别为PD ,AD 的中点,所以MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB ,所以MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN ,所以∠ACN =60°.又∠BAC =60°,所以CN ∥AB .因为CN ⊄平面P AB ,AB ⊂平面P AB ,所以CN ∥平面P AB .又CN ∩MN =N ,所以平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,所以点M 到平面P AB 的距离等于点C 到平面P AB 的距离.因为AB =1,∠ABC =90°,∠BAC =60°,所以BC =3,所以三棱锥P -ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33. 4.如图,ABCD 与ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.(1)求证:BE ∥平面DMF ;(2)求证:平面BDE ∥平面MNG .证明:(1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M 为AB 中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG ,又DE 与BD 为平面BDE 内的两条相交直线,所以平面BDE ∥平面MNG .。
2022届高考数学一轮复习课时作业: 直线、平面平行的判定及其性质

直线、平面平行的判定及其性质1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交2.如图所示的三棱柱ABC-A 1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能3.(多选)(2020·山东济宁期末)已知m,n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是()A.若m∥α,n∥β且α∥β,则m∥nB.若m∥n,m⊥α,n⊥β,则α∥βC.若m∥n,n⊂α,α∥β,m⊄β,则m∥βD.若m∥n,n⊥α,α⊥β,则m∥β4.(多选)设m,n,l为三条不同的直线,α,β为两个不同的平面,则下面结论不正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m∥α,n∥β,m⊥n,则α⊥βC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若m∥α,n∥α,l⊥m,l⊥n,则l⊥α5.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.956.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.0条或2条7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.8.如图所示,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.9.棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.10.(2020·徐州模拟)如图,在三棱柱ABC-A1B1C1中,E,F分别为A1C1和BC的中点,M,N分别为A1B和A1C的中点.求证:(1)MN∥平面ABC;(2)EF∥平面AA1B1B.11.如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点.(1)若M为BB′的中点,证明:平面EMF∥平面ABCD;(2)在(1)的条件下,当正方体的棱长为2时,求三棱锥M-EBF的体积.能力提高1.(多选)如图,在棱长均相等的四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱P A,PB的中点,则下列结论正确的有()A.PD∥平面OMNB.平面PCD∥平面OMNC.直线PD与直线MN所成角的大小为90°D.ON⊥PB2.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=12,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且它们分别是AB,BC,SC,SA的中点,那么四边形DEFH的面积为()A.18 B.18 3C.36 D.36 33.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E、F分别是P A、PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面P AC的位置关系,并加以证明.扩展应用1.如图所示,在正四棱柱ABCD-A 1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)2.如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面P AD.(2)在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.直线、平面平行的判定及其性质1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交B[∵l⊄α,且l与α不平行,∴l∩α=P,故α内不存在与l平行的直线.故选B.]2.如图所示的三棱柱ABC-A 1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能B[由面面平行的性质可得DE∥A1B1,又A1B1∥AB,故DE∥AB.所以选B.]3.(多选)(2020·山东济宁期末)已知m,n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是()A.若m∥α,n∥β且α∥β,则m∥nB.若m∥n,m⊥α,n⊥β,则α∥βC.若m∥n,n⊂α,α∥β,m⊄β,则m∥βD.若m∥n,n⊥α,α⊥β,则m∥βBC[A.若m∥α,n∥β且α∥β,则可能m∥n,m,n异面,或m,n相交,A错误;B.若m∥n,m⊥α,则n⊥α,又n⊥β,故α∥β,B正确;C.若m∥n,n⊂α,则m∥α或m⊂α,又α∥β,m⊄β,故m∥β,C正确;D.若m∥n,n⊥α,则m⊥α,又α⊥β,则m∥β或m⊂β,D错误.故选BC.]4.(多选)设m,n,l为三条不同的直线,α,β为两个不同的平面,则下面结论不正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m∥α,n∥β,m⊥n,则α⊥βC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若m∥α,n∥α,l⊥m,l⊥n,则l⊥αABD[A选项中,m,n还可能异面;B选项中,α,β可能平行或相交;易知C正确;D选项中,只有m,n相交才可推出l⊥α.]5.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95C[由AB∥α∥β,易证ACCE=BDDF,即ACAE=BDBF,所以BD=AC·BFAE=2×45=85.]6.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.0条或2条C[如图,设平面α截三棱锥所得的四边形EFGH是平行四边形,则EF∥GH,EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD,又EF⊂平面ACD,平面ACD∩平面BCD=CD,则EF∥CD,EF⊂平面EFGH,CD⊄平面EFGH,则CD∥平面EFGH,同理AB∥平面EFGH,所以该三棱锥与平面α平行的棱有2条,故选C.]7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.①和③ [由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.]8.如图所示,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF的长度等于________. 2 [在正方体ABCD -A 1B 1C 1D 1中,AB =2,∴AC =2 2.又E 为AD 中点,EF ∥平面AB 1C ,EF ⊂平面ADC,平面ADC ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点,∴EF =12AC = 2.]9.棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.92[如图,由面面平行的性质知截面与平面ABB 1A 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,易求其面积为92.]10.(2020·徐州模拟)如图,在三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点,M ,N 分别为A 1B 和A 1C 的中点.求证:(1)MN ∥平面ABC ;(2)EF ∥平面AA 1B 1B .[证明] (1)∵M 、N 分别是A 1B 和A 1C 的中点.∴MN ∥BC ,又BC ⊂平面ABC ,MN ⊄平面ABC ,∴MN ∥平面ABC .(2)如图,取A 1B 1的中点D ,连接DE ,BD .∵D 为A 1B 1的中点,E 为A 1C 1中点,∴DE ∥B 1C 1且DE =12B 1C 1,在三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1是平行四边形,∴BC ∥B 1C 1且BC =B 1C 1,∵F 是BC 的中点,∴BF ∥B 1C 1且BF =12B 1C 1, ∴DE ∥BF 且DE =BF ,∴四边形DEFB 是平行四边形,∴EF ∥BD , 又BD ⊂平面AA 1B 1B ,EF ⊄平面AA 1B 1B ,∴EF ∥平面AA 1B 1B .11.如图,在正方体ABCD -A ′B ′C ′D ′中,E ,F分别是AB ′,BC ′的中点.(1)若M 为BB ′的中点,证明:平面EMF ∥平面ABCD ;(2)在(1)的条件下,当正方体的棱长为2时,求三棱锥M -EBF 的体积.[解] (1)证明:∵在正方体ABCD -A ′B ′C ′D ′中,E ,F 分别是AB ′,BC ′的中点,M 为BB ′的中点,∴ME ∥AB ,MF ∥B ′C ′∥BC ,∵ME ∩MF =M ,AB ∩BC =B ,ME ,MF ⊂平面MEF ,AB ,BC ⊂平面ABCD , ∴平面EMF ∥平面ABCD .(2)∵E ,F 分别是AB ′,BC ′的中点,M 为BB ′的中点,∴ME 綊12AB =1,MF 綊12BC =1,BM ⊥平面MEF ,BM =1,∵AB ⊥BC ,∴EM ⊥MF ,∴S △MEF =12×ME ×MF =12×1×1=12,∴三棱锥M -EBF 的体积:V M -EBF =V B -MEF =13×S △EMF ×BM =13×12×1=16.能力提高1.(多选)如图,在棱长均相等的四棱锥P -ABCD 中,O为底面正方形的中心,M ,N 分别为侧棱P A ,PB 的中点,则下列结论正确的有()A.PD∥平面OMNB.平面PCD∥平面OMNC.直线PD与直线MN所成角的大小为90°D.ON⊥PBABD[选项A,连接BD(图略),显然O为BD的中点,又N为PB的中点,所以PD∥ON,又ON⊂平面OMN,PD⊄平面OMN,由线面平行的判定定理可得,PD∥平面OMN,A正确;选项B,由M,N分别为侧棱P A,PB的中点,得MN∥AB,又底面为正方形,所以MN∥CD,又MN⊂平面OMN,CD⊄平面OMN,由线面平行的判定定理可得,CD∥平面OMN,又选项A中得PD∥平面OMN,CD⊂平面PCD,PD ⊂平面PCD,CD∩PD=D,由面面平行的判定定理可得,平面PCD∥平面OMN,B正确;选项C,因为MN∥CD,所以∠PDC为直线PD与直线MN所成的角,又因为四棱锥中所有棱长都相等,所以∠PDC=60°,故直线PD与直线MN所成角的大小为60°,C错误;选项D,因为底面为正方形,所以AB2+AD2=BD2,又所有棱长都相等,所以PB2+PD2=BD2,故PB⊥PD,又PD∥ON,所以ON⊥PB,D正确.故选ABD.]2.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=12,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且它们分别是AB,BC,SC,SA的中点,那么四边形DEFH的面积为()A.18 B.18 3C.36 D.36 3A[因为D,E,F,H分别是AB,BC,SC,SA的中点,所以DE∥AC,FH∥AC,DH∥SB,EF∥SB,则四边形DEFH是平行四边形,且HD=12SB=6,DE=12AC=3.如图,取AC的中点O,连接OB、SO,因为SA=SC=12,AB=BC=6,所以AC⊥SO,AC⊥OB,又SO∩OB=O,所以AO⊥平面SOB,所以AO⊥SB,则HD⊥DE,即四边形DEFH是矩形,所以四边形DEFH的面积S=6×3=18,故选A.]3.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E、F分别是P A、PC的中点.记平面BEF与平面ABC的交线为l,试判断直线l与平面P AC的位置关系,并加以证明.[解]直线l∥平面P AC,证明如下:因为E、F分别是P A、PC的中点,所以EF∥AC.又EF⊄平面ABC,且AC⊂平面ABC,所以EF∥平面ABC.而EF⊂平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.因为l⊄平面P AC,EF⊂平面P AC,所以l∥平面P AC.扩展应用1.如图所示,在正四棱柱ABCD-A 1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)点M在线段FH上(或点M与点H重合)[连接HN,FH,FN(图略),则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.]2.如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面P AD.(2)在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.[解](1)证明:如图,取P A的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=12AB,又AB∥CD,CD=12AB,所以EH∥CD,EH=CD,因此四边形DCEH为平行四边形,所以CE∥DH,又DH⊂平面P AD,CE⊄平面P AD,因此CE∥平面P AD.(2)存在点F为AB的中点,使平面P AD∥平面CEF,证明如下:取AB的中点F,连接CF,EF,则AF=12AB,因为CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD.又AD⊂平面P AD,CF⊄平面P AD,所以CF∥平面P AD,由(1)可知CE∥平面P AD,又CE∩CF=C,故平面CEF∥平面P AD,故存在AB的中点F满足要求.11。
高考一轮复习练习:直线、平面平行的判定及其性质

一、填空题1.关于直线m ,n 和平面α,β有以下四个命题:(1)若m ∥α,n ∥β,α∥β,则m ∥n ;(2)若m ∥n ,m ⊂α,n ⊥β,则α⊥β;(3)若α∩β=m ,m ∥n ,则n ∥α且n ∥β;(4)若m ⊥n ,α∩β=m ,则n ⊥α或n ⊥β.其中假命题的序号是________.解析:(1)中,m ,n 也可以相交,故(1)是假命题;(2)正确;(3)中,n 还可以在α内或β内,故(3)是假命题;(4)中,只有当α⊥β时,命题才成立.故假命题的序号是(1)(3)(4).答案:(1)(3)(4)2.对于不重合的两个平面α与β,给出下列条件:①存在平面γ,使得α、β都平行于γ;②存在直线l ⊂α,直线m ⊂β,使得l ∥m ;③存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判定α与β平行的条件有________个.解析:①正确;②中,当α与β相交时,仍有l ⊂α,m ⊂β且l ∥m 成立;③正确,将l ,m 平移成相交直线,所确定的平面就平行于α,β,所以α∥β. 答案:23.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________. ⎭⎬⎫ m ⊂α①l ∥m⇒l ∥α; ⎭⎬⎫ l ∥m ②m ∥α⇒l ∥α; ⎭⎬⎫ l ⊥β③α⊥β⇒l ∥α. 解析:线面平行的判定中指的是平面外的一条直线和平面内的一条直线平行,故此条件为:l ⊄α.答案:l ⊄α4.α,β是两个不同的平面,a ,b 是两条不同的直线,给出四个论断: ①α∩β=b ;②a ⊂β;③a ∥b ;④a ∥α.以其中三个论断为条件,余下一个为结论,写出你认为正确的命题:________.(写出一个即可)解析:开放性问题,答案不惟一.答案:①②③⇒④(或①②④⇒③)5.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.解析:∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a 3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .答案:223a6.已知m ,n 是不同的直线,α,β是不重合的平面,给出下列命题: ①若m ∥α,则m 平行于平面α内的任意一条直线;②若α∥β,m ⊂α,n ⊂β,则m ∥n ;③若m ⊥α,n ⊥β,m ∥n ,则α∥β;④若α∥β,m ⊂α,则m ∥β.其中真命题的序号是______.(写出所有真命题的序号)解析:①由m ∥α,则m 与α内的直线无公共点,∴m 与α内的直线平行或异面.故①不正确.②α∥β,则α内的直线与β内的直线无共点,∴m 与n 平行或异面,故②不正确.③④正确.答案:③④7.在四面体ABCD中,M、N分别为△ACD和△BCD的重心,则四面体的四个面中与MN平行的是________.解析:如图,取CD的中点E,则AE过M,且AM=2ME,BE过N,且BN=2NE,则AB∥MN,∴MN∥面ABC和面ABD.答案:面ABC和面ABD8.如图,ABCD是空间四边形,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,AE∶EB=________.解析:设AE=a,EB=b,由EF∥AC可得EF=bm a+b.同理EH=ana+b.∵EF=EH,∴bma+b =ana+b,于是ab =mn.答案:m∶n9.如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.解析:如图,取B1C1的中点P,连结NP、PF、FH,易证平面HNPF∥平面BDD1B1,故只需M位于FH上就有MN⊂平面HNPF,也就有MN ∥平面B1BDD1.答案:M∈线段HF二、解答题10.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、P、Q分别是BC、C1D1、AD1、BD的中点.(1)求证:PQ∥平面DCC1D1;(2)求证:EF∥平面BB1D1D.证明:(1)连结AC、CD1,AC∩BD=Q(图略).∵P、Q分别为AD1、AC的中点,∴PQ∥CD1.又CD1⊂平面DCC1D1,PQ⊄平面DCC1D1,∴PQ∥平面DCC1D1.(2)取B1C1的中点E1,连结EE1,FE1,则有FE1∥B1D1,EE1∥BB1,∴平面EE1F∥平面BB1D1D,又EF⊂平面EE1F,∴EF∥平面BB1D1D.11.如图所示,三棱柱ABC-A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连结A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连结ED,∵A 1B ∥平面AC 1D ,平面A 1BC ∩平面AC 1D =ED ,∴A 1B ∥ED .∵E 是A 1C 的中点,∴D 是BC 的中点.又∵D 1是B 1C 1的中点,∴BD 1∥C 1D ,A 1D 1∥AD .又A 1D 1∩BD 1=D 1,∴平面A 1BD 1∥平面AC 1D .12.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD ,并求AF 的长.解析:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连结AG ,在AB 上取点F ,使AF =EG ,则F 即为所求作的点. EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG ,AG ⊂平面P AD ,FE ⊄平面P AD .∴EF ∥平面P AD ,又在△BCE 中,CE =BC 2-BE 2= a 2-23a 2=33a .在Rt △PBC 中,BC 2=CE ·CP ,∴CP =a 233a =3a , 又EG CD =PE PC ,∴EG =AF =23a ,∴点F 为AB 的一个靠近B 点的三等分点.。
高考数学一轮复习 课后作业(四十三)直线、平面平行的判定及其性质 文

课后作业(四十三) 直线、平面平行的判定及其性质)一、选择题1.(2013·珠海模拟)设α、β是两个不同的平面,m 、n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A .m ∥β且l 1∥αB .m ∥β且n∥l 2C .m ∥β且n∥βD .m ∥l 1且n∥l 22.在空间四边形ABCD 中,E 、F 分别是AB 和BC 上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定3.(2013·惠州模拟)给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l α,m β,则α∥β; ②若α∥β,l α,m β,则l∥m;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l∥γ,则m∥n. 其中真命题的个数为( ) A .3 B .2 C .1 D .0图7-4-104.如图7-4-10所示,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH∥A 1D 1,则下列结论中不正确的....是( ) A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台5.在三棱锥P —ABC 中,点D 在PA 上,且PD =12DA ,过点D 作平行于底面ABC 的平面,交PB ,PC 于点E ,F ,若△ABC 的面积为9,则△DEF 的面积是( )A .1B .2C .4 D.94二、填空题6.在四面体A —BCD 中,M 、N 分别是△ACD、△BCD 的重心,则四面体的四个面中与MN 平行的是________.图7-4-117.如图7-4-11所示,棱柱ABC —A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A 1D ∶DC 1的值为________.图7-4-128.(2013·梅州模拟)如图7-4-12所示,在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的为________.(1)AC⊥BD;(2)AC∥截面PQMN ; (3)AC =BD ;(4)异面直线PM 与BD 所成的角为45°. 三、解答题图7-4-139.在多面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,三角形CDE 是等边三角形,棱EF∥BC 且EF =12BC.求证:FO∥平面CDE.图7-4-1410.在长方体ABCD —A 1B 1C 1D 1中,AB =BC =1,AA 1=2,点M 是BC 的中点,点N 是AA 1的中点.(1)求证:MN∥平面A 1CD ;(2)过N ,C ,D 三点的平面把长方体ABCD —A 1B 1C 1D 1截成两部分几何体,求所截成的两部分几何体的体积的比值.图7-4-1511.如图7-4-15所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD. (1)判断截面的形状;(2)试问截面在什么位置时其截面面积最大.解析及答案一、选择题1.【解析】 m∥l 1,且n∥l 2α∥β,但α∥βD/m ∥l 1且n∥l 2, ∴“m ∥l 1,且n∥l 2”是“α∥β”的一个充分不必要条件. 【答案】 D 2.【解析】 如图,由AE EB =CFFB得AC∥EF.又因为EF 平面DEF ,AC 平面DEF ,所以AC∥平面DEF. 【答案】 A 3.【解析】 ①中当α与β不平行时,也可能存在符合题意的l 、m. ②中l 与m 也可能异面. ③中⎭⎪⎬⎪⎫l∥γl ββ∩γ=m l ∥m ,同理l∥n,则m∥n,正确.【答案】 C4.【解析】 ∵EH∥A 1D 1,∴EH∥B 1C 1,∴EH ∥平面BB 1C 1C.由线面平行性质,EH∥FG. 同理EF∥GH.且B 1C 1⊥面EB 1F.由直棱柱定义知几何体B 1EF —C 1HG 为直三棱柱, ∴四边形EFGH 为矩形,Ω为五棱柱. 【答案】 D 5.【解析】 由于平面DEF∥底面ABC ,因此DE∥AB,DF∥AC,EF∥BC,所以DE AB =DF AC =EF BC ,所以△DEF∽△ABC,所以S △DEF S △ABC =(13)2,而S △ABC =9,所以S △DEF =1.【答案】 A 二、填空题【解析】 如图,取CD 的中点E. 则EM∶MA=1∶2, EN ∶BN =1∶2, 所以MN∥AB.所以MN∥面ABD ,MN∥面ABC. 【答案】 面ABD 与面ABC7.【解析】 设BC 1∩B 1C =O ,连接OD ,∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD , ∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形,∴O 为BC 1的中点,∴D 为A 1C 1的中点, 则A 1D ∶DC 1=1. 【答案】 18.【解析】 ∵PQMN 是正方形, ∴MN ∥PQ ,则MN∥平面ABC ,由线面平行的性质知MN∥AC,则AC∥平面PQMN , 同理可得MQ∥BD,又MN⊥QM,则AC⊥BD, 故(1)(2)正确.又∵BD∥MQ,∴异面直线PM 与BD 所成的角即为∠PMQ=45°,故(4)正确. 【答案】 (3) 三、解答题9.【证明】 取CD 中点M ,连接OM ,EM ,在矩形ABCD 中,OM∥BC 且OM =12BC ,又EF∥BC 且EF =12BC ,则EF∥OM 且EF =OM.所以四边形EFOM 为平行四边形,所以FO∥EM. 又因为FO 平面CDE ,且EM 平面CDE , 所以FO∥平面CDE.【解】 (1)证明 取AD 的中点P ,A 1D 的中点E ,连接NE 、EC. 又∵N 是AA 1的中点,∴NE 綊AP 綊MC ,∴四边形NECM 为平行四边形, ∴MN ∥EC ,又∵EC 平面A 1CD , MN 平面A 1CD , ∴MN ∥平面A 1CD.(2)取BB 1的中点Q ,连接NQ 、CQ 、ND , 因为点N 是AA 1的中点,所以NQ∥AB. 因为AB∥CD,所以NQ∥CD,所以过N 、C 、D 三点的平面NQCD 把长方体ABCD —A 1B 1C 1D 1截成两部分几何体,其中一部分几何体为直三棱柱QBC —NAD ,另一部分几何体为直四棱柱B 1QCC 1—A 1NDD 1.所以S △QBC =12QB ·BC =12×1×1=12.所以直三棱柱QBC —NAD 的体积V 1=S △QBC ·AB =12.因为长方体ABCD —A 1B 1C 1D 1的体积V =1×1×2=2. 所以直四棱柱B 1QCC 1—A 1NDD 1的体积V 2=V -V 1=32,所以V 1V 2=1232=13.所以所截成的两部分几何体的体积的比值为13.11.【解】 (1)∵AB∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH. ∴AB ∥FG ,AB∥EH,∴FG∥EH, 同理可证EF∥GH,∴截面EFGH 是平行四边形.(2)设AB =a ,CD =b ,∠FGH=α.又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BGBC,两式相加得x a +y b =1,即y =ba(a -x),∴S EFGH =FG·GH·sin α=x·b a ·(a -x)·sin α=bsin αa x(a -x)≤absin α4.∵x >0,a -x >0,且x +(a -x)=a 为定值. ∴当且仅当x =a -x ,x =a 2时,S EFGH 最大为absin α4. 即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时,截面面积最大.。
2020版高考数学人教版理科一轮复习课时作业:44直线、平面平行的判定及其性质含解析

课时作业44直线、平面平行的判定及其性质一、选择题1.已知直线a与直线b平行,直线a与平面α平行,则直线b与α的关系为(D)A.平行B.相交C.直线b在平面α内D.平行或直线b在平面α内解析:依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.2.已知α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n ⊂α,且A∈m,A∈α,则m,n的位置关系不可能是(D) A.垂直B.相交C.异面D.平行解析:对于选项A,当m⊥α时,因为n⊂α,所以m⊥n,可能;对于选项B,当A∈n时,m∩n=A,可能;对于选项C,若A∉n,由异面直线的定义知m,n异面,可能;对于选项D,若m∥n,因为m⊄α,n⊂α,所以m∥α,这与m∩α=A 矛盾,不可能平行,故选D.3.(2019·四川乐山四校联考)平面α∥平面β的一个充分条件是(D) A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a∥α,a∥β,b⊂βD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:存在一条直线a,a∥α,a∥β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故A错;存在一条直线a,a⊂α,a∥β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故B错;存在两条平行直线a,b,a∥α,a∥β,b⊂β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故C错;存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,据此可得平面α∥平面β,该条件是平面α∥平面β的一个充分条件.故选D.4.(2019·山东泰安二模)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题正确的是(D)A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解析:对于A,若m∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能平行,也可能相交(比如直三棱柱相邻两侧面都与底面垂直),故B错误;对于C,若m∥α,m∥β,则α与β可能平行,也可能相交,故C错误;对于D,垂直于同一平面的两条直线相互平行,故D正确.综上,故选D.5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE EB =AF FD=14,H,G分别是BC,CD的中点,则(B) A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形解析:如图,由条件知,EF∥BD,EF=15BD,HG∥BD,HG=12BD,∴EF∥HG,且EF=25HG,∴四边形EFGH为梯形.∵EF∥BD,EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.∵四边形EFGH为梯形,∴线段EH与FG的延长线交于一点,∴EH不平行于平面ADC.故选B.6.已知M ,N ,K 分别为正方体ABCD -A 1B 1C 1D 1的棱AB ,B 1C 1,DD 1的中点,在正方体的所有面对角线和体对角线所在的直线中,与平面MNK 平行的直线有( A )A .6条B .7条C .8条D .9条解析:补形得到平面MNK 与正方体侧面的交线,得到正六边形MENFKG ,如图所示.由线面平行的判定定理,可得BD ,B 1D 1,BC 1,AD 1,AB 1,DC 1所在直线与平面MNK 平行,∴正方体的所有面对角线和体对角线所在的直线中,与平面MNK 平行的有6条.故选A.二、填空题7.如图所示,在四面体ABCD 中,点M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是平面ABC 、平面ABD .解析:连接AM 并延长,交CD 于点E ,连接BN ,并延长交CD 于点F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,连接MN ,由EM MA =EN NB =12,得MN ∥AB .所以MN ∥平面ABC 且MN ∥平面ABD .8.在三棱锥P -ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为8.解析:过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.9.(2019·江西重点中学协作体一模)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=6,AB =3,AD =8,点M 是棱AD 的中点,点N 在棱AA 1上,且满足AN =2NA 1,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的最小值是17.解析:取A 1D 1的中点Q ,过点Q 在平面ADD 1A 1内作MN 的平行线交DD 1于点E ,易知平面C 1QE ∥平面CMN ,在△C 1QE 中作C 1P ⊥QE ,此时C 1P 取得最小值17.三、解答题10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .证明:(1)连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又MN ⊂平面MNG ,BD ⊄平面MNG ,所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .11.已知四棱锥P -ABCD 中,底面四边形ABCD 为矩形,P A ⊥底面ABCD ,P A =BC =1,AB =2,M 为PC 的中点.(1)在图中作出平面ADM 与PB 的交点N ,并指出点N 所在位置(不要求给出理由);(2)求平面ADM 将四棱锥P -ABCD 分成的上下两部分的体积比.解:(1)N 为PB 中点,截面如图所示.(2)∵MN 是△PBC 的中位线,BC =1,∴MN =12,AN =52,且AN ⊥AD ,∴梯形ADMN 的面积为12⎝ ⎛⎭⎪⎫12+1×52=358,点P 到截面ADMN 的距离为点P 到直线AN 的距离d =25,∴四棱锥P -ADMN 的体积V 1=13×358×25=14,而四棱锥P -ABCD 的体积V =13×2×1×1=23,∴四棱锥被截下部分体积V 2=V -V 1=23-14=512,故上下两部分的体积比V 1V 2=35.12.(2019·山东烟台二模)如图是一张矩形折纸ABCD ,AB =10,AD =102,E ,F 分别为AD ,BC 的中点,现分别将△ABE ,△CDF 沿BE ,DF 折起,且A 、C 在平面BFDE 同侧,下列命题正确的是①④.(写出所有正确命题的序号)①当平面ABE ∥平面CDF 时,AC ∥平面BFDE ;②当平面ABE ∥平面CDF 时,AE ∥CD ;③当A 、C 重合于点P 时,PG ⊥PD ;④当A 、C 重合于点P 时,三棱锥P -DEF 的外接球的表面积为150π.解析:在△ABE 中,tan ∠ABE =22,在△ACD 中,tan ∠CAD =22,所以∠ABE =∠DAC ,由题意,将△ABE ,△DCF 沿BE ,DF 折起,且A ,C 在平面BEDF 同侧,此时A 、C 、G 、H 四点在同一平面内,平面ABE ∩平面AGHC =AG ,平面CDF ∩平面AGHC =CH ,当平面ABE ∥平面CDF 时,得到AG ∥CH ,显然AG =CH ,所以四边形AGHC 为平行四边形,所以AC ∥GH ,进而可得AC ∥平面BFDE ,故①正确;由于折叠后,直线AE 与直线CD 为异面直线,所以AE 与CD 不平行,故②不正确;当A 、C 重合于点P 时,可得PG =1033,PD =10,又GD =10,∴PG 2+PD 2≠GD 2,所以PG 与PD 不垂直,故③不正确;当A ,C 重合于点P 时,在三棱锥P -DEF 中,△EFD 与△FCD 均为直角三角形,所以DF 为外接球的直径,即R =DF 2=562,所以外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎫5622=150π,故④正确.综上,正确命题的序号为①④.13.(2019·重庆万州区检测)如图,斜三棱柱ABC -A 1B 1C 1中,D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC 的值.解:(1)当A 1D 1D 1C 1=1时, BC 1∥平面AB 1D 1.如图,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形,所以点O 为A 1B 的中点.在△A 1BC 1中,O ,D 1分别为A 1B ,A 1C 1的中点,∴OD 1∥BC 1.又OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴当A 1D 1D 1C 1=1时, BC 1∥平面AB 1D 1.(2)由已知,平面BC 1D ∥平面AB 1D 1且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O .因此BC 1∥D 1O ,同理AD 1∥DC 1.∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD . 又A 1O OB =1,∴DC AD =1,即AD DC =1.尖子生小题库——供重点班学生使用,普通班学生慎用14.(2019·湖南长沙长郡中学模拟)如图,在四棱锥P -ABCD 中,AB ⊥AD ,BC ∥AD ,P A =AD =4,AB =BC =2,P A ⊥平面ABCD ,点E 是线段AB 的中点,点F 在线段P A 上,且EF ∥平面PCD ,直线PD 与平面CEF 交于点H ,则线段CH 的长度为( C )A. 2 B.2C.2 2 D.2 3解析:∵PD与平面CEF交于点H,∴平面CEF∩平面PCD=CH,∵EF∥平面PCD,∴EF∥CH,过点H作HM∥P A交AD于点M,连接CM,∵EF∩AF=F,CH∩HM=H,∴平面AEF∥平面CHM,∵平面AEF∩平面ABCD=AE,平面CHM∩平面ABCD=CM,∴AE ∥CM,又BC∥AM,∴四边形ABCM为平行四边形,∴AM=2.又AD=4,∴M是AD的中点,则H为PD的中点,∴CH=CM2+MH2=22+22=22,故选C.15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是(C)解析:过M作MQ∥DD1,交AD于点Q,连接QN.∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1,MN ∩MQ =M ,∴平面MNQ ∥平面DCC 1D 1.又平面ABCD 与平面MNQ 和DCC 1D 1分别交于QN 和DC ,∴NQ ∥DC ,可得QN =CD =AB =1,AQ =BN =x ,∵MQ AQ =DD 1AD =2,∴MQ =2x .在Rt △MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1,∴y 2-4x 2=1(x ≥0,y ≥1),∴函数y =f (x )的图象为焦点在y 轴上的双曲线上支的一部分.故选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业(四十三) 直线、平面平行的判定及其性质)
一、选择题
1.(2013·珠海模拟)设α、β是两个不同的平面,m 、n 是平面α内的两条不同直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )
A .m ∥β且l 1∥α
B .m ∥β且n∥l 2
C .m ∥β且n∥β
D .m ∥l 1且n∥l 2
2.在空间四边形ABCD 中,E 、F 分别是AB 和BC 上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC 和平面DEF 的位置关系是( )
A .平行
B .相交
C .在平面内
D .不能确定
3.(2013·惠州模拟)给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:
①若l 与m 为异面直线,l α,m β,则α∥β; ②若α∥β,l α,m β,则l∥m;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,l∥γ,则m∥n. 其中真命题的个数为( ) A .3 B .2 C .1 D .0
图7-4-10
4.如图7-4-10所示,若Ω是长方体ABCD —A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1
后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH∥A 1D 1,则下列结论中不正确的....
是( ) A .EH ∥FG
B .四边形EFGH 是矩形
C .Ω是棱柱
D .Ω是棱台
5.在三棱锥P —ABC 中,点D 在PA 上,且PD =1
2
DA ,过点D 作平行于底面ABC 的平面,
交PB ,PC 于点E ,F ,若△ABC 的面积为9,则△DEF 的面积是( )
A .1
B .2
C .4 D.9
4
二、填空题
6.在四面体A —BCD 中,M 、N 分别是△ACD、△BCD 的重心,则四面体的四个面中与MN 平行的是________.
图7-4-11
7.如图7-4-11所示,棱柱ABC —A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A 1D ∶DC 1的值为________.
图7-4-12
8.(2013·梅州模拟)如图7-4-12所示,在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的为________.
(1)AC⊥BD;
(2)AC∥截面PQMN ; (3)AC =BD ;
(4)异面直线PM 与BD 所成的角为45°. 三、解答题
图7-4-13
9.在多面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,三角形CDE 是等边三角形,
棱EF∥BC 且EF =1
2
BC.求证:FO∥平面CDE.
图7-4-14
10.在长方体ABCD —A 1B 1C 1D 1中,AB =BC =1,AA 1=2,点M 是BC 的中点,点N 是AA 1
的中点.
(1)求证:MN∥平面A 1CD ;
(2)过N ,C ,D 三点的平面把长方体ABCD —A 1B 1C 1D 1截成两部分几何体,求所截成的两部分几何体的体积的比值.
图7-4-15
11.如图7-4-15所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD. (1)判断截面的形状;
(2)试问截面在什么位置时其截面面积最大.
解析及答案
一、选择题
1.
【解析】 m∥l 1,且n∥l 2α∥β,但α∥βD/m ∥l 1且n∥l 2, ∴“m ∥l 1,且n∥l 2”是“α∥β”的一个充分不必要条件. 【答案】 D 2.
【解析】 如图,由AE EB =CF
FB
得AC∥EF.
又因为EF 平面DEF ,AC 平面DEF ,所以AC∥平面DEF. 【答案】 A 3.
【解析】 ①中当α与β不平行时,也可能存在符合题意的l 、m. ②中l 与m 也可能异面. ③中
⎭
⎪⎬⎪
⎫l∥γ
l ββ∩γ=m l ∥m ,同理l∥n,则m∥n,正确.
【答案】 C
4.
【解析】 ∵EH∥A 1D 1,∴EH∥B 1C 1,
∴EH ∥平面BB 1C 1C.由线面平行性质,EH∥FG. 同理EF∥GH.且B 1C 1⊥面EB 1F.
由直棱柱定义知几何体B 1EF —C 1HG 为直三棱柱, ∴四边形EFGH 为矩形,Ω为五棱柱. 【答案】 D 5.
【解析】 由于平面DEF∥底面ABC ,因此DE∥AB,DF∥AC,EF∥BC,
所以DE AB =DF AC =EF BC ,所以△DEF∽△ABC,所以S △DEF S △ABC =(13)2
,而S △ABC =9,所以S △DEF =1.
【答案】 A 二、填空题
【解析】 如图,取CD 的中点E. 则EM∶MA=1∶2, EN ∶BN =1∶2, 所以MN∥AB.
所以MN∥面ABD ,MN∥面ABC. 【答案】 面ABD 与面ABC
7.【解析】 设BC 1∩B 1C =O ,连接OD ,
∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD , ∴A 1B ∥OD ,
∵四边形BCC 1B 1是菱形,
∴O 为BC 1的中点,∴D 为A 1C 1的中点, 则A 1D ∶DC 1=1. 【答案】 1
8.
【解析】 ∵PQMN 是正方形, ∴MN ∥PQ ,则MN∥平面ABC ,
由线面平行的性质知MN∥AC,则AC∥平面PQMN , 同理可得MQ∥BD,又MN⊥QM,则AC⊥BD, 故(1)(2)正确.
又∵BD∥MQ,∴异面直线PM 与BD 所成的角即为∠PMQ=45°,故(4)正确. 【答案】 (3) 三、解答题
9.
【证明】 取CD 中点M ,连接OM ,EM ,
在矩形ABCD 中,OM∥BC 且OM =1
2
BC ,
又EF∥BC 且EF =1
2
BC ,则EF∥OM 且EF =OM.
所以四边形EFOM 为平行四边形,所以FO∥EM. 又因为FO 平面CDE ,且EM 平面CDE , 所以FO∥平面CDE.
【解】 (1)证明 取AD 的中点P ,A 1D 的中点E ,连接NE 、EC. 又∵N 是AA 1的中点,
∴NE 綊AP 綊MC ,
∴四边形NECM 为平行四边形, ∴MN ∥EC ,
又∵EC 平面A 1CD , MN 平面A 1CD , ∴MN ∥平面A 1CD.
(2)取BB 1的中点Q ,连接NQ 、CQ 、ND , 因为点N 是AA 1的中点,所以NQ∥AB. 因为AB∥CD,所以NQ∥CD,
所以过N 、C 、D 三点的平面NQCD 把长方体ABCD —A 1B 1C 1D 1截成两部分几何体,其中一部分几何体为直三棱柱QBC —NAD ,另一部分几何体为直四棱柱B 1QCC 1—A 1NDD 1.
所以S △QBC =12QB ·BC =12×1×1=1
2
.
所以直三棱柱QBC —NAD 的体积V 1=S △QBC ·AB =1
2
.
因为长方体ABCD —A 1B 1C 1D 1的体积V =1×1×2=2. 所以直四棱柱B 1QCC 1—A 1NDD 1的体积
V 2=V -V 1=32,所以V 1V 2=1
232
=1
3
.
所以所截成的两部分几何体的体积的比值为1
3.
11.
【解】 (1)∵AB∥平面EFGH ,
平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH. ∴AB ∥FG ,AB∥EH,∴FG∥EH, 同理可证EF∥GH,
∴截面EFGH 是平行四边形.
(2)设AB =a ,CD =b ,∠FGH=α.又设FG =x ,GH =y ,
则由平面几何知识可得x a =CG BC ,y b =BG
BC
,
两式相加得x a +y b =1,即y =b
a
(a -x),
∴S EFGH =FG·GH·sin α
=x·b a ·(a -x)·sin α=bsin αa x(a -x)≤absin α4.
∵x >0,a -x >0,且x +(a -x)=a 为定值. ∴当且仅当x =a -x ,
x =a 2时,S EFGH 最大为absin α4
. 即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时,截面面积最大.。